
Fuzzing by Coverage Accounting for Input Prioritization

Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng,

Tiffany Bao, Dinghao Wu, and Purui Su

Not All Coverage Measurements Are Equal

NDSS Symposium 2020

1

AFL

AFL Family and Coverage-based Fuzzing

AFLFast

AFL-Sensitive

CollAFL

FairFuzz

Driller

QSYM

2

AFL Family and Coverage-based Fuzzing

Program Fuzzer Crash Inputs

Input

Coverage
Feedback

3

Coverage-based Fuzzing: The Internals

4

Queue

Prioritized Queue

Queue Culling
(isFavor)

Prioritized input

Other input

Favored

Input Prioritization Factors:
Execution Time, Input Size, etc.

5

Coverage Measurements are Treated Equally

Spend equal time on security-sensitive paths
and security-insensitive paths

if len < 256

memcpy(x, y, len) print error msg

return

a b

Delay finding vulnerabilities

Anti-Fuzzing

Inject fake coverage measurements
to mislead coverage-based fuzzers

6

if len < 256

memcpy(x, y, len)

print error msg

return

a
b'

 n fake paths

What then?

7

We treat coverage measurements equally
do not

8

Coverage Accounting

The prioritization of input
reflects security sensitivity

9

if len < 256

memcpy(x, y, len) print error msg

return

a b

if len < 256

memcpy(x, y, len) print error msg

return

a b

Coverage Accounting

What should be the indicators?

Design a new queue culling scheme based on coverage accounting metrics

function level

10

loop level basic block level

Function Level

Function Number Function Number
memcpy 80 free 12
strlen 35 memset 12

ReadImage 17 delete 11
malloc 15 memcmp 10
memmove 12 getString 9

We crawled call-stacks from webpages of all CVEs in the latest 4 years

Some functions are inherently likely to be involved in memory corruptions

11

memcpy free
malloc

memset
memmove......

Loop Level
1

2 3

4

5

Incorrect looping condition is often the root
cause of memory corruption vulnerabilities

12

Basic Block Level
1 shl [rbp+var1], 4

2 mov edx, [rbp+var1]

3 mov eax, edx

4 shl eax, 4

5 add eax, edx

6 mov [rbp+var1], eax

7 mov rdx, [rbp+var2]

8 mov rax, [rbp+i]

9 add rax, rdx

10 movzx edx, byte ptr [rax]

11 movzx eax, [rbp+var3]

12 xor eax, edx

13 movzx eax, al

14 add [rbp+var1], eax

15 movzx edx, [rbp+var3]

16 mov eax, edx

17 shl eax, 3

1 shl [rbp+var1], 4

2 mov edx, [rbp+var1]

3 mov eax, edx

4 shl eax, 4

5 add eax, edx

6 mov [rbp+var1], eax

7 mov rdx, [rbp+var2]

8 mov rax, [rbp+i]

9 add rax, rdx

10 movzx edx, byte ptr [rax]

11 movzx eax, [rbp+var3]

12 xor eax, edx

13 movzx eax, al

14 add [rbp+var1], eax

15 movzx edx, [rbp+var3]

16 mov eax, edx

17 shl eax, 3

read
write

13

Design

14

Queue

Queue Culling
(isFavor)

Security-insensitive
prioritized input

Other input

Security-sensitive
prioritized input

Coverage Accounting Information

Favored

Prioritized Queue

AFL TortoiseFuzz

TortoiseFuzz: Coverage-based Fuzzer with Coverage Accounting

15

AFLFast

AFL-Sensitive

CollAFL

FairFuzz

Driller

QSYM

TortoiseFuzz: Coverage-based Fuzzer with Coverage Accounting

16

The Hare and The Tortoise Story, Bedtime Story by Kids Hut
https://www.youtube.com/watch?v=eMXmMHVNx4U

https://www.youtube.com/watch%3Fv=eMXmMHVNx4U

17

Implementation

We implement coverage accounting on AFL as TortoiseFuzz

We implement TortoiseFuzz for both source code and binaries

Experiment Setup

Each experiment lasted for 140 hours

Each experiment was done 10 times

We ran TortoiseFuzz on 30 real-world programs

We performed Mann-Whitney U test to measure statistical significance

18

Vulnerability Discovery

0

5

10

15

20

25

30

35

40

45

TortoiseFuzz AFL AFLFast FairFuzz MOPT Angora QSYM

Average # of discovered vulnerabilities

TortoiseFuzz outperforms 5
state-of-the-art fuzzers and
achieves comparable results
with QSYM

19

TortoiseFuzz uses 2% of QSYM’s
memory usage on average

20

Comparison with QSYM

Complementary to Other Fuzzers

Coverage accounting helps improve QSYM in discovering vulnerabilities

Average # of discovered vulnerabilities

QSYM QSYM + coverage accounting

39.8 51.2

28.6% improvement

21

Robustness to Anti-fuzzing

22

if len < 256

memcpy(x, y, len)

print error msg

return

a
b'

 n fake paths Fake paths do not contain many coverage
accounting info

Coverage accounting metrics
are more robust to anti-fuzzing

23

0

2000

4000

6000

8000

10000

12000

0 12 24 36 48 60 72

of covered edges over time

AFL AFL+anti-fuzzing TortoiseFuzz TortoiseFuzz+anti-fuzzing

Robustness to Anti-fuzzing

Conclusion

We propose coverage accounting which is complementary to other
coverage-based fuzzers

We design and implement TortoiseFuzz, and we are going to release it
at https://github.com/TortoiseFuzz/TortoiseFuzz

We evaluate TortoiseFuzz on 30 real-world programs and find 20
zero-day vulnerabilities

TortoiseFuzz outperforms 5 state-of-the-art fuzzers and achieves
comparable results with QSYM with 2% of its memory usage

24

https://github.com/TortoiseFuzz/TortoiseFuzz

Thank you!
Q & A

25

Kyle Zeng zengyhkyle@asu.edu

Fuzzing by Coverage Accounting for Input Prioritization
Not All Coverage Measurements Are Equal

