

Spatial-Domain Wireless Jamming with Reconfigurable Intelligent Surfaces

Philipp Mackensen¹*, Paul Staat²*, Stefan Roth¹,

Aydin Sezgin¹, Christof Paar², and Veelasha Moonsamy¹

Network and Distributed System Security (NDSS) Symposium 2025 25th February 2025, San Diego, CA

¹ Ruhr University Bochum
 ² Max Planck Institute for Security and Privacy

* Equal contribution

Ubiquitous Wireless Communication

Open wireless medium makes devices vulnerable against **wireless jamming**!

Photos:

Daniel Aleksandersen, https://www.ctrl.blog/entry/review-asuswrt.html, Jakub Zerdzicki on pexels.com, Jens Mahnke on pexels.com, Fabian Hurnaus, pexels.com

Ubiquitous Wireless Communication

Open wireless medium makes devices vulnerable against wireless jamming!

Los Angeles Times

Photos

Daniel Aleksandersen, https://www.ctrl.blog/entry/review-asuswrt.html, Jakub Zerdzicki on pexels.com, Jens Mahnke on pexels.com, Fabian Hurnaus, pexels.com

Why we Need to Revisit Wireless Jamming

• Long-standing and well-studied topic in wireless security

Why we Need to Revisit Wireless Jamming

- Long-standing and well-studied topic in wireless security
- Threat exploration must continue to keep up with recent technological advancements

Why we Need to Revisit Wireless Jamming

- Long-standing and well-studied topic in wireless security
- Threat exploration must continue to keep up with recent technological advancements
- This work:

Wireless jamming in view of emerging Reconfigurable Intelligent Surface (RIS) technology

Reconfigurable Intelligent Surface (RIS) 101

- Smart radio environments
 - Optimize wireless communication channel

Reconfigurable Intelligent Surface (RIS) 101

• Smart radio environments

- Optimize wireless communication channel
- Digital control over the surface reflection properties
 - Many individually adjustable reflective elements

Reconfigurable Intelligent Surface (RIS) 101

• Smart radio environments

- Optimize wireless communication channel
- Digital control over the surface reflection properties
 - Many individually adjustable reflective elements

Implemented as a low-cost printed circuit board¹

¹ <u>https://github.com/mheinri/OpenSourceRIS</u>

Spatial-domain wireless jamming with reconfigurable intelligent surfaces | mackensen et al.

Classical Jamming Attacks

RIS enables Spatially Selective Jamming

Experimental Setup

Experimental Setup

Victim Wi-Fi network

- Access point (AP)
- 10 x Raspberry Pi

Experimental Setup

Victim Wi-Fi network

- Access point (AP)
- 10 x Raspberry Pi

Attacker

• Directional antenna facing RIS

• **Passive eavesdropping** of wireless environment

- **Passive eavesdropping** of wireless environment
- Adapt RIS configuration

- **Passive eavesdropping** of wireless environment
- Adapt RIS configuration
- Shape received signal strengths:

- **Passive eavesdropping** of wireless environment
- Adapt RIS configuration
- Shape received signal strengths:
 Maximize jamming target

- **Passive eavesdropping** of wireless environment
- Adapt RIS configuration
- Shape received signal strengths:
 - Maximize jamming target
 - Minimize others

 Exploit reciprocal wireless channel:

 Attacker's signal transmission behaves the same as reception

- Exploit reciprocal wireless channel:

 Attacker's signal *transmission* behaves the same as *reception*
- Use previously adapted RIS configuration to transmit jamming signal

- Exploit reciprocal wireless channel:

 Attacker's signal *transmission* behaves the same as *reception*
- Use previously adapted RIS configuration to transmit jamming signal
- Target device is jammed

- Exploit reciprocal wireless channel:

 Attacker's signal *transmission* behaves the same as *reception*
- Use previously adapted RIS configuration to transmit jamming signal
- Target device is jammed
- Others remain operational

- Exploit reciprocal wireless channel:

 Attacker's signal *transmission* behaves the same as *reception*
- Use previously adapted RIS configuration to transmit jamming signal
- Target device is jammed
- Others remain operational

- Exploit reciprocal wireless channel:

 Attacker's signal *transmission* behaves the same as *reception*
- Use previously adapted RIS configuration to transmit jamming signal
- Target device is jammed
- Others remain operational

• Attack likewise works when targeting *multiple* devices

- Attack likewise works when targeting *multiple* devices
- Extreme case:
 - Jam all but one device

- Attack likewise works when targeting *multiple* devices
- Extreme case:
 - Jam all but one device

- Attack likewise works when targeting *multiple* devices
- Extreme case:
 - Jam all but one device

- Attack likewise works when targeting *multiple* devices
- Extreme case:
 - Jam all but one device

- Attack likewise works when targeting *multiple* devices
- Extreme case:
 - Jam all but one device

- Attack likewise works when targeting *multiple* devices
- Extreme case:
 Jam all but one device
- D₇ hard to jam since it is close to the access point and enjoys a strong signal

 D_5 D_6

40

(iii)

30

(ii)

20

Time /s

- Attack still works even when devices are very close to each other
- Dynamic attack target selection through RIS configuration switching

Summary and Conclusion

- Vivid example for threat potential of RIS technology:
 Spatially-selective jamming attacks
- Significantly lowers the bar for sophisticated jamming attackers

- Environmental variation
- Sub-wavelength settings
- Antenna comparison
- And more!

Contact: philipp.mackensen@rub.de, paul.staat@mpi-sp.org

Spatial-domain wireless jamming with reconfigurable intelligent surfaces | mackensen et al.

Effect of Jamming Signal Power

- Attacker can increase power by another 17 dB (linear factor 50) before any other device (D₆) is jammed
- RIS-based signal power optimization shapes Jamming-to-Signal Ratios (JSRs)

Environmental Variation - Human Motion

• How does human motion affect the stability of the RIS configuration?

Environmental Variation - Incremental Changes

Targeting cluster consisting of D_1 , D_2 and D_3 .

ackets per second

Detailed Look into the Spatial-Domain

- We achieved up to ~30 dB isolation between antennas in extreme proximity
 - Spatial correlation?!
- Enhanced spatial diversity due to mutual antenna coupling
 - Isolation of Antenna 1 reduces as Antenna 2 moves away