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* Google Fuchsia is:

* “A general purpose operating system designed to power a diverse
ecosystem of hardware and software” (Google)

* Targeting Mobile/Tablets/IoT, etc.

* Deployed to millions of Google Nest Hub devices

e Conjectured by many to (eventually?) replace Android

* Fuchsia’s TCP/IP stack (“NetStack”) is cloned from gVisor

* Google gVisor is:
* “an application kernel for containers” (Google)

* Used in Google Cloud offerings: App Engine, Cloud Functions,
Cloud ML Engine, Cloud Run, Google Kubernetes Engine (GKE)

Q
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Approach: Holistic Security Analysis

* Analyzing the entire Fuchsia/gVisor TCP/IP stack en-masse

* Focus on “high entropy” protocol header fields:
* |IPv4 (and IPv6) IDG R
* |Pv6 Flow Label §¥ (always 0...)
* UDP source port &
* TCP source port &g
* TCP timestamp (TS) .5
* TCP initial sequence number (ISN) &

* Combine otherwise-weak vulnerabilities in separate network protocol
header fields into powerful attacks
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Definitions and Observations

TCP Timestamp generation: TS = Hash(IPyc|IPyst, key) + tms) mod 232

Hash(X, state) is (simplified here for ease of discussion) Jenkins’ “one-at-a-time hash”
X is abyte array
» state is a 32-bit internal state/key
* For ease of discussion, we ignore an easily reversible final function (Sum32(+))

key is a kernel (TCP/IP stack) 32-bit key (“secret”) generated deterministically from a 31-
bit seed at system startup

e Valid from system startup to system shutdown

It’s weak:
* Small internal state (32 bits)

* Hash(X,state) - given X and Hash(X, state) we can easily find state (we call this “peeling”)
 Hash(X|Y,state) = Hash(Y,Hash(X, state)) (we call this “chaining rule”)

We define ] = Hash(IP,,., key), so (by chaining rule)
TS = Hash(IPys,]) + tpms mod 232
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* We force the device to send 2 TCP SYN packets, rapidly (ms away):
* Packet 1: (IP,.:p1) = (UPgackers: d) TSy = Hash(IPystacker1,]) + t1 [ms) mod 232
* Packet 2: (IP,,.:p2) = (P 0cker2: Q) TS, = Hash(IPttacker2 J) + ta pms) mod 232

* Subtracting and rearranging (with At = t; js] — t1 (ms)):
TSZ B TSl — At mod 232 = (HaSh(IPAttackerZr]) _ HaSh(IPAttackerlil)) mod 232

e LHS: all known (up to At which is small — 0-19 ms)
* RHS: all known except J
e So: known = finown(J) Where finouwn(+) is computable in offline!

* In offline, invert it: Go over all 232 J values, create a multimap Q (232 entries):
Q: (HaSh(IPAttackerZr]) — HaSh(IPAttackerlr])) mod 23% - J
* Find J candidates in few opcodes (20 table lookups in Q).

e Output: a few (=20) J candidates



Finding and Verifying seed

* From J (candidate) we peel (with IP,,..) to find key

* We find seed using another offline computed multi-map table w:
W:key — seed

* From seed, we can generate the TCP source port secret key’ and use it
to eliminate false positives (d is the attacker destination port):
p = (c + Hash(IPy..|Attacker;|d, key')) mod 49536 + 16000
p, = (c + 1 + Hash(IP,|Attacker,|d, key')) mod 49536 + 16000

(subtract, compare and verify)

* Net result: a single (correct) seed
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e seed is our device ID! ID=1234

* 31 bit unique (up to the
birthday paradox)

www.fool.tld

www.bar2.tld

e Stable across sites, browsers,

[ 1D=1234 |
networks, privacy mode, ...

1

www.baz3.tld

* Only re-generated on boot!
e —

Q
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TCP/IPv6 Attack Summary =

 We obtain: ! ¢

* PRNG seed
» =Stable device ID (until next reboot) — 31 bits
* key - TCP TS secret
« key' - TCP source port secret
« key'’ - TCP ISN secret
e UDP source port prediction

e TCP outbound connection counter mod 49536 (information leakage)
* Machine time (t) since boot (information leakage)

* Runtime:
* Few opcodes (20 table lookups in Q, 20 table lookups in W)

RAM: 56GiB (|Q| = 32GiB, |W| = 24GiB)
Dual stack? Using a TCP/IPv4 SYN packet, we can obtain the IPv4 internal address
Which enables the IPv4 ID attack — 32 more device ID bits, etc.




Experiments and Results (All Attacks

Google Nest Hub Max

(smart home
display+speaker)
Google Pixelbook Go
laptop

Intel NUC mini-PC
model NUC8BEH

Virtual device (over
QEMU for x64)

Table I NETWORKS

Network Name Technology IPv4/IPv6 Support  TCP Source Port

Bezeq VDSL Both Override

Eduroam (HUJI) Fiber (DWDM) [Pv4 Only Intact

Triple C VDSL [Pv4 Only Override

Bezeq Fiber Fiber Both Intact

Hot Cable Cable [Pv4 Only Override

Golan Telecom Cellular Both Override

Partner Cellular IPv4 Only Override

Table II. EXPERIMENT DESCRIPTIONS
Attack/ Paper . . Dwell Compute Additional
Vulnerability Section Attack Object Bits Packets Time [ms] Time [ms] Data Exposed
TCP fields . . . 7 (avg) 2937 (avg) Private IP address
(IPv4) 3 IV-B PRNG Seed 31 4 18 (max) 5776 (max) TCP connection counter
TCP fields . o 2 (avg) 0.5 (avg) '
(IPv6) § IV-C PRNG Seed 31 2 3 (max) 1 (max) TCP connection counter
UDP source . o . - 0.5 (avg)
port §V Next source port 156 0 negligible | (max)
IPv4 ID . ) ', 116 (avg) 5397 (avg)
(straightforward) 5 VIA hashIv 32 250 170 (max) 5464 (max)
; C 0 (qye ) ave .

IPvd ID § VI-B hashIV 32 Thousands 59109 (avg) 20762 (avg) Private IP address

(independent)

73075 (max)

20775 (max)

10



Root Causes,

Recommendations and Fixes

Root Cause

Affected Fields

Recommendation

Fix

Weak hash function
* byte-by-byte reversible
* small state (32 bits)

TCP TS
TCP ISN
TCP source port

Cryptographic Hash

CVE 2024-10026

Weak PRNG
* small effective seed space (31 bits)
* weak advancement algorithm

TCP secrets (key, key’, key”)
UDP source port

Cryptographic
PRNG

CVE-2024-10603
CVE-2024-10604

Global counter

TCP source port

Fully random TCP
source port

CVE-2024-10603
CVE-2024-10604

Weak ID generation scheme

* small hashing key space

e small hash table size

* deterministic update scheme for
table cells (“++”))

IPv4 ID
IPv6 ID

Fully random IP ID

CVE-2024-10603

11
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summary

* Holistic approach —the whole is bigger than its parts
* “Smaller” vulnerabilities in separate functionalities/components, and across
layers, used in concert to mount powerful attacks
* Clean slate design # secure code base
* The design may be clean and good — but security is in the details ;-)
* Not learning from other (mature) kernel mistakes

 Device tracking via network stack objects (a concept from our recent
papers):
* Find a vulnerable protocol header field
* Extract the key/seed used by the kernel to generate it
* This key/seed is the device fingerprint/ID



Thank you!

Questions?
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