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• Web application scanners are popular black-box testing tools

• However, traditional approaches struggle with exploring deeper states

• Key limitation: They lack awareness of multi-step workflows

• Model-based methods have been proposed to tackle this weakness

− E.g., reinforcement learning on user-provided traces [1]

• Does not scale well!
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• Instead of building a model, we opted to use large language models (LLMs)

• Non-academic approaches have proposed LLM-based browsing agents to 
assist users with tasks [2], [3]

− E.g., “Book a hotel in San Diego”

• Instead, we want to complete workflows and reach deeper states in web 
apps without user interaction

• We propose a fully automated, task-driven web application scanner called 
YuraScanner
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② Task Execution ③ Vulnerability Scanning① Task Extraction

1. Shallow crawl of depth one

2. Extract text content from interactable HTML elements

3. Ask LLM to provide appropriate tasks
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② Task Execution ③ Vulnerability Scanning① Task Extraction

1. Add a new category 
for products.

2. Edit the information 
for an existing 
product.

3. Delete a previous 
order.

1.

2.

3.
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② Task Execution ③ Vulnerability Scanning① Task Extraction

Forms

• Executes every task in multiple steps

• At each step of a task:

− Generate simplified textual page representation

− Query LLM for next command (e.g., “CLICK 2”)

− Execute command
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② Task Execution ③ Vulnerability Scanning① Task Extraction

• We integrated the XSS engine of Black Widow

• Visits every form collected during task execution

• Injects predefined XSS payloads into input fields
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• We evaluated YuraScanner on 20 popular, modern web 
applications

• We divided our testbed into two sets:

1. Task Extraction and Execution

− Manual labeling of valid tasks and their success 
rate during task execution

− Random subset of 10 web apps

2. Vulnerability Detection

− Inspection of vulnerabilities found by the attack 
component

− All 20 web apps
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• 2,361 tasks were generated in total across 10 web applications

• 77% of the tasks were valid (1,818 tasks)

• “Invalid” = Functionality does not exist in the web application

• Invalid task generation mainly occurred on pages with insufficient context

− E.g., login page with only one button

2,361 tasks Invalid (543)Valid (1,818)
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Task Execution Classification
(1,818 valid tasks)

Warning: Please check the form carefully for errors!
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Suffering from 
Success



Task: “Delete a user from the ‘User Management’ section.”

Suffering from Success
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• Is the new attack surface found by 
YuraScanner “deeper”?

• Comparison with Black Widow, 
BFS and Random BFS

• Percentage of forms collected the 
deeper we go into the web app

• 44% of forms also discovered by at 
least one other tool

• Remaining 14.3% of forms with 
depth > 3

• Out of reach for existing tools!
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• 12 of them found by YuraScanner
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XSS

Stored 
XSS
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Moodle 2 1 1 - 1 -

Leantime 1 1 - - 1 -
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• 13 unique zero-day vulnerabilities discovered

• 12 of them found by YuraScanner

• Located between four and two clicks away from the main page

App Total Unique YuraScanner Black Widow

Stored 
XSS

Reflected 
XSS

Stored 
XSS

Reflected 
XSS

Redacted 12 11 4 7 - 1

Moodle 2 1 1 - 1 -

Leantime 1 1 - - 1 -
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• We implemented YuraScanner, a task-driven web application scanner

• Fully automated approach

• YuraScanner executed 61.3% of the valid tasks completely or partially

• The unique attack surface discovered by YuraScanner is deeper compared to 
traditional scanners

• Task-driven crawling effectively complements traditional scanning 
techniques
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Page abstraction

Select next 
action

Execute action

Sensors

Actuators

Bridge

abs(p)

abs(a)

Page p
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Page p

1. Collect
interactable

elements

2. Map to
textual

representation

3. Filter
elements

4. Simplify
into abs(a)

<button id=0>
Developer Setting

</button>

“”

“Developer
Setting”

“Catalog”
<a id=1>
Catalog
</a>

abs(p)
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abs(p)

<button id=0>Developer setting</button>
<a id=1>Catalog</a>
…
------------------
CURRENT URL: 
http://localhost/administration/
CURRENT PAGE TITLE: Dashboard

1. Insert into
prompt

template

2. Send to
LLM API

3. Validate
reply syntax “CLICK 1”

Command + 
id(abs(a))

“CLICK 1”
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Preamble with instructions
• Persona assignment to increase focus:

“You are Yura, an agent controlling a web browser”
• Explanation of abstract page
• Command types

Example of input and expected output
(“One-shot”)

Current input
• Current task
• Current abstract page (i.e., abs(p))
• History of previous actions
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CLICK x

FILL & SUBMIT 
FORM x

STOP

Form Module
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