Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion Detection

Lingzhi Wang, Xiangmin Shen, Weijian Li, Zhenyuan Li, R. Sekar, Han Liu, and Yan Chen Northwestern University, Stony Brook University, Zhejiang University

UNIVERSITY

Advanced Persistent Threats (APT)

APT attacks bring challenges to traditional intrusion detection systems.

- Advanced: Use of sophisticated techniques (e.g., zero-day exploits, custom malware).
- Persistent: Long-term access to networks, often undetected for several days/months
- Targeted: Focused on specific organizations or individuals

SideWinder APT Strikes Middle East and Africa With Stealthy Multi-Stage

Attack

🛗 Oct 17, 2024 🛛 🛔 Ravie Lakshmanan

Suspected State-Backed APT Group Compromised Air-Gapped Systems in European Government With Custom Malware Attack

Russian APT Group Thwarted in Attack on US Automotive Manufacturer

The group gained access to the victim network by duping IT employees with high administrative-access privileges.

Provenance-based Intrusion Detection (PIDS)

Provenance Graph: A graph recording system entities and their interactions

- Nodes: System entities (processes, files, sockets, ...)
- **Edges:** Interactions between entities (read, write, fork, execve, load, ...)
- PIDS provides more comprehensive contexts, correlations, and scopes against APT attacks

Rule-based PIDS vs Embedding-based PIDS

Existing PIDS can be (roughly) divided into two categories:

- **Rule-based PIDS:** Use simple, static rules to model graph patterns
- **Embedding-based PIDS:** Use embedding functions to vectorize graph features

Rule-based PIDS vs Embedding-based PIDS

Existing PIDS can be (roughly) divided into two categories:

- **Rule-based PIDS:** Use simple, static rules to model graph patterns
- **Embedding-based PIDS** : Use embedding functions to vectorize graph features

Rule-based PIDS

Fast & Efficient Lightweight Explicable Detection Process

Low Accuracy Rigid & Inflexible Unadaptable to New Data

Embedding-based PIDS

Powerful Feature Extraction Learning Capability Adaptable to New Data

High System Overhead Long Detection Latency Inexplicable Detection Process

Northwestern

 (\sim)

 $(\tilde{\boldsymbol{z}},\tilde{\boldsymbol{z}})$

Motivation

Is it possible to maintain the lightweight and efficiency of the rule-based detection while enabling dynamic and automated rule learning?

Given a set of rules, how to dynamically adjust them to get a better detection result?

Motivation

Is it possible to maintain the lightweight and efficiency of the rule-based detection while enabling dynamic and automated rule learning?

Given a set of rules, how to dynamically adjust them to get a better detection result?

Motivation

Is it possible to maintain the lightweight and efficiency of the rule-based detection while enabling dynamic and automated rule learning? Inspiration: Parameter learning with gradient-based methods.

One-Sentence Takeaway

We transform the non-differentiable rule-based detection process to a differentiable function, enabling us to fine-tune the detection rules based on the detection results using gradients.

We build the differentiable detection system on tag propagation, one of the major mechanisms of rule-based detection.

Similar to *Taint Analysis*, tag-propagation system assign tags on each node in the provenance graph, propagates tags on the graph, and trigger alarms.

We build the differentiable detection system on tag propagation, one of the major mechanisms of rule-based detection.

Similar to *Taint Analysis*, tag-propagation system assign tags on each node in the provenance graph, propagates tags on the graph, and trigger alarms.

We build the differentiable detection system on tag propagation, one of the major mechanisms of rule-based detection.

Similar to *Taint Analysis*, tag-propagation system assign tags on each node in the provenance graph, propagates tags on the graph, and trigger alarms.

System Logs

Provenance Graph

(A is a IP socket, B and D are processes, and C is a File)

- 1. Prcoess:B recv_from IP:A
- 2. Prcoess: B write File: C

We build the differentiable detection system on tag propagation, one of the major mechanisms of rule-based detection.

Similar to *Taint Analysis*, tag-propagation system assign tags on each node in the provenance graph, propagates tags on the graph, and trigger alarms.

System Logs

Provenance Graph

(A is a IP socket, B and D are processes, and C is a File)

- 1. Prcoess:B recv_from IP:A
- 2. Prcoess: B write File: C
- 3. Process:D load File:C

Tag Initialization Rules:

- How to assign initial tags for nodes without parents (like **IP**:**A**)?
- Too many "**Untrusted**" tags \rightarrow Excessive false alarms
- Too many "**Trusted**" tags → Missing attacks

Tag Initialization Rules:

- How to assign initial tags for nodes without parents (like **IP**:**A**)?
- Too many "**Untrusted**" tags \rightarrow Excessive false alarms
- Too many "**Trusted**" tags → Missing attacks

Tag Propagation Rules:

- How to propagate tags among nodes?
- Tag explosion issue \rightarrow Excessive false alarms

Tag Initialization Rules:

- How to assign initial tags for nodes without parents (like **IP**:**A**)?
- Too many "**Untrusted**" tags \rightarrow Excessive false alarms
- Too many "**Trusted**" tags → Missing attacks

Tag Propagation Rules:

- How to propagate tags among nodes?
- Tag explosion issue \rightarrow Excessive false alarms

Alarm Generation Rules:

- When should an alarm be triggered?
- Unable to control the sensitivity for specific events.

Tag Initialization Rules:

- How to assign initial tags for nodes without parents (like **IP:A**)?
- Too many "**Untrusted**" tags \rightarrow Excessive false alarms
- Too many "**Trusted**" tags → Missing attacks

Tag Propagation Rules:

- How to propagate tags among nodes?
- Tag explosion issue \rightarrow Excessive false alarms

Alarm Generation Rules:

- When should an alarm be triggered?
- Unable to control the sensitivity for specific events. All Rules set by human experts!

Tag Initialization Rules:

- How to assign initial tags for nodes without parents (1)
- Too many "Untractor"
 T
 Let's incorporate gradients!

- Al ______ Rules:
- When should an alarm be triggered?
- Unable to control the sensitivity for specific events. All Rules set by human experts!

•

Overall Framework

CATAIN: A lightweight, adaptive provenance-based intrusion detection system.

- Address the dilemma between detection accuracy and detection efficiency
- Incorporate gradient-descent idea into optimizing traditional rule-based IDS

Key Question 1: How to convert rules to parameters?

Parameterize Rules

Convert three types of rules into numerical adaptive parameters (A, G, and T).

• Tag Initialization Rules: Use the **integrity score** (a_n) as the initial tag for each node

Tag Propagation Rules: Use the **propagation rate** (g_e) for each event to partially propagate tags

Parameterize Rules

Convert three types of rules into numerical adaptive parameters (A, G, and T).

• Alarm Triggering Rules: Use a numerical alarm threshold (t_e) for each event e

```
if Event.Type = "load"
and File.Tag = "Untrusted":
Raise Alarm("Load Untrusted Code!")
```

Traditional Rules

File.Tag – $t_e = \begin{cases} > 0 \text{ Benign} \\ < 0 \text{ Alarm} \end{cases}$ CAPTAIN

Integrity scores (a_n) , propagation rates (g_e) , and alarm thresholds (t_e) provides finegrained rules

- Each node has its own a_n
- Each edge has its own g_e and t_e
- All parameters are continuous values between 0 and 1.

Key Question 2: How to calculate the gradients?

Record & update tag gradients during tag propagation

- Initialize a_n , g_e , and t_e according to the default setting
- Perform tag propagation
- Update and record gradients when tag changes

\sim				
	Node Tag	Gradients		
	А	$\partial/\partial a_A = 1$		
(1)	В	$\partial/\partial a_B = 1$		
	С	$\partial/\partial a_c = 1$		
$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	D	$\partial/\partial a_D = 1$		

Record & update tag gradients during tag propagation

- Initialize a_n , g_e , and t_e according to the default setting
- Perform tag propagation
- Update and record gradients when tag changes

\frown				
	Node Tag	Gradients		
$g_1 = 1.0$	А	$\partial/\partial a_A = 1$		
	В	$\partial/\partial a_A = 1, \partial/\partial g_1 = -1$		
	С	$\partial/\partial a_C = 1$		
1 1	D	$\partial/\partial a_D = 1$		

Record & update tag gradients during tag propagation

- Initialize a_n , g_e , and t_e according to the default setting
- Perform tag propagation
- Update and record gradients when tag changes

	Node Tag	Gradients
$g_1 = 1.0$	А	$\partial/\partial a_A = 1$
	В	$\partial/\partial a_A = 1, \partial/\partial g_1 = -1$
$g_2 = 1.0$	С	$\partial/\partial a_A = 1, \ \partial/\partial g_1 = -1, \ \partial/\partial g_2 = -1$
	D	$\partial/\partial a_D = 1$

Record & update tag gradients during tag propagation

- Initialize a_n , g_e , and t_e according to the default setting
- Perform tag propagation
- Update and record gradients when tag changes

Key Question 3: How to update/train the rule parameters?

Update Rule Parameters

Calculate loss when there is a mis-detection on the training set

Update rule parameters *p* according to the gradients

• $p = p - learning_rate \times gradient$

Node Tag	Gradients
А	$\partial/\partial a_A = 1$
В	$\partial/\partial a_A = 1, \partial/\partial g_1 = -1$
С	$\partial/\partial a_A = 1, \ \partial/\partial g_1 = -1, \ \partial/\partial g_2 = -1$
D	$ \begin{array}{l} \partial/\partial a_A = 1, \ \partial/\partial g_1 = -1, \ \partial/\partial g_2 = -1, \\ \partial/\partial g_3 = -1, \end{array} $

Update Rule Parameters

Calculate loss when there is a mis-detection on the training set

Update rule parameters *p* according to the gradients

• $p = p - learning_rate \times gradient$

Repeat iterations until convergence and apply learned rule parameters in testing

Evaluation | Detection Accuracy

On DARPA Engagement datasets, compared to recent work, CAPTAIN

- Node-level detection: Reduces the false alarm rate by 90%
- **Edge-level detection:** Reduces the false alarm rate by **93%**
- Maintain similar true positive rates to baselines

	Morse	SHADEWATCHER	CAPTAIN
# of Consumed Events	5,188,230	724,236	5,188,230
# of False Alarm Events	22,500	2,405	1.099
False Alarm Rate	0.434%	0.332%	0.0212%

Edge-level Detection Results

-				
	TP	FP(0-hop)	FP(1-hop)	FN(0-hop)
	E	ngagement3 C	CADETS	
Flash	16	4503	4485	10
KAIROS	15	1017	1003	11
$NODLINK^1$	3	120	114	2
Morse	16	51	43	10
CAPTAIN	16	34	26	10
Engagement3 TRACE				
Flash	5	27202	27178	19
$NODLINK^1$	4	170	170	0
MORSE	10	243	234	14
CAPTAIN	10	12	11	14
	I	Engagement3 '	Гнеіа	
Flash	2	53230	53050	13
KAIROS	12	3566	3422	3
$NODLINK^1$	4	62	58	0
MORGE	11	220	213	4
WIUKSE				

¹Since NODLINK only provides detected process, we evaluate it on process detection accuracy.

Node-level Detection Results

Evaluation | Efficiency & Overhead

CAPTAIN is more efficient compared to embedding-based PIDS

MORSE - 87.0

CAPTAIN - 92.2

10²

NODLINK KAIROS

FLASH

- Detection Latency (reduce by at least 57%)
- CPU Usage (reduce by at least 90%) ٠
- Memory Usage (reduce by at least 30%) •

Compared to existing rule-based PIDS, a slightly additional overhead (5.6%) more CPU usage) to significantly reduce FP (by over 90%).

914.6

103

	Buffer Time	Preprocessing Time	Detection Time			
	Engagement3 TRACE					
FLASH	57:49	107:50	64:24			
SHADEWATCHER	N/A ¹	100:22	$3:40^{2}$			
NODLINK	00:10	135:42	2:48			
MORSE	0	58:20	1:29			
CAPTAIN	0	58:20	1:31			
Engagement3 CADETS						
KAIROS	15:00	15:34	29:46			
FLASH	82:52	18:57	7:41			
NODLINK	00:10	6:18	6:41			
MORSE	0	7:22	1:19			
CAPTAIN	0	7:22	1:23			

FLASH KAIROS NODLINK CAPTAIN

····· MORSE

2500

2000

¹We did not find a clear number in their codes or paper. ²SHADEWATCHER extracts the last 10% interactions as the testing set, while the testing set of us is around 2.5 times larger.

Evaluation | Case Study

- Each alarm from CAPTAIN has clear semantics and explicable detection process
- CAPTAIN's customized rule parameters for each individual nodes and edges can:
 - distinguish between similar graph patterns
 - address tag explosion problem

(a) The graph on the left side represents normal behavior in the training set, while the graph on the right side depicts an attacker executing a malicious email attachment. (b) CAPTAIN assigns different propagation rates (g_e) to events to control dependency explosion more precisely.

Conclusion

- During the battle against APT attacks, there is a dilemma between detection accuracy and efficiency faced by existing **rule-based PIDS** and **embedding-based PIDS**.
- We proposed CAPTAIN, a differentiable rule-based detection framework that can optimize parameterized detection rules using gradient descent algorithms.
- The results on multiple datasets demonstrate the superiority of CAPTAIN compared to existing rule-based and embedding-based PIDS.

Thanks for your listening!

To Access Code & Experiments

https://github.com/LexusWang/CAPTAIN

GitHub lingzhiwang2025@u.northwestern.edu

