Not All Coverage Measurements Are Equal

Fuzzing by Coverage Accounting for Input Prioritization

NDSS Symposium 2020

Yanhao Wang, Xiangkun Jia, Yuwei Liu, <u>Kyle Zeng</u>, Tiffany Bao, Dinghao Wu, and Purui Su

AFL Family and Coverage-based Fuzzing

AFL

AFL Family and Coverage-based Fuzzing

Coverage-based Fuzzing: The Internals

Input Prioritization Factors: Execution Time, Input Size, etc.

Coverage Measurements are Treated Equally

Anti-Fuzzing

Inject fake coverage measurements to mislead coverage-based fuzzers

What then?

do not We treat coverage measurements equally

Coverage Accounting

The prioritization of input reflects **security sensitivity**

What should be the indicators?

function level loop level basic block level

Design a new queue culling scheme based on coverage accounting metrics

Function Level

Some functions are inherently likely to be involved in memory corruptions We crawled call-stacks from webpages of all CVEs in the latest 4 years

Function	Number	Function	Number
memcpy	80	free	12
strlen	35	memset	12
ReadImage	17	delete	11
malloc	15	memcmp	10
memmove	12	getString	9

Incorrect looping condition is often the root cause of memory corruption vulnerabilities

Basic Block Level

1	shl	[rbp+var1], 4	
2	mov	edx, [rbp+var1]	
3	mov	eax, edx	
4	shl	eax, 4	
5	add	eax, edx	
6	mov	[rbp+var1], eax	
7	mov	rdx, [rbp+var2]	
8	mov	rax, [rbp+i]	
9	add	rax, rdx	
10	movzx	edx, byte ptr [rax]	
11	movzx	eax, [rbp+var3]	
12	xor	eax, edx	
13	movzx	eax, al	
14	add	[rbp+var1], eax	
15	movzx	edx, [rbp+var3]	
16	mov	eax, edx	

1	shl	[rbp+var1], 4	read
2	mov	edx, [rbp+var1]	write
3	mo∨	eax, edx	
4	shl	eax, 4	
5	add	eax, edx	
6	mov	[rbp+var1], eax	
7	mov	rdx, [rbp+var2]	
8	mov	rax, [rbp+i]	
9	add	rax, rdx	
10	movzx	edx, byte ptr [rax]	
11	movzx	eax, [rbp+var3]	
12	xor	eax, edx	
13	movzx	eax, al	
14	add	[rbp+var1], eax	
15	movzx	edx, [rbp+var3]	
16	mov	eax, edx	
17	shl	eax, 3	

TortoiseFuzz: Coverage-based Fuzzer with Coverage Accounting

FairFuzz

QSYM

TortoiseFuzz

TortoiseFuzz: Coverage-based Fuzzer with Coverage Accounting

The Hare and The Tortoise Story, Bedtime Story by Kids Hut https://www.youtube.com/watch?v=eMXmMHVNx4U

We implement coverage accounting on AFL as TortoiseFuzz

We implement TortoiseFuzz for both source code and binaries

Experiment Setup

We ran TortoiseFuzz on 30 real-world programs

Each experiment lasted for 140 hours

Each experiment was done 10 times

We performed Mann-Whitney U test to measure statistical significance

Vulnerability Discovery

Average # of discovered vulnerabilities

TortoiseFuzz outperforms 5 state-of-the-art fuzzers and achieves comparable results with QSYM

Comparison with QSYM

TortoiseFuzz uses 2% of QSYM's memory usage on average

Complementary to Other Fuzzers

Coverage accounting helps improve QSYM in discovering vulnerabilities

Average # of discovered vulnerabilities				
QSYM	QSYM + coverage accounting			
39.8	51.2			
28.6% improvement				

Robustness to Anti-fuzzing

Fake paths do not contain many coverage accounting info

Robustness to Anti-fuzzing

Coverage accounting metrics are more robust to anti-fuzzing

Conclusion

We propose coverage accounting which is complementary to other coverage-based fuzzers

We design and implement TortoiseFuzz, and we are going to release it at https://github.com/TortoiseFuzz/TortoiseFuzz

We evaluate TortoiseFuzz on 30 real-world programs and find 20 zero-day vulnerabilities

TortoiseFuzz outperforms 5 state-of-the-art fuzzers and achieves comparable results with QSYM with 2% of its memory usage

Not All Coverage Measurements Are Equal Fuzzing by Coverage Accounting for Input Prioritization

Thank you! Q & A

Kyle Zeng zengyhkyle@asu.edu