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Advanced Persistent Threats (APT)
APT attacks bring challenges to traditional intrusion detection systems.
• Advanced: Use of sophisticated techniques (e.g., zero-day exploits, custom 

malware).
• Persistent: Long-term access to networks, often undetected for several days/months
• Targeted: Focused on specific organizations or individuals



Provenance-based Intrusion Detection (PIDS)
Provenance Graph: A graph recording system entities and their interactions
• Nodes: System entities (processes, files, sockets, …)
• Edges: Interactions between entities (read, write, fork, execve, load, …)
• PIDS provides more comprehensive contexts, correlations, and scopes against APT

attacks
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Rule-based PIDS vs Embedding-based PIDS
Existing PIDS can be (roughly) divided into two categories:
• Rule-based PIDS: Use simple, static rules to model graph patterns
• Embedding-based PIDS: Use embedding functions to vectorize graph features
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Motivation
Is it possible to maintain the lightweight and efficiency of the rule-based 
detection while enabling dynamic and automated rule learning?
Given a set of rules, how to dynamically adjust them to get a better detection
result?
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Motivation
Is it possible to maintain the lightweight and efficiency of the rule-based 
detection while enabling dynamic and automated rule learning?
Inspiration: Parameter learning with gradient-based methods.
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One-Sentence Takeaway
We transform the non-differentiable rule-based detection process to a
differentiable function, enabling us to fine-tune the detection rules based on
the detection results using gradients.

Gradients!
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Adjust the rules according to gradients
to improve the detection results

We need to model how 
the rules affect the 
detection results...
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Tag-Propagation: A major mechanism of rule-based detection
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We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.
Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.
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We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.
Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.
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We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.
Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.
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Tag-Propagation: A major mechanism of rule-based detection
We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.
Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.



Challenges of Tag-propagation in PIDS
Tag Initialization Rules:
• How to assign initial tags for nodes without parents (like IP:A)?
• Too many “Untrusted” tags→ Excessive false alarms
• Too many “Trusted” tags→Missing attacks
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Overall Framework
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CATAIN: A lightweight, adaptive provenance-based intrusion detection system.
• Address the dilemma between detection accuracy and detection efficiency
• Incorporate gradient-descent idea into optimizing traditional rule-based IDS
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Key Question 1: How to convert rules to parameters?



Parameterize Rules
Convert three types of rules into numerical adaptive parameters (A, G, and T).

Node Tag = 𝑎! (𝑎! ∈ [0,1])

• Tag Initialization Rules: Use the integrity score (𝒂𝒏) as the initial tag for each node

• Tag Propagation Rules: Use the propagation rate (𝒈𝒆) for each event to partially
propagate tags

Trusted

Untrusted
Node Tag =

Traditional Rules

Traditional Rules

CAPTAIN

CAPTAIN

0.5

0

1

0
𝑔" = 0.5



Parameterize Rules

• Alarm Triggering Rules: Use a numerical alarm threshold (𝒕𝒆) for each event 𝑒

if Event.Type = “load”
and File.Tag = ”Untrusted”:
Raise Alarm(“Load Untrusted Code!”)

Traditional Rules CAPTAIN

> 0 Benign

< 0 Alarm
File.Tag – 𝑡" =

Convert three types of rules into numerical adaptive parameters (A, G, and T).

Integrity scores (𝒂𝒏), propagation rates (𝒈𝒆), and alarm thresholds (𝒕𝒆) provides fine-
grained rules
• Each node has its own 𝒂𝒏
• Each edge has its own 𝒈𝒆 and 𝒕𝒆
• All parameters are continuous values between 0 and 1.



Key Question 2: How to calculate the gradients?



Calculate Gradients
Record & update tag gradients during tag propagation
• Initialize 𝒂𝒏, 𝒈𝒆, and 𝒕𝒆 according to the default setting
• Perform tag propagation
• Update and record gradients when tag changes
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Key Question 3: How to update/train the rule parameters?



Update Rule Parameters
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Calculate loss when there is a mis-detection on the training set
Update rule parameters 𝑝 according to the gradients
• 𝑝 = 𝑝 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒×𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
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Update Rule Parameters
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Calculate loss when there is a mis-detection on the training set
Update rule parameters 𝑝 according to the gradients
• 𝑝 = 𝑝 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒×𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
Repeat iterations until convergence and apply learned rule parameters in testing
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Evaluation | Detection Accuracy
On DARPA Engagement datasets, compared to recent work, CAPTAIN
• Node-level detection: Reduces the false alarm rate by 90%
• Edge-level detection: Reduces the false alarm rate by 93%
• Maintain similar true positive rates to baselines

Edge-level Detection Results

Node-level Detection Results



Evaluation | Efficiency & Overhead
CAPTAIN is more efficient compared to embedding-based PIDS
• Detection Latency (reduce by at least 57%)
• CPU Usage (reduce by at least 90%)
• Memory Usage (reduce by at least 30%)
Compared to existing rule-based PIDS, a slightly additional overhead (5.6%
more CPU usage) to significantly reduce FP (by over 90%).



Evaluation | Case Study
• Each alarm from CAPTAIN has clear semantics and explicable detection

process
• CAPTAIN’s customized rule parameters for each individual nodes and

edges can:
– distinguish between similar graph patterns
– address tag explosion problem



Conclusion
• During the battle against APT attacks, there is a dilemma between detection

accuracy and efficiency faced by existing rule-based PIDS and embedding-
based PIDS.

• We proposed CAPTAIN, a differentiable rule-based detection framework
that can optimize parameterized detection rules using gradient descent
algorithms.

• The results on multiple datasets demonstrate the superiority of CAPTAIN
compared to existing rule-based and embedding-based PIDS.



To Access Code & Experiments

https://github.com/LexusWang/CAPTAIN

Thanks for your listening!

lingzhiwang2025@u.northwestern.edu

https://github.com/LexusWang/CAPTAIN

