
YuraScanner:
Leveraging LLMs for Task-
driven Web App Scanning
Aleksei Stafeev, Tim Recktenwald, Gianluca De
Stefano, Soheil Khodayari, Giancarlo Pellegrino

Network and Distributed System Security Symposium | 2025

Motivation

2

• Web application scanners are popular black-box testing tools

• However, traditional approaches struggle with exploring deeper states

Motivation

3

Motivation

4

Motivation

5

• Web application scanners are popular black-box testing tools

• However, traditional approaches struggle with exploring deeper states

• Key limitation: They lack awareness of multi-step workflows

•

−

•

Motivation

[1] E. Z. Liu, K. Guu, P. Pasupat, T. Shi, and P. Liang, “Reinforcement Learning on Web Interfaces using Workflow-Guided Exploration,” in 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.5

• Web application scanners are popular black-box testing tools

• However, traditional approaches struggle with exploring deeper states

• Key limitation: They lack awareness of multi-step workflows

• Model-based methods have been proposed to tackle this weakness

− E.g., reinforcement learning on user-provided traces [1]

•

Motivation

[1] E. Z. Liu, K. Guu, P. Pasupat, T. Shi, and P. Liang, “Reinforcement Learning on Web Interfaces using Workflow-Guided Exploration,” in 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.5

• Web application scanners are popular black-box testing tools

• However, traditional approaches struggle with exploring deeper states

• Key limitation: They lack awareness of multi-step workflows

• Model-based methods have been proposed to tackle this weakness

− E.g., reinforcement learning on user-provided traces [1]

• Does not scale well!

Approach

6

• Instead of building a model, we opted to use large language models (LLMs)

Approach

[2] N. Friedman. (2022) Natbot. https://github.com/nat/natbot.
[3] (2024) Skyvern. https://github.com/Skyvern-AI/skyvern.6

• Instead of building a model, we opted to use large language models (LLMs)

• Non-academic approaches have proposed LLM-based browsing agents to
assist users with tasks [2], [3]

− E.g., “Book a hotel in San Diego”

Approach

[2] N. Friedman. (2022) Natbot. https://github.com/nat/natbot.
[3] (2024) Skyvern. https://github.com/Skyvern-AI/skyvern.6

• Instead of building a model, we opted to use large language models (LLMs)

• Non-academic approaches have proposed LLM-based browsing agents to
assist users with tasks [2], [3]

− E.g., “Book a hotel in San Diego”

• Instead, we want to complete workflows and reach deeper states in web
apps without user interaction

Approach

[2] N. Friedman. (2022) Natbot. https://github.com/nat/natbot.
[3] (2024) Skyvern. https://github.com/Skyvern-AI/skyvern.6

• Instead of building a model, we opted to use large language models (LLMs)

• Non-academic approaches have proposed LLM-based browsing agents to
assist users with tasks [2], [3]

− E.g., “Book a hotel in San Diego”

• Instead, we want to complete workflows and reach deeper states in web
apps without user interaction

• We propose a fully automated, task-driven web application scanner called
YuraScanner

Architecture of YuraScanner

7

② Task Execution ③ Vulnerability Scanning① Task Extraction

1.

2.

3.

Architecture of YuraScanner

7

② Task Execution ③ Vulnerability Scanning① Task Extraction

1. Shallow crawl of depth one

2. Extract text content from interactable HTML elements

3. Ask LLM to provide appropriate tasks

Architecture of YuraScanner

7

② Task Execution ③ Vulnerability Scanning① Task Extraction

1. Add a new category
for products.

2. Edit the information
for an existing
product.

3. Delete a previous
order.

1.

2.

3.

Architecture of YuraScanner

8

② Task Execution ③ Vulnerability Scanning① Task Extraction

• Executes every task in multiple steps

•

−

−

−

Architecture of YuraScanner

8

② Task Execution ③ Vulnerability Scanning① Task Extraction

• Executes every task in multiple steps

• At each step of a task:

− Generate simplified textual page representation

− Query LLM for next command (e.g., “CLICK 2”)

− Execute command

Architecture of YuraScanner

8

② Task Execution ③ Vulnerability Scanning① Task Extraction

Forms

• Executes every task in multiple steps

• At each step of a task:

− Generate simplified textual page representation

− Query LLM for next command (e.g., “CLICK 2”)

− Execute command

Architecture of YuraScanner

9

② Task Execution ③ Vulnerability Scanning① Task Extraction

• We integrated the XSS engine of Black Widow

• Visits every form collected during task execution

• Injects predefined XSS payloads into input fields

Evaluation

10

• We evaluated YuraScanner on 20 popular, modern web
applications

Evaluation

10

• We evaluated YuraScanner on 20 popular, modern web
applications

• We divided our testbed into two sets:

1. Task Extraction and Execution

− Manual labeling of valid tasks and their success
rate during task execution

− Random subset of 10 web apps

Evaluation

10

• We evaluated YuraScanner on 20 popular, modern web
applications

• We divided our testbed into two sets:

1. Task Extraction and Execution

− Manual labeling of valid tasks and their success
rate during task execution

− Random subset of 10 web apps

2. Vulnerability Detection

− Inspection of vulnerabilities found by the attack
component

− All 20 web apps

Evaluation Results: Task Extraction

11

• 2,361 tasks were generated in total across 10 web applications

•

•

•

−

2,361 tasks

Evaluation Results: Task Extraction

11

• 2,361 tasks were generated in total across 10 web applications

• 77% of the tasks were valid (1,818 tasks)

•

•

−

2,361 tasksValid (1,818)

Evaluation Results: Task Extraction

11

• 2,361 tasks were generated in total across 10 web applications

• 77% of the tasks were valid (1,818 tasks)

• “Invalid” = Functionality does not exist in the web application

• Invalid task generation mainly occurred on pages with insufficient context

− E.g., login page with only one button

2,361 tasks Invalid (543)Valid (1,818)

Success
37%

Partial
Success

25%

Missing State
16%

Deviated
9%

Gave Up
Immediately

13%

Evaluation Results: Task Execution

12

Task Execution Classification
(1,818 valid tasks)

Success
37%

Partial
Success

25%

Missing State
16%

Deviated
9%

Gave Up
Immediately

13%

Evaluation Results: Task Execution

12

Task Execution Classification
(1,818 valid tasks) Task: Add new “Customers” to the database

Success
37%

Partial
Success

25%

Missing State
16%

Deviated
9%

Gave Up
Immediately

13%

Evaluation Results: Task Execution

12

Task Execution Classification
(1,818 valid tasks) Task: Add new “Customers” to the database

Success
37%

Partial
Success

25%

Missing State
16%

Deviated
9%

Gave Up
Immediately

13%

Evaluation Results: Task Execution

12

Task Execution Classification
(1,818 valid tasks) Task: Add new “Customers” to the database

Success
37%

Partial
Success

25%

Missing State
16%

Deviated
9%

Gave Up
Immediately

13%

Evaluation Results: Task Execution

12

Task Execution Classification
(1,818 valid tasks) Task: Add new “Customers” to the database

Success
37%

Partial
Success

25%

Missing State
16%

Deviated
9%

Gave Up
Immediately

13%

Evaluation Results: Task Execution

13

Task Execution Classification
(1,818 valid tasks)

Success
37%

Partial
Success

25%

Missing State
16%

Deviated
9%

Gave Up
Immediately

13%

Evaluation Results: Task Execution

13

Task Execution Classification
(1,818 valid tasks)

Warning: Please check the form carefully for errors!

Success
37%

Partial
Success

25%

Missing State
16%

Deviated
9%

Gave Up
Immediately

13%

Evaluation Results: Task Execution

14

Task Execution Classification
(1,818 valid tasks)

Suffering from
Success

Task: “Delete a user from the ‘User Management’ section.”

Suffering from Success

16

Suffering from Success

16

Suffering from Success

16

Suffering from Success

16

17

Characterization of the New Attack Surface

18

• Is the new attack surface found by
YuraScanner “deeper”?

•

•

•

Characterization of the New Attack Surface

18

• Is the new attack surface found by
YuraScanner “deeper”?

• Comparison with Black Widow,
BFS and Random BFS

• Percentage of forms collected the
deeper we go into the web app

•

•

Characterization of the New Attack Surface

18

• Is the new attack surface found by
YuraScanner “deeper”?

• Comparison with Black Widow,
BFS and Random BFS

• Percentage of forms collected the
deeper we go into the web app

• 44% of forms also discovered by at
least one other tool

•

Characterization of the New Attack Surface

18

• Is the new attack surface found by
YuraScanner “deeper”?

• Comparison with Black Widow,
BFS and Random BFS

• Percentage of forms collected the
deeper we go into the web app

• 44% of forms also discovered by at
least one other tool

•

Characterization of the New Attack Surface

18

• Is the new attack surface found by
YuraScanner “deeper”?

• Comparison with Black Widow,
BFS and Random BFS

• Percentage of forms collected the
deeper we go into the web app

• 44% of forms also discovered by at
least one other tool

• Remaining 14.3% of forms with
depth > 3

• Out of reach for existing tools!

Vulnerability Detection

19

• 13 unique zero-day vulnerabilities discovered

• 12 of them found by YuraScanner

App Total Unique YuraScanner Black Widow

Stored
XSS

Reflected
XSS

Stored
XSS

Reflected
XSS

Redacted 12 11 4 7 - 1

Moodle 2 1 1 - 1 -

Leantime 1 1 - - 1 -

Vulnerability Detection

19

• 13 unique zero-day vulnerabilities discovered

• 12 of them found by YuraScanner

• Located between four and two clicks away from the main page

App Total Unique YuraScanner Black Widow

Stored
XSS

Reflected
XSS

Stored
XSS

Reflected
XSS

Redacted 12 11 4 7 - 1

Moodle 2 1 1 - 1 -

Leantime 1 1 - - 1 -

Summary

20

• We implemented YuraScanner, a task-driven web application scanner

• Fully automated approach

• YuraScanner executed 61.3% of the valid tasks completely or partially

• The unique attack surface discovered by YuraScanner is deeper compared to
traditional scanners

• Task-driven crawling effectively complements traditional scanning
techniques

Task-driven Crawler Component

21

Page abstraction

Select next
action

Execute action

Sensors

Actuators

Bridge

abs(p)

abs(a)

Page p

Sensors

22

Page p

1. Collect
interactable

elements

2. Map to
textual

representation

3. Filter
elements

4. Simplify
into abs(a)

<button id=0>
Developer Setting

</button>

“”

“Developer
Setting”

“Catalog”

Catalog

abs(p)

Bridge

23

abs(p)

<button id=0>Developer setting</button>
Catalog
…

CURRENT URL:
http://localhost/administration/
CURRENT PAGE TITLE: Dashboard

1. Insert into
prompt

template

2. Send to
LLM API

3. Validate
reply syntax “CLICK 1”

Command +
id(abs(a))

“CLICK 1”

Bridge: LLM Prompt

24

Preamble with instructions
• Persona assignment to increase focus:

“You are Yura, an agent controlling a web browser”
• Explanation of abstract page
• Command types

Example of input and expected output
(“One-shot”)

Current input
• Current task
• Current abstract page (i.e., abs(p))
• History of previous actions

Actuators

25

CLICK x

FILL & SUBMIT
FORM x

STOP

Form Module

	Folie 1: YuraScanner: Leveraging LLMs for Task-driven Web App Scanning
	Folie 2: Motivation
	Folie 3: Motivation
	Folie 4: Motivation
	Folie 5: Motivation
	Folie 6: Motivation
	Folie 7: Motivation
	Folie 8: Approach
	Folie 9: Approach
	Folie 10: Approach
	Folie 11: Approach
	Folie 12: Architecture of YuraScanner
	Folie 13: Architecture of YuraScanner
	Folie 14: Architecture of YuraScanner
	Folie 15: Architecture of YuraScanner
	Folie 16: Architecture of YuraScanner
	Folie 17: Architecture of YuraScanner
	Folie 18: Architecture of YuraScanner
	Folie 19: Evaluation
	Folie 20: Evaluation
	Folie 21: Evaluation
	Folie 22: Evaluation Results: Task Extraction
	Folie 23: Evaluation Results: Task Extraction
	Folie 24: Evaluation Results: Task Extraction
	Folie 25: Evaluation Results: Task Execution
	Folie 26: Evaluation Results: Task Execution
	Folie 27: Evaluation Results: Task Execution
	Folie 28: Evaluation Results: Task Execution
	Folie 29: Evaluation Results: Task Execution
	Folie 30: Evaluation Results: Task Execution
	Folie 31: Evaluation Results: Task Execution
	Folie 32: Evaluation Results: Task Execution
	Folie 33: Suffering from Success
	Folie 34: Suffering from Success
	Folie 35: Suffering from Success
	Folie 36: Suffering from Success
	Folie 37: Suffering from Success
	Folie 38
	Folie 39: Characterization of the New Attack Surface
	Folie 40: Characterization of the New Attack Surface
	Folie 41: Characterization of the New Attack Surface
	Folie 42: Characterization of the New Attack Surface
	Folie 43: Characterization of the New Attack Surface
	Folie 44: Vulnerability Detection
	Folie 45: Vulnerability Detection
	Folie 46: Summary
	Folie 47: Task-driven Crawler Component
	Folie 48: Sensors
	Folie 49: Bridge
	Folie 50: Bridge: LLM Prompt
	Folie 51: Actuators

