You Can Rand but You Can’t Hide:
A Holistic Security Analysis of Google Fuchsia’s (and gVisor’s)
Network Stack

Network and Distributed System Security (NDSS) Symposium, 2025

Inon Kaplan (independent researcher)
Ron Even (independent researcher)

Amit Klein (Hebrew University of Jerusalem — School of CS and Eng.)

Background: Google Fuchsia and gVisor

Background: Google Fuchsia and gVisor

* Google Fuchsia is:

* “A general purpose operating system designed to power a diverse Q
ecosystem of hardware and software” (Google)
Targeting Mobile/Tablets/loT, etc.

Deployed to millions of Google Nest Hub devices

Conjectured by many to (eventually?) replace Android
Fuchsia’s TCP/IP stack (“NetStack”) is cloned from gVisor

Background: Google Fuchsia and gVisor

* Google Fuchsia is:

* “A general purpose operating system designed to power a diverse
ecosystem of hardware and software” (Google)

* Targeting Mobile/Tablets/IoT, etc.

* Deployed to millions of Google Nest Hub devices

e Conjectured by many to (eventually?) replace Android

* Fuchsia’s TCP/IP stack (“NetStack”) is cloned from gVisor

* Google gVisor is:
* “an application kernel for containers” (Google)

* Used in Google Cloud offerings: App Engine, Cloud Functions,
Cloud ML Engine, Cloud Run, Google Kubernetes Engine (GKE)

Q

@ gVisor

Approach: Holistic Security Analysis

Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

* Focus on “high entropy” protocol header fields:
* |Pv4 (and IPv6) ID
* |Pv6 Flow Label
* UDP source port
* TCP source port
e TCP timestamp (TS)
* TCP initial sequence number (ISN)

Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

* Focus on “high entropy” protocol header fields:
* |Pv4 (and IPv6) ID S
* |Pv6 Flow Label
* UDP source port
* TCP source port
e TCP timestamp (TS)
* TCP initial sequence number (ISN)

Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

* Focus on “high entropy” protocol header fields:
* |Pv4 (and IPv6) IDG S
* |Pv6 Flow Label §¥
* UDP source port
* TCP source port
e TCP timestamp (TS)
* TCP initial sequence number (ISN)

Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

* Focus on “high entropy” protocol header fields:
* |Pv4 (and IPv6) IDG S
* |Pv6 Flow Label §¥ (always 0...)
* UDP source port
* TCP source port
e TCP timestamp (TS)
* TCP initial sequence number (ISN)

Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

* Focus on “high entropy” protocol header fields:
* |Pv4 (and IPv6) IDG S
* |Pv6 Flow Label §¥ (always 0...)
* UDP source port
* TCP source port
e TCP timestamp (TS)
* TCP initial sequence number (ISN)

Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

* Focus on “high entropy” protocol header fields:
* |Pv4 (and IPv6) IDG R
* |Pv6 Flow Label §¥ (always 0...)
* UDP source port &
* TCP source port &g
e TCP timestamp (TS)
* TCP initial sequence number (ISN)

Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

* Focus on “high entropy” protocol header fields:
* |Pv4 (and IPv6) IDG R
* |Pv6 Flow Label §¥ (always 0...)
* UDP source port &
* TCP source port &g
* TCP timestamp (TS) .5
* TCP initial sequence number (ISN)

Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

* Focus on “high entropy” protocol header fields:
* |IPv4 (and IPv6) IDO R
* |Pv6 Flow Label §¥ (always 0...)
* UDP source port &
* TCP source port &g
* TCP timestamp (TS) .5
* TCP initial sequence number (ISN) &

Angel icon by Nuricon, devil icon by Freepik

Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

* Focus on “high entropy” protocol header fields:
* |IPv4 (and IPv6) IDG R
* |Pv6 Flow Label §¥ (always 0...)
* UDP source port &
* TCP source port &g
* TCP timestamp (TS) .5
* TCP initial sequence number (ISN) &

* Combine otherwise-weak vulnerabilities in separate network protocol
header fields into powerful attacks

Angel icon by Nuricon, devil icon by Freepik

IPv4 TCP/IPv4 TCP/1Pv6 uDP

IPv4

Small IP ID hash table,
small hash key, ++

TCP/IPv4 TCP/IPv6

Small PRNG seed
(UDP source port, TCP
secrets)

TCP TS weak hash

TCP source port weak
hash, global counter

TCP ISN weak hash

UDP

PRNG advancing

weakness (UDP source
port)

IPv4

Small IP ID hash table,
small hash key, ++

TCP/IPv4 TCP/IPv6

Small PRNG seed
(UDP source port, TCP
secrets)

———— TCP TS weak hash

TCP source port weak
hash, global counter

TCP ISN weak hash

Reverse to
seed
(4 packets)

v
Net. stack PRNG seed

(31 bits)

UDP

PRNG advancing

weakness (UDP source
port)

IPv4

Small IP ID hash table,
small hash key, ++

TCP/IPv4 TCP/IPv6

Small PRNG seed
(UDP source port, TCP
secrets)

———— TCP TS weak hash

TCP source port weak
hash, global counter

TCP ISN weak hash

Reverse to Reverse to
seed seed
(4 packets) (2 packets)

v
Net. stack PRNG seed

(31 bits)

UDP

PRNG advancing

weakness (UDP source
port)

IPv4

Small IP ID hash table,
small hash key, ++

TCP/IPv4 TCP/IPv6
Small PRNG seed

UDP

PRNG advancing

(UDP source port, TCP
secrets)

———— TCP TS weak hash

TCP source port weak
hash, global counter

TCP ISN weak hash

Reverse to Reverse to
seed seed
(4 packets) (2 packets)

weakness (UDP source
port)

Rainbow table
attack
(O packets)

v oy
Net. stack PRNG seed

(31 bits)

IPv4 TCP/IPv4 TCP/1Pv6 uDP

Small PRNG seed
(UDP source port, TCP

Small IP ID hash table, secrets)
small hash key, ++
——— TCP TS weak hash
TCP source port weak
hash, global counter

PRNG advancing
weakness (UDP source
port)

TCP ISN weak hash

Rainbow table
attack
(O packets)

Reverse to Reverse to
seed seed
(4 packets) (2 packets)

v

IPv4 internal address Time since boot Net. stack PRNG seed
(31 bits)
TCP port prediction TCP ISN prediction TCP connection rate UDP port prediction

IPv4 TCP/IPv4 TCP/IPv6 UDP

Small PRNG seed
(UDP source port, TCP

Small IP ID hash table, secrets)
small hash key, ++
——— TCP TS weak hash
TCP source port weak
hash, global counter

PRNG advancing
weakness (UDP source
port)

TCP ISN weak hash

Rainbow table
attack
(O packets)

Reverse to Reverse to
seed seed
(4 packets) (2 packets)

v

IPv4 internal address Time since boot Net. stack PRNG seed
(31 bits)
Hash collisions |

(250 packets) l l
TCP port prediction TCP ISN prediction UDP port prediction
IPv4 ID hash key
(32 bits)

IPv4 TCP/IPv4 TCP/IPv6 UDP

Small PRNG seed
(UDP source port, TCP

Small IP ID hash table, secrets)
small hash key, ++
——— TCP TS weak hash
TCP source port weak
hash, global counter

PRNG advancing
weakness (UDP source
port)

TCP ISN weak hash

Rainbow table
attack
(O packets)

Reverse to Reverse to
seed seed
(4 packets) (2 packets)

v

IPv4 internal address Net. sta;l1< EESN)G seed

(250 packets) l l
TCP port prediction TCP ISN prediction UDP port prediction
IPv4 ID hash key
(32 bits)
I

\ ¥
IP ID prediction IP packet rate 4

Hash collisions

IPv4 TCP/IPv4 TCP/IPv6 UDP

Small PRNG seed
(UDP source port, TCP

Small IP ID hash table, secrets)
small hash key, ++
——— TCP TS weak hash
TCP source port weak
hash, global counter

PRNG advancing

weakness (UDP source
port)

TCP ISN weak hash

Reverse to Reverse to Rainbow table
seed seed attack
(4 packets) (2 packets) (0 packets)
v PRNG
Net. stack PRNG seed prediction
IPv4 internal address (31 bits) (0 re e
Hash collisions | l

(250 packets)
TCP port prediction TCP ISN prediction UDP port prediction
IPv4 ID hash key
(32 bits)
I

\ ¥
IP ID prediction IP packet rate 4

IPv4 TCP/IPv4 TCP/IPv6 UDP

Small PRNG seed
(UDP source port, TCP

Small IP ID hash table, secrets)
small hash key, ++
——— TCP TS weak hash
TCP source port weak
hash, global counter

PRNG advancing

weakness (UDP source
port)

TCP ISN weak hash

Reverse to Reverse to Rainbow table
seed seed attack
(4 packets) (2 packets) (0 packets)
v PRNG
Net. stack PRNG seed prediction
IPv4 internal address (31 bits) (0 re e
Hash collisions | l

(250 packets)
TCP port prediction TCP ISN prediction UDP port prediction
IPv4 ID hash key
(32 bits)
I

\ ¥
IP ID prediction IP packet rate 4

Definitions and Observations

TCP Timestamp generation: TS = Hash(IPyc|IPyst, key) + tms) mod 232

Hash(X, state) is (simplified here for ease of discussion) Jenkins’ “one-at-a-time hash”
X is abyte array
» state is a 32-bit internal state/key
* For ease of discussion, we ignore an easily reversible final function (Sum32(+))

key is a kernel (TCP/IP stack) 32-bit key (“secret”) generated deterministically from a 31-
bit seed at system startup

e Valid from system startup to system shutdown

It’s weak:
* Small internal state (32 bits)

* Hash(X,state) - given X and Hash(X, state) we can easily find state (we call this “peeling”)
 Hash(X|Y,state) = Hash(Y,Hash(X, state)) (we call this “chaining rule”)

We define] = Hash(IP,,., key), so (by chaining rule)
TS = Hash(IPys,]) + tpms mod 232

Finding J

Finding J

* We force the device to send 2 TCP SYN packets, rapidly (ms away):
* Packet 1: (IP,.:p1) = (UPgackers: d) TSy = Hash(IPystacker1,]) + t1 [ms) mod 232
* Packet 2: (IP,,.:p2) = (P 0cker2: Q) TS, = Hash(IPttacker2 J) + ta pms) mod 232

Finding J

* We force the device to send 2 TCP SYN packets, rapidly (ms away):
* Packet 1: (IP,.:p1) = (UPgackers: d) TSy = Hash(IPystacker1,]) + t1 [ms) mod 232
* Packet 2: (IP,,.:p2) = (P 0cker2: Q) TS, = Hash(IPttacker2 J) + ta pms) mod 232

* Subtracting and rearranging (with At = t; js) — t1 (ms)):

Finding J

* We force the device to send 2 TCP SYN packets, rapidly (ms away):
* Packet 1: (IP,.:p1) = (UPgackers: d) TSy = Hash(IPystacker1,]) + t1 [ms) mod 232
* Packet 2: (IP,,.:p2) = (P 0cker2: Q) TS, = Hash(IPttacker2 J) + ta pms) mod 232

* Subtracting and rearranging (with At = t; js] — t1 (ms)):
TSZ B TSl — At mod 232 = (HaSh(IPAttackerZr]) _ HaSh(IPAttackerlil)) mod 232

Finding J

* We force the device to send 2 TCP SYN packets, rapidly (ms away):
¢ PaCkEt 1: (IPs‘T'C : pl) - (IPAttackerl: d) TS]_ = HaSh(IPAttackerllj) + tl [ms] mod 232
* Packet 2: (IP,,.:p2) = (P 0cker2: Q) TS, = Hash(IPttacker2 J) + ta pms) mod 232
* Subtracting and rearranging (with At = t; js] — t1 (ms)):
TSZ _ TSl — At mod 232 — (HaSh(IPAttackerZr]) _ HaSh(IPAttackerlil)) mod 232

e LHS: all known (up to At which is small — 0-19 ms)

Finding J

* We force the device to send 2 TCP SYN packets, rapidly (ms away):
* Packet 1: (IP,.:p1) = (UPgackers: d) TSy = Hash(IPystacker1,]) + t1 [ms) mod 232
* Packet 2: (IP,,.:p2) = (P 0cker2: Q) TS, = Hash(IPttacker2 J) + ta pms) mod 232

* Subtracting and rearranging (with At = t; js] — t1 (ms)):
TSZ B TSl — At mod 232 = (HaSh(IPAttackerZr]) _ HaSh(IPAttackerlil)) mod 232

e LHS: all known (up to At which is small — 0-19 ms)
* RHS: all known except J

Finding J

* We force the device to send 2 TCP SYN packets, rapidly (ms away):
* Packet 1: (IP,.:p1) = (UPgackers: d) TSy = Hash(IPystacker1,]) + t1 [ms) mod 232
* Packet 2: (IP,,.:p2) = (P 0cker2: Q) TS, = Hash(IPttacker2 J) + ta pms) mod 232

* Subtracting and rearranging (with At = t; js] — t1 (ms)):
TSZ B TSl — At mod 232 = (HaSh(IPAttackerZr]) _ HaSh(IPAttackerlil)) mod 232

e LHS: all known (up to At which is small — 0-19 ms)
* RHS: all known except J
e So: known = finown(J) Where finouwn(+) is computable in offline!

Finding J

* We force the device to send 2 TCP SYN packets, rapidly (ms away):
* Packet 1: (IP,.:p1) = (UPgackers: d) TSy = Hash(IPystacker1,]) + t1 [ms) mod 232
* Packet 2: (IP,,.:p2) = (P 0cker2: Q) TS, = Hash(IPttacker2 J) + ta pms) mod 232

* Subtracting and rearranging (with At = t; js] — t1 (ms)):
TSZ B TSl — At mod 232 = (HaSh(IPAttackerZr]) _ HaSh(IPAttackerlil)) mod 232

e LHS: all known (up to At which is small — 0-19 ms)
* RHS: all known except J
e So: known = finown(J) Where finouwn(+) is computable in offline!

* In offline, invert it: Go over all 232 J values, create a multimap Q (232 entries):
Q: (HaSh(IPAttackerZr]) — HaSh(IPAttackerlr])) mod 23% - J

Finding J

* We force the device to send 2 TCP SYN packets, rapidly (ms away):
* Packet 1: (IP,.:p1) = (UPgackers: d) TSy = Hash(IPystacker1,]) + t1 [ms) mod 232
* Packet 2: (IP,,.:p2) = (P 0cker2: Q) TS, = Hash(IPttacker2 J) + ta pms) mod 232

* Subtracting and rearranging (with At = t; js] — t1 (ms)):
TSZ B TSl — At mod 232 = (HaSh(IPAttackerZr]) _ HaSh(IPAttackerlil)) mod 232

e LHS: all known (up to At which is small — 0-19 ms)
* RHS: all known except J
e So: known = finown(J) Where finouwn(+) is computable in offline!

* In offline, invert it: Go over all 232 J values, create a multimap Q (232 entries):
Q: (HaSh(IPAttackerZr]) — HaSh(IPAttackerlr])) mod 23% - J
* Find J candidates in few opcodes (20 table lookups in Q).

Finding J

* We force the device to send 2 TCP SYN packets, rapidly (ms away):
* Packet 1: (IP,.:p1) = (UPgackers: d) TSy = Hash(IPystacker1,]) + t1 [ms) mod 232
* Packet 2: (IP,,.:p2) = (P 0cker2: Q) TS, = Hash(IPttacker2 J) + ta pms) mod 232

* Subtracting and rearranging (with At = t; js] — t1 (ms)):
TSZ B TSl — At mod 232 = (HaSh(IPAttackerZr]) _ HaSh(IPAttackerlil)) mod 232

e LHS: all known (up to At which is small — 0-19 ms)
* RHS: all known except J
e So: known = finown(J) Where finouwn(+) is computable in offline!

* In offline, invert it: Go over all 232 J values, create a multimap Q (232 entries):
Q: (HaSh(IPAttackerZr]) — HaSh(IPAttackerlr])) mod 23% - J
* Find J candidates in few opcodes (20 table lookups in Q).

e Output: a few (=20) J candidates

Finding and Verifying seed

* From J (candidate) we peel (with IP,,..) to find key

* We find seed using another offline computed multi-map table w:
W:key — seed

* From seed, we can generate the TCP source port secret key’ and use it
to eliminate false positives (d is the attacker destination port):
p = (c + Hash(IPy..|Attacker;|d, key')) mod 49536 + 16000
p, = (c + 1 + Hash(IP,|Attacker,|d, key')) mod 49536 + 16000

(subtract, compare and verify)

* Net result: a single (correct) seed

Use Case: Web-Based Device Tracking (Cross-

Site Tracking)

Q

www.fool.tld

www.bar2.tld

www.baz3.tld

Use Case: Web-Based Device Tracking (Cross-
Site Tracking)

[1D=1234 |

www.fool.tld

www.bar2.tld

www.baz3.tld

Q

Use Case: Web-Based Device Tracking (Cross-

Site Tracking)

Q

[1D=1234 |

ID=1234

www.fool.tld

www.bar2.tld

www.baz3.tld

Use Case: Web-Based Device Tracking (Cross-
Site Tracking)

[1D=1234 |

ID=1234

www.fool.tld

www.bar2.tld

[1D=1234 |

1

www.baz3.tld

Q

Use Case: Web-Based Device Tracking (Cross-
Site Tracking)

[1D=1234 |

e seed is our device ID! ID=1234

www.fool.tld

www.bar2.tld

[1D=1234 |

1

www.baz3.tld

Q

Use Case: Web-Based Device Tracking (Cross-
Site Tracking)

[1D=1234 |

e seed is our device ID! ID=1234

* 31 bit unique (up to the
birthday paradox)

www.fool.tld

www.bar2.tld

[1D=1234 |

1

www.baz3.tld

Q

Use Case: Web-Based Device Tracking (Cross-
Site Tracking)

[1D=1234 |

e seed is our device ID! ID=1234

* 31 bit unique (up to the
birthday paradox)

www.fool.tld

www.bar2.tld

e Stable across sites, browsers,

[1D=1234 |
networks, privacy mode, ...

1

www.baz3.tld

Q

Use Case: Web-Based Device Tracking (Cross-
Site Tracking)

[1D=1234 |

e seed is our device ID! ID=1234

* 31 bit unique (up to the
birthday paradox)

www.fool.tld

www.bar2.tld

e Stable across sites, browsers,

[1D=1234 |
networks, privacy mode, ...

1

www.baz3.tld

* Only re-generated on boot!
e —

Q

TCP/IPv6 Attack Summary

TCP/IPv6 Attack Summary

 We obtain:

* PRNG seed
» =Stable device ID (until next reboot) — 31 bits
* key - TCP TS secret
« key' - TCP source port secret
« key'’ - TCP ISN secret
e UDP source port prediction

e TCP outbound connection counter mod 49536 (information leakage)
* Machine time (t) since boot (information leakage)

TCP/IPv6 Attack Summary

 We obtain:

* PRNG seed
» =Stable device ID (until next reboot) — 31 bits
* key - TCP TS secret
« key' - TCP source port secret
« key'’ - TCP ISN secret
e UDP source port prediction

e TCP outbound connection counter mod 49536 (information leakage)
* Machine time (t) since boot (information leakage)

* Runtime:
* Few opcodes (20 table lookups in Q, 20 table lookups in W)

TCP/IPv6 Attack Summary

 We obtain:

* PRNG seed
» =Stable device ID (until next reboot) — 31 bits
* key - TCP TS secret
« key' - TCP source port secret
« key'’ - TCP ISN secret
e UDP source port prediction

e TCP outbound connection counter mod 49536 (information leakage)
* Machine time (t) since boot (information leakage)

* Runtime:
* Few opcodes (20 table lookups in Q, 20 table lookups in W)

 RAM: 56GiB (|Q| = 32GiB, |W| = 24GiB)

TCP/IPv6 Attack Summary

 We obtain:

* PRNG seed
» =Stable device ID (until next reboot) — 31 bits
* key - TCP TS secret
« key' - TCP source port secret
« key'’ - TCP ISN secret
e UDP source port prediction

e TCP outbound connection counter mod 49536 (information leakage)
* Machine time (t) since boot (information leakage)

* Runtime:
* Few opcodes (20 table lookups in Q, 20 table lookups in W)

 RAM: 56GiB (|Q| = 32GiB, |W| = 24GiB)
* Dual stack? Using a TCP/IPv4 SYN packet, we can obtain the IPv4 internal address

IPv4 TCP/IPv4 TCP/IPv6 upP

TCP/IPv6 Attack Summary =

 We obtain: ! ¢

* PRNG seed
» =Stable device ID (until next reboot) — 31 bits
* key - TCP TS secret
« key' - TCP source port secret
« key'’ - TCP ISN secret
e UDP source port prediction

e TCP outbound connection counter mod 49536 (information leakage)
* Machine time (t) since boot (information leakage)

* Runtime:
* Few opcodes (20 table lookups in Q, 20 table lookups in W)

RAM: 56GiB (|Q| = 32GiB, |W| = 24GiB)
Dual stack? Using a TCP/IPv4 SYN packet, we can obtain the IPv4 internal address
Which enables the IPv4 ID attack — 32 more device ID bits, etc.

Experiments and Results (All Attacks

Google Nest Hub Max

(smart home
display+speaker)
Google Pixelbook Go
laptop

Intel NUC mini-PC
model NUC8BEH

Virtual device (over
QEMU for x64)

Table I NETWORKS

Network Name Technology IPv4/IPv6 Support TCP Source Port

Bezeq VDSL Both Override

Eduroam (HUJI) Fiber (DWDM) [Pv4 Only Intact

Triple C VDSL [Pv4 Only Override

Bezeq Fiber Fiber Both Intact

Hot Cable Cable [Pv4 Only Override

Golan Telecom Cellular Both Override

Partner Cellular IPv4 Only Override

Table II. EXPERIMENT DESCRIPTIONS
Attack/ Paper . . Dwell Compute Additional
Vulnerability Section Attack Object Bits Packets Time [ms] Time [ms] Data Exposed
TCP fields . . . 7 (avg) 2937 (avg) Private IP address
(IPv4) 3 IV-B PRNG Seed 31 4 18 (max) 5776 (max) TCP connection counter
TCP fields . o 2 (avg) 0.5 (avg) '
(IPv6) § IV-C PRNG Seed 31 2 3 (max) 1 (max) TCP connection counter
UDP source . o . - 0.5 (avg)
port §V Next source port 156 0 negligible | (max)
IPv4 ID .) ', 116 (avg) 5397 (avg)
(straightforward) 5 VIA hashIv 32 250 170 (max) 5464 (max)
; C 0 (qye) ave .

IPvd ID § VI-B hashIV 32 Thousands 59109 (avg) 20762 (avg) Private IP address

(independent)

73075 (max)

20775 (max)

10

Root Causes,

Recommendations and Fixes

Root Cause

Affected Fields

Recommendation

Fix

Weak hash function
* byte-by-byte reversible
* small state (32 bits)

TCP TS
TCP ISN
TCP source port

Cryptographic Hash

CVE 2024-10026

Weak PRNG
* small effective seed space (31 bits)
* weak advancement algorithm

TCP secrets (key, key’, key”)
UDP source port

Cryptographic
PRNG

CVE-2024-10603
CVE-2024-10604

Global counter

TCP source port

Fully random TCP
source port

CVE-2024-10603
CVE-2024-10604

Weak ID generation scheme

* small hashing key space

e small hash table size

* deterministic update scheme for
table cells (“++”))

IPv4 ID
IPv6 ID

Fully random IP ID

CVE-2024-10603

11

summary

summary

* Holistic approach —the whole is bigger than its parts

* “Smaller” vulnerabilities in separate functionalities/components, and across
layers, used in concert to mount powerful attacks

summary

* Holistic approach —the whole is bigger than its parts
* “Smaller” vulnerabilities in separate functionalities/components, and across
layers, used in concert to mount powerful attacks
* Clean slate design # secure code base
* The design may be clean and good — but security is in the details ;-)
* Not learning from other (mature) kernel mistakes

summary

* Holistic approach —the whole is bigger than its parts
* “Smaller” vulnerabilities in separate functionalities/components, and across
layers, used in concert to mount powerful attacks
* Clean slate design # secure code base
* The design may be clean and good — but security is in the details ;-)
* Not learning from other (mature) kernel mistakes

 Device tracking via network stack objects (a concept from our recent
papers):
* Find a vulnerable protocol header field
* Extract the key/seed used by the kernel to generate it
* This key/seed is the device fingerprint/ID

Thank you!

Questions?

	Slide 1: You Can Rand but You Can’t Hide: A Holistic Security Analysis of Google Fuchsia’s (and gVisor’s) Network Stack
	Slide 2: Background: Google Fuchsia and gVisor
	Slide 3: Background: Google Fuchsia and gVisor
	Slide 4: Background: Google Fuchsia and gVisor
	Slide 5: Approach: Holistic Security Analysis
	Slide 6: Approach: Holistic Security Analysis
	Slide 7: Approach: Holistic Security Analysis
	Slide 8: Approach: Holistic Security Analysis
	Slide 9: Approach: Holistic Security Analysis
	Slide 10: Approach: Holistic Security Analysis
	Slide 11: Approach: Holistic Security Analysis
	Slide 12: Approach: Holistic Security Analysis
	Slide 13: Approach: Holistic Security Analysis
	Slide 14: Approach: Holistic Security Analysis
	Slide 15: Approach: Holistic Security Analysis
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Definitions and Observations
	Slide 27: Finding cap J
	Slide 28: Finding cap J
	Slide 29: Finding cap J
	Slide 30: Finding cap J
	Slide 31: Finding cap J
	Slide 32: Finding cap J
	Slide 33: Finding cap J
	Slide 34: Finding cap J
	Slide 35: Finding cap J
	Slide 36: Finding cap J
	Slide 37: Finding and Verifying s e e d
	Slide 38: Use Case: Web-Based Device Tracking (Cross-Site Tracking)
	Slide 39: Use Case: Web-Based Device Tracking (Cross-Site Tracking)
	Slide 40: Use Case: Web-Based Device Tracking (Cross-Site Tracking)
	Slide 41: Use Case: Web-Based Device Tracking (Cross-Site Tracking)
	Slide 42: Use Case: Web-Based Device Tracking (Cross-Site Tracking)
	Slide 43: Use Case: Web-Based Device Tracking (Cross-Site Tracking)
	Slide 44: Use Case: Web-Based Device Tracking (Cross-Site Tracking)
	Slide 45: Use Case: Web-Based Device Tracking (Cross-Site Tracking)
	Slide 46: TCP/IPv6 Attack Summary
	Slide 47: TCP/IPv6 Attack Summary
	Slide 48: TCP/IPv6 Attack Summary
	Slide 49: TCP/IPv6 Attack Summary
	Slide 50: TCP/IPv6 Attack Summary
	Slide 51: TCP/IPv6 Attack Summary
	Slide 52: Experiments and Results (All Attacks)
	Slide 53: Root Causes, Recommendations and Fixes
	Slide 54: Summary
	Slide 55: Summary
	Slide 56: Summary
	Slide 57: Summary
	Slide 58: Thank you!

