
Incorporating Gradients to Rules:
Towards Lightweight, Adaptive
Provenance-based Intrusion Detection

Lingzhi Wang, Xiangmin Shen, Weijian Li , Zhenyuan Li ,
R. Sekar , Han Liu , and Yan Chen

Northwestern University, Stony Brook University, Zhejiang University

Advanced Persistent Threats (APT)
APT attacks bring challenges to traditional intrusion detection systems.
• Advanced: Use of sophisticated techniques (e.g., zero-day exploits, custom

malware).
• Persistent: Long-term access to networks, often undetected for several days/months
• Targeted: Focused on specific organizations or individuals

Provenance-based Intrusion Detection (PIDS)
Provenance Graph: A graph recording system entities and their interactions
• Nodes: System entities (processes, files, sockets, …)
• Edges: Interactions between entities (read, write, fork, execve, load, …)
• PIDS provides more comprehensive contexts, correlations, and scopes against APT

attacks

sshd

sshd sshd bash scp -r ~bob/*
bob@bkupsrv:work/

ssh bob@bkupsrv
scp -r -d -t ./work/

dbus-launch

dbus-daemon
sshd sshd

~bob/ccleaner

~bob/aa.txt

pipe

/usr/bin/scp ~bob/.ssh/known_hosts /usr/local/etc/ssh_config

/usr/local/bin/ssh

./ccleanerscp -t
./ccleaner

128.55.12.117

x.x.x.x

~bob/zz.txt ~bob/aa.tkn ~bob/zz.tkn...

Attack Activities
load fork+exec

fork+exec

fork+exec
fork+exec fork+exec

load

load

Rule-based PIDS vs Embedding-based PIDS
Existing PIDS can be (roughly) divided into two categories:
• Rule-based PIDS: Use simple, static rules to model graph patterns
• Embedding-based PIDS: Use embedding functions to vectorize graph features

Rule-based PIDS
Graph Matching

Tag Propagation

Freq. Analysis

Embedding-based PIDS
GNN

Word Embedding

Graph Sketch
Feature Vectors

Detection
Result

Provenance Graph Detection
Result

Rule-based PIDS vs Embedding-based PIDS
Existing PIDS can be (roughly) divided into two categories:
• Rule-based PIDS: Use simple, static rules to model graph patterns
• Embedding-based PIDS : Use embedding functions to vectorize graph features

Rule-based PIDS Embedding-based PIDS

Fast & Efficient
Lightweight
Explicable Detection Process

Low Accuracy
Rigid & Inflexible
Unadaptable to New Data

Powerful Feature Extraction
Learning Capability
Adaptable to New Data

High System Overhead
Long Detection Latency
Inexplicable Detection Process

Motivation
Is it possible to maintain the lightweight and efficiency of the rule-based
detection while enabling dynamic and automated rule learning?
Given a set of rules, how to dynamically adjust them to get a better detection
result?

Detection Rules Detection Process Detection Results

How to adjust the rules to improve the
detection results?

We need to model how
the rules affect the
detection results...

Motivation
Is it possible to maintain the lightweight and efficiency of the rule-based
detection while enabling dynamic and automated rule learning?
Given a set of rules, how to dynamically adjust them to get a better detection
result?

Gradients!

Detection Rules Detection Process Detection Results

How to adjust the rules to improve the
detection results?

We need to model how
the rules affect the
detection results...

Motivation
Is it possible to maintain the lightweight and efficiency of the rule-based
detection while enabling dynamic and automated rule learning?
Inspiration: Parameter learning with gradient-based methods.

Initialize
Parameters

Perform
ML Tasks

Calculate
Loss

Calculate
Gradients

Update
Weights

Gradient-based Parameter Learning Gradient-based Rule Learning

Initialize
Rules

Perform
Detection

Calculate
Loss

Calculate
Gradients

Update
Rules

One-Sentence Takeaway
We transform the non-differentiable rule-based detection process to a
differentiable function, enabling us to fine-tune the detection rules based on
the detection results using gradients.

Gradients!

Detection Rules Detection Process Detection Results

Adjust the rules according to gradients
to improve the detection results

We need to model how
the rules affect the
detection results...

Differentiable
Function

Tag-Propagation: A major mechanism of rule-based detection

B

A

C D

System Logs Provenance Graph

We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.
Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.

IP:A is assigned
an “Untrusted” tag

Other nodes are
assigned “Trusted”

tags

(A is a IP socket, B and D are processes, and C is a File)

B

A

C

(A is a IP socket, B and D are processes, and C is a File)
1. Prcoess:B recv_from IP:A

D

System Logs Provenance Graph

The “Untrusted”
tag is passed to
Process:B

Tag-Propagation: A major mechanism of rule-based detection
We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.
Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.

B

A

C

(A is a IP socket, B and D are processes, and C is a File)
1. Prcoess:B recv_from IP:A

2. Prcoess:B write File:C

D

System Logs Provenance Graph

Tag-Propagation: A major mechanism of rule-based detection
We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.
Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.

B

A

C

(A is a IP socket, B and D are processes, and C is a File)
1. Prcoess:B recv_from IP:A

2. Prcoess:B write File:C

3. Process:D load File:C

D

System Logs Provenance Graph

Rule: A file load event
on an “Untrusted” file
triggers an alarm

Tag-Propagation: A major mechanism of rule-based detection
We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.
Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.

Challenges of Tag-propagation in PIDS
Tag Initialization Rules:
• How to assign initial tags for nodes without parents (like IP:A)?
• Too many “Untrusted” tags→ Excessive false alarms
• Too many “Trusted” tags→Missing attacks

B

A

C D

IP:A is assigned
an “Untrusted” tag

Other nodes are
assigned “Trusted”

tags

Challenges of Tag-propagation in PIDS
Tag Initialization Rules:
• How to assign initial tags for nodes without parents (like IP:A)?
• Too many “Untrusted” tags→ Excessive false alarms
• Too many “Trusted” tags→Missing attacks
Tag Propagation Rules:
• How to propagate tags among nodes?
• Tag explosion issue→ Excessive false alarms

B

A

C D

Challenges of Tag-propagation in PIDS
Tag Initialization Rules:
• How to assign initial tags for nodes without parents (like IP:A)?
• Too many “Untrusted” tags→ Excessive false alarms
• Too many “Trusted” tags→Missing attacks
Tag Propagation Rules:
• How to propagate tags among nodes?
• Tag explosion issue→ Excessive false alarms
Alarm Generation Rules:
• When should an alarm be triggered?
• Unable to control the sensitivity for specific events.

B

A

C D

Rule: A file load event
on an “Untrusted” file
triggers an alarm

Challenges of Tag-propagation in PIDS
Tag Initialization Rules:
• How to assign initial tags for nodes without parents (like IP:A)?
• Too many “Untrusted” tags→ Excessive false alarms
• Too many “Trusted” tags→Missing attacks
Tag Propagation Rules:
• How to propagate tags among nodes?
• Tag explosion issue→ Excessive false alarms
Alarm Generation Rules:
• When should an alarm be triggered?
• Unable to control the sensitivity for specific events. All Rules set by human experts!

Challenges of Tag-propagation in PIDS
Tag Initialization Rules:
• How to assign initial tags for nodes without parents (like IP:A)?
• Too many “Untrusted” tags→ Excessive false alarms
• Too many “Trusted” tags→Missing attacks
Tag Propagation Rules:
• How to propagate tags among nodes?
• Tag explosion issue→ Excessive false alarms
Alarm Generation Rules:
• When should an alarm be triggered?
• Unable to control the sensitivity for specific events. All Rules set by human experts!

Let’s incorpor
ate gradients!

Overall Framework

Loss FunctionNode Initial Tags (A)

Node Features
Audit Logs

Gradients

False Alarms

Detection Phase
Learning PhaseEdge Features

Propagation Rate (G) Threshold (T)

Alarm
Generation

Tag < Threshold?

Tag
Initialization

○1 ○1 ○1

○2

○3

○5
Loss

○4

○4

○5 ○5

○3

Differentiable
Tag Propagation Detection Module

Learning Module

CATAIN: A lightweight, adaptive provenance-based intrusion detection system.
• Address the dilemma between detection accuracy and detection efficiency
• Incorporate gradient-descent idea into optimizing traditional rule-based IDS

Gradient-based Rule Learning

Initialize
Rules

Perform
Detection

Calculate
Loss

Calculate
Gradients

Update
Rules

Overall Framework of CAPTAIN

Key Question 1: How to convert rules to parameters?

Parameterize Rules
Convert three types of rules into numerical adaptive parameters (A, G, and T).

Node Tag = 𝑎! (𝑎! ∈ [0,1])

• Tag Initialization Rules: Use the integrity score (𝒂𝒏) as the initial tag for each node

• Tag Propagation Rules: Use the propagation rate (𝒈𝒆) for each event to partially
propagate tags

Trusted

Untrusted
Node Tag =

Traditional Rules

Traditional Rules

CAPTAIN

CAPTAIN

0.5

0

1

0
𝑔" = 0.5

Parameterize Rules

• Alarm Triggering Rules: Use a numerical alarm threshold (𝒕𝒆) for each event 𝑒

if Event.Type = “load”
and File.Tag = ”Untrusted”:
Raise Alarm(“Load Untrusted Code!”)

Traditional Rules CAPTAIN

> 0 Benign

< 0 Alarm
File.Tag – 𝑡" =

Convert three types of rules into numerical adaptive parameters (A, G, and T).

Integrity scores (𝒂𝒏), propagation rates (𝒈𝒆), and alarm thresholds (𝒕𝒆) provides fine-
grained rules
• Each node has its own 𝒂𝒏
• Each edge has its own 𝒈𝒆 and 𝒕𝒆
• All parameters are continuous values between 0 and 1.

Key Question 2: How to calculate the gradients?

Calculate Gradients
Record & update tag gradients during tag propagation
• Initialize 𝒂𝒏, 𝒈𝒆, and 𝒕𝒆 according to the default setting
• Perform tag propagation
• Update and record gradients when tag changes

1

0

1 1

Node Tag Gradients

A ⁄𝜕 𝜕𝑎# = 1

B ⁄𝜕 𝜕𝑎$ = 1

C ⁄𝜕 𝜕𝑎% = 1

D ⁄𝜕 𝜕𝑎& = 1

Calculate Gradients

0

0

1 1

𝑔' = 1.0

Node Tag Gradients

A ⁄𝜕 𝜕𝑎# = 1

B ⁄𝜕 𝜕𝑎# = 1, ⁄𝜕 𝜕𝑔' = −1

C ⁄𝜕 𝜕𝑎% = 1

D ⁄𝜕 𝜕𝑎& = 1

Record & update tag gradients during tag propagation
• Initialize 𝒂𝒏, 𝒈𝒆, and 𝒕𝒆 according to the default setting
• Perform tag propagation
• Update and record gradients when tag changes

Calculate Gradients

0

0

0 1

𝑔' = 1.0

𝑔(= 1.0

Node Tag Gradients

A ⁄𝜕 𝜕𝑎# = 1

B ⁄𝜕 𝜕𝑎# = 1, ⁄𝜕 𝜕𝑔' = −1

C ⁄𝜕 𝜕𝑎# = 1, ⁄𝜕 𝜕𝑔' = −1, ⁄𝜕 𝜕𝑔(= −1

D ⁄𝜕 𝜕𝑎& = 1

Record & update tag gradients during tag propagation
• Initialize 𝒂𝒏, 𝒈𝒆, and 𝒕𝒆 according to the default setting
• Perform tag propagation
• Update and record gradients when tag changes

Calculate Gradients

0

0

0 0

𝑔' = 1.0

𝑔(= 1.0 𝑔) = 1.0

Node Tag Gradients

A ⁄𝜕 𝜕𝑎# = 1

B ⁄𝜕 𝜕𝑎# = 1, ⁄𝜕 𝜕𝑔' = −1

C ⁄𝜕 𝜕𝑎# = 1, ⁄𝜕 𝜕𝑔' = −1, ⁄𝜕 𝜕𝑔(= −1

D ⁄𝜕 𝜕𝑎# = 1, ⁄𝜕 𝜕𝑔' = −1, ⁄𝜕 𝜕𝑔(= −1,
⁄𝜕 𝜕𝑔) = −1,

Record & update tag gradients during tag propagation
• Initialize 𝒂𝒏, 𝒈𝒆, and 𝒕𝒆 according to the default setting
• Perform tag propagation
• Update and record gradients when tag changes

Key Question 3: How to update/train the rule parameters?

Update Rule Parameters

0

0

0 0

𝑔' = 1.0

𝑔(= 1.0 𝑔) = 1.0

Calculate loss when there is a mis-detection on the training set
Update rule parameters 𝑝 according to the gradients
• 𝑝 = 𝑝 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒×𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

A false alarm
triggered by tag
of Node C!

Node Tag Gradients

A ⁄𝜕 𝜕𝑎# = 1

B ⁄𝜕 𝜕𝑎# = 1, ⁄𝜕 𝜕𝑔' = −1

C ⁄𝝏 𝝏𝒂𝑨 = 𝟏, ⁄𝝏 𝝏𝒈𝟏 = −𝟏, ⁄𝝏 𝝏𝒈𝟐 = −𝟏

D ⁄𝜕 𝜕𝑎# = 1, ⁄𝜕 𝜕𝑔' = −1, ⁄𝜕 𝜕𝑔(= −1,
⁄𝜕 𝜕𝑔) = −1,

Update Rule Parameters

0.36

0.2

0.488 0.488

𝑔' = 0.8

𝑔(= 0.8 𝑔) = 1.0

Calculate loss when there is a mis-detection on the training set
Update rule parameters 𝑝 according to the gradients
• 𝑝 = 𝑝 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒×𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
Repeat iterations until convergence and apply learned rule parameters in testing

Node C will not
trigger false
alarms!

Evaluation | Detection Accuracy
On DARPA Engagement datasets, compared to recent work, CAPTAIN
• Node-level detection: Reduces the false alarm rate by 90%
• Edge-level detection: Reduces the false alarm rate by 93%
• Maintain similar true positive rates to baselines

Edge-level Detection Results

Node-level Detection Results

Evaluation | Efficiency & Overhead
CAPTAIN is more efficient compared to embedding-based PIDS
• Detection Latency (reduce by at least 57%)
• CPU Usage (reduce by at least 90%)
• Memory Usage (reduce by at least 30%)
Compared to existing rule-based PIDS, a slightly additional overhead (5.6%
more CPU usage) to significantly reduce FP (by over 90%).

Evaluation | Case Study
• Each alarm from CAPTAIN has clear semantics and explicable detection

process
• CAPTAIN’s customized rule parameters for each individual nodes and

edges can:
– distinguish between similar graph patterns
– address tag explosion problem

Conclusion
• During the battle against APT attacks, there is a dilemma between detection

accuracy and efficiency faced by existing rule-based PIDS and embedding-
based PIDS.

• We proposed CAPTAIN, a differentiable rule-based detection framework
that can optimize parameterized detection rules using gradient descent
algorithms.

• The results on multiple datasets demonstrate the superiority of CAPTAIN
compared to existing rule-based and embedding-based PIDS.

To Access Code & Experiments

https://github.com/LexusWang/CAPTAIN

Thanks for your listening!

lingzhiwang2025@u.northwestern.edu

https://github.com/LexusWang/CAPTAIN

