Incorporating Gradients to Rules:

Towards Lightweight, Adaptive
Provenance-based Intrusion Detection

Lingzhi Wang, Xiangmin Shen, Weijian Li, Zhenyuan Li,
R. Sekar , Han Liu , and Yan Chen

Northwestern University, Stony Brook University, Zhejiang University

A

NORTHWESTERN Stony Brook
UNIVERSITY University

Advanced Persistent Threats (APT)

APT attacks bring challenges to traditional intrusion detection systems.

Advanced: Use of sophisticated techniques (e.g., zero-day exploits, custom
malware).

Persistent: Long-term access to networks, often undetected for several days/months

Targeted: Focused on specific organizations or individuals

SideWinder APT Strikes Middle East and Africa With Stealthy Multi-Stage
Attack
. Suspected State-Backed APT Group

Compromised Air-Gapped Systems in

European Government With Custom
Malware Attack

Russian APT Group Thwarted in Attack on US Automotive
Manufacturer

The group gained access to the victim network by duping IT employees with high administrative-access privileges.

Northwestern

Provenance-based Intrusion Detection (PIDS)

Provenance Graph: A graph recording system entities and their interactions
. Nodes: System entities (processes, files, sockets, ...)
. Edges: Interactions between entities (read, write, fork, execve, load, ...)

« PIDS provides more comprehensive contexts, correlations, and scopes against APT

attacks
Attack Activities
scp-t | load ~bob/ccleaner /cheaner forreree O\ /O
.Jccleaner
(O dbus-launch <
(O™ O
T lfork+exec
Oy KO
O dbus-daemon W
| sshd ~bob/aa tkn O (D)
<

fork l l 1 l fork+exec load / /| |/b / h

ork+exec fork+exec usr/ioca IN/ss
C scp -r ~bob/* ssh bob@bkupsrv -

sshd H sshd H bash bob@bkupsrv work/ scp -r-d-t /work/

Ioad
Nbob/ ssh/known_hosts /usr/IocaI/etc/ssh _config

Northwestern

Rule-based PIDS vs Embedding-based PIDS
Existing PIDS can be (roughly) divided into two categories:

* Rule-based PIDS: Use simple, static rules to model graph patterns

Embedding-based PIDS: Use embedding functions to vectorize graph features

A\ Rule-based PIDS
Graph Matching S’
Tag Propagation # Detection
4)
’ Freq. Analysis Result
- N Embedding-based PIDS
@)) GNN <1,
_ J -M-
Word Embedding = = ﬂ-
Provenance Graph D;tecnlon
Graph Sketch esult
= J

Feature Vectors
Northwestern

Rule-based PIDS vs Embedding-based PIDS

Existing PIDS can be (roughly) divided into two categories:
* Rule-based PIDS: Use simple, static rules to model graph patterns
« Embedding-based PIDS : Use embedding functions to vectorize graph features

/ Rule-based PIDS \

Embedding-based PIDS \

~— Fast & Efficient —= Powerful Feature Extraction

@ Lightweight @ Learning Capability
Explicable Detection Process Adaptable to New Data
Low Accuracy High System Overhead

Rigid & Inflexible Long Detection Latency

k Unadaptable to New Data j

Inexplicable Detection Proce?

Northwestern

Motivation
Is it possible to maintain the lightweight and efficiency of the rule-based
detection while enabling dynamic and automated rule learning?

Given a set of rules, how to dynamically adjust them to get a better detection
result?

How to adjust the rules to improve the We need to model how
detection results? the rules affect the

detection results...

Detection Rules Detection Process Detection Results

Northwestern

Motivation
Is it possible to maintain the lightweight and efficiency of the rule-based
detection while enabling dynamic and automated rule learning?

Given a set of rules, how to dynamically adjust them to get a better detection
result?

How to adjust the rules to improve the We need to model how
detection results? the rules affect the

detection results...

SR [Gradients!}

Detection Rules Detection Process Detection Results

Northwestern

Motivation

Is it possible to maintain the lightweight and efficiency of the rule-based
detection while enabling dynamic and automated rule learning?

Inspiration: Parameter learning with gradient-based methods.

Update Calculate Update Calculate
Initialize - Perform Calculate Initialize - Perform Calculate

Gradient-based Parameter Learning Gradient-based Rule Learning

Northwestern

One-Sentence Takeaway

We transform the non-differentiable rule-based detection process to a

differentiable function, enabling us to fine-tune the detection rules based on
the detection results using gradients.

Adjust the rules according to gradients We need to model how
to improve the detection results the rules affect the

detection results...

A LR [Gradients!}
 —— Differentiable — B B
Function

Detection Rules Detection Process

Detection Results

Northwestern

Tag-Propagation: A major mechanism of rule-based detection

We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.

Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.

System Logs Provenance Graph

(A is a IP socket, B and D are processes, and C is a File)

[IP:A isassigned ?0

an “Untrusted” tag
Other nodes are
o assigned “Trusted”
tags

v

N ©

Northwestern

Tag-Propagation: A major mechanism of rule-based detection

We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.

Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.

System Logs Provenance Graph

(A is a IP socket, B and D are processes, and C is a File)
1. Prcoess:B recv_from IP:A
The “Untrusted”
tag is passed to

Process:B

Northwestern

Tag-Propagation: A major mechanism of rule-based detection

We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.

Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.

System Logs Provenance Graph

(A is a IP socket, B and D are processes, and C is a File)
1. Prcoess:B recv_from IP:A

2. Prcoess:B write File:C

Northwestern

Tag-Propagation: A major mechanism of rule-based detection

We build the differentiable detection system on tag propagation, one of the major
mechanisms of rule-based detection.

Similar to Taint Analysis, tag-propagation system assign tags on each node in the
provenance graph, propagates tags on the graph, and trigger alarms.

System Logs Provenance Graph
(A is a IP socket, B and D are processes, and C is a File)
1. Prcoess:B recv_from IP:A A
2. Prcoess:B write File:C Rule: A file load event
on an “Untrusted” file
3. Process:D load File:C B triggers an alarm
v
L

Northwestern

Challenges of Tag-propagation in PIDS

Tag Initialization Rules:

How to assign initial tags for nodes without parents (like IP:2)?

Too many “Untrusted” tags — Excessive false alarms

* Toomany “Trusted” tags — Missing attacks

[IP:A is assigned Fo

an “Untrusted” tag
Other nodes are
o assigned “Trusted”
tags

v

N ©

Northwestern

Challenges of Tag-propagation in PIDS

Tag Initialization Rules:

« How to assign initial tags for nodes without parents (like IP:A)?
* Too many “Untrusted” tags — Excessive false alarms

* Toomany “Trusted” tags — Missing attacks

Tag Propagation Rules:

. How to propagate tags among nodes? A

« Tag explosion issue — Excessive false alarms

Northwestern

Challenges of Tag-propagation in PIDS

Tag Initialization Rules:

« How to assign initial tags for nodes without parents (like IP:A)?
* Too many “Untrusted” tags — Excessive false alarms

* Toomany “Trusted” tags — Missing attacks

Tag Propagation Rules:

. How to propagate tags among nodes? A
« Tag explosion issue — Excessive false alarms Rule: A file load event
. on an “Untrusted” file
Alarm Generation Rules: . O —
* When should an alarm be triggered? ~—
AL I

« Unable to control the sensitivity for specific events. -M-

Northwestern

Challenges of Tag-propagation in PIDS

Tag Initialization Rules:

« How to assign initial tags for nodes without parents (like IP:A)?
* Too many “Untrusted” tags — Excessive false alarms
* Toomany “Trusted” tags — Missing attacks

Tag Propagation Rules:

. How to propagate tags among nodes?

« Tag explosion issue — Excessive false alarms

Alarm Generation Rules:

* When should an alarm be triggered? n

. Unable to control the sensitivity for specific events. A1l Rules set by human experts!

Northwestern

Challenges of Tag-propagation in PIDS

Tag Initialization Rules:

How to assign initial tags for nodes without pa

When should an alarm be triggered?

« Unable to control the sensitivity for specific events. A1l Rules set by human experts!

Northwestern

Overall Framework

CATAIN: A lightweight, adaptive provenance-based intrusion detection system.

Address the dilemma between detection accuracy and detection efficiency

Incorporate gradient-descent idea into optimizing traditional rule-based IDS

Update - Calculate A l l —> Detection Phase
Rules Gradients o

| Node Features | | EdgeFeatures | T > Learning Phase
......................... prsssssssssnnnnnnnnduanngunnnnnnnnnn —Gradients 4...-
l o| i® o| i® —‘ @%
vy v v \ 4 E E
Threshold (T)]
T : s Lo
Initialize Perform Calculate Tag < Threshold? o L
Rules Detection Loss o Narm False Alarms
Tag Differentiable eneration : Learning Module
Initialization o

Tag Propagation /' petection Module

Gradient-based Rule Learning Overall Framework of CAPTAIN

Northwestern

Key Question 1: How to convert rules to parameters?

Northwestern

Parameterize Rules

Convert three types of rules into numerical adaptive parameters (A, G, and T).

Tag Initialization Rules: Use the integrity score (a,,) as the initial tag for each node

Nl T Trusted
Untrusted ode Tag = a, (a, €[0,1])
_ Traditional Rules

) \ CAPTAIN

J
Tag Propagation Rules: Use the propagation rate (g,) for each event to partially

propagate tags
s
» I » z -)

\ Traditional Rules CAPTAIN

Northwestern

Parameterize Rules

Convert three types of rules into numerical adaptive parameters (A, G, and T).

« Alarm Triggering Rules: Use a numerical alarm threshold (t,) for each event e

-

_)

if Event.Type = “load”

and File.Tag = "Untrusted”:

Raise Alarm(“Load Untrusted Code!”)
Traditional Rules)

-

_

. >0 Benign
File.Tag - t, =
< 0 Alarm

CAPTAIN

~

J

Integrity scores (a,), propagation rates (g.), and alarm thresholds (t.) provides fine-
grained rules

« FEach node has its own a,,

« Each edge has its own g, and t,
« All parameters are continuous values between 0 and 1.

Northwestern

Key Question 2: How to calculate the gradients?

Northwestern

Calculate Gradients

Record & update tag gradients during tag propagation

« Initialize a,, g, and t, according to the default setting

* Perform tag propagation

« Update and record gradients when tag changes

A 9/da, =1
@ B 9/dag = 1
C d/da, =1

1 @ D 9/dap = 1

Northwestern

Calculate Gradients

Record & update tag gradients during tag propagation

« Initialize a,, g, and t, according to the default setting
* Perform tag propagation

« Update and record gradients when tag changes

A d/0a, =1
B d/da, =1,0/0g, = —1
C d/da, =1
D d/dap =1

1 CD

Northwestern

Calculate Gradients

Record & update tag gradients during tag propagation

« Initialize a,, g, and t, according to the default setting

* Perform tag propagation

« Update and record gradients when tag changes

A

B
C
D

CD

d/0a, =1

d/0ay =1,0/0g, = —1

d/day =1, d/dg, =—1,0/dg, = —1
d/dap =1

Northwestern

Calculate Gradients

Record & update tag gradients during tag propagation

« Initialize a,, g., and t, according to the default setting
* Perform tag propagation

« Update and record gradients when tag changes

A d/0a, =1

B d/da, =1,0/0g, = —1

C d/0ay =1, d/dg, =—1,0/0g, = -1

D d/da, =1, d/dg, =—1,0/dg, = —1,
0/0g93 = -1,

Northwestern

Key Question 3: How to update/train the rule parameters?

Northwestern

Update Rule Parameters

Calculate loss when there is a mis-detection on the training set
Update rule parameters p according to the gradients

p = p — learning_ratexgradient

gl = 10

A 9/0a, = 1

B d/day =1,0/0g, = —1

A false alarm g2 =10 ﬂ = L C d/da, =1, d/dg, = —-1,8/dg, = —1

triggered by tag
of Node C! 0 @ D d/day =1, d/0g, = —1,0/9g9, = —1,

d/dg; = —1,

Northwestern

Update Rule Parameters

Calculate loss when there is a mis-detection on the training set
Update rule parameters p according to the gradients

p = p — learning_ratexgradient

Repeat iterations until convergence and apply learned rule parameters in testing

93 — 1.0

Node C willnot| 92 =038
trigger false
alarms! 0.488 0.488

Northwestern

Evaluation | Detection Accuracy
On DARPA Engagement datasets, compared to recent work, CAPTAIN

« Node-level detection: Reduces the false alarm rate by 90%
« Edge-level detection: Reduces the false alarm rate by 93%

| TP | FP(0-hop) | FP(1-hop) | FN(0-hop)

* Maintain similar true positive rates to baselines

Engagement3 CADETS

FLASH 16 4503 4485 10
KAIROS 15 1017 1003 11
NODLINK! 3 120 114 2
MORSE 16 51 43 10
| CapTAIN 16 34 26 10 |
Engagement3 TRACE
| MORSE | SHADEWATCHER | CAPTAIN FLASH 5 27202 27178 19
1
of Consumed Events | 5,188,230 724,236 5,188,230 N%}’LINK 1‘; ;Zg ;70 &
of False Alarm Events | 22,500 2,405 1.099 | CA;"T‘:IFN o T 1’1& |
False Alarm Rate 0.434% 0.332% 0.0212%
Engagement3 THEIA
. FLASH 2 53230 53050 13
Edge-level Detection Results Karos | 12 3566 3422 3
NODLINK? 4 62 58 0
MORSE 11 220 213 4
| capTax 11 194 187 4 |

1Since NODLINK only provides detected process, we evaluate it on process
detection accuracy.

Node-level Detection Results

Northwestern

Evaluation | Efficiency & Overhead

CAPTAIN is more efficient compared to embedding-based PIDS
* Detection Latency (reduce by at least 57%)

« CPU Usage (reduce by at least 90%)

* Memory Usage (reduce by at least 30%)

Compared to existing rule-based PIDS, a slightly additional overhead (5.6%
more CPU usage) to significantly reduce FP (by over 90%).

| Buffer Time | Preprocessing Time | Detection Time

Engagement3 TRACE

FLASH 57:49 107:50 64:24 P i
SHADEWATCHER N/AY 100:22 3:402 % 5000 P o EZT‘:(:'S
NODLINK 00:10 135:42 2:48 ‘q': 4000 - |
MORSE 0 58:20 1:29) ! — NODLINK
CAPTAIN 0 58:20 1:31 MORSE 87.0 & 3000 ! —— CAPTAIN
> R P MORSE
Engagement3 CADETS CAPTAIN 92.2 2 2000 H
NODLINK 914.6 5 A
KAIROS 15:00 15:34 29:46 KAIROS 44047.7 £ 100 gt T e
FLASH 82:52 18:57 7:41 FLASH] 4819.4 s /? | |
NODLINK 00:10 6:18 6:41 T T T T 0 - — T T T —
MORSE 0 7:22 1:19 10 10° 10* 10° 0 500 1000 1500 2000 2500
CAPTAIN 0 7:22 1:23 CPU Time (s) Time (s)
1We did not find a clear number in their codes or paper. (a) Total CPU time used (b) Memory usage over time

2SHADEWATCHER extracts the last 10% interactions as the testing set,
while the testing set of us is around 2.5 times larger.

Northwestern

Evaluation | Case Study

« Each alarm from CAPTAIN has clear semantics and explicable detection
process

« CAPTAIN’s customized rule parameters for each individual nodes and
edges can:

— distinguish between similar graph patterns

— address tag explosion problem

e create write chmod

create Ccreate write chmod

' - [checknew-relea|

Thome/admin/. Thome/admin/ ' @ python3 ok m
pine-debugi pinerc174500 ' g=1.00 g=0-57

. g=1. -t blerd
! execve Gecko 10Thread g=1:00 =|.oo/m
= ' fee lib/x86_64-I
romapamin > Doy S8—={thunderin
in/.pi . g=0.63 .S0.
home/admin/.pinerc] G B

é

read

i

i

|

i =0.67 §=0.86

1 5

| e
(a) The graph on the left side represents normal behavior in the training (b) CAPTAIN assigns different propagation rates (ge) to events to
set, while the graph on the right side depicts an attacker executing a control dependency explosion more precisely.

malicious email attachment.

Northwestern

Conclusion

* During the battle against APT attacks, there is a dilemma between detection

accuracy and efficiency faced by existing rule-based PIDS and embedding-
based PIDS.

* We proposed CAPTAIN, a differentiable rule-based detection framework

that can optimize parameterized detection rules using gradient descent
algorithms.

* The results on multiple datasets demonstrate the superiority of CAPTAIN
compared to existing rule-based and embedding-based PIDS.

Northwestern

Thanks for your listening!

To Access Code & Experiments

O https://github.com/LexusWang/CAPTAIN
GitHub lingzhiwang2025@u.northwestern.edu

Northwestern

https://github.com/LexusWang/CAPTAIN

