

# Detecting IMSI-Catchers by Characterizing Identity Exposing Messages in Cellular Traffic

Tyler Tucker,\* Nathaniel Bennett,\* Martin Kotuliak,† Simon Erni,† Srdjan Capkun,† Kevin Butler,\* and Patrick Traynor\*

\*Florida Institute for Cybersecurity Research (FICS)

†ETH Zurich







The technology presents itself as the strongest mobile signal in the area, prompting all nearby p connect to it. Photograph: Manu Fernandez/AP



United Kingdom 2016

















- Telephony is facilitated using central network hardware owned by providers
  - However, anyone can create their own cell tower ("rogue base station"), which our phones will connect to under the correct conditions



- Telephony is facilitated using central network hardware owned by providers
  - However, anyone can create their own cell tower ("rogue base station"), which our phones will connect to under the correct conditions
- One RBS implementation is an IMSI-Catcher, which links a network identifier (''IMSI'') to an individual to enable location-tracking attacks





































Table I: Efficacy of various detection methods when exposed to suboptimal cellular network conditions.  $\bigcirc$  indicates the condition will directly lead to increased false positives in the detection mechanism,  $\bigcirc$  indicates the condition may lead to false positives in the detection mechanism under certain circumstances, and  $\bigcirc$  indicates the condition has no effect on the detection rate of the mechanism.



| Fa                                                          | lse        | e         | Pc         | )<br>Si     | ti         | /e                | S         |           |                |                       |                           |               |              |
|-------------------------------------------------------------|------------|-----------|------------|-------------|------------|-------------------|-----------|-----------|----------------|-----------------------|---------------------------|---------------|--------------|
|                                                             | IC-SC [10] | TMSB [11] | NB-ICD [2] | ICD-CN [12] | SITCH [13] | Apple Patent [14] | mICC [15] | sICC [15] | App-Based [16] | Crocodile Hunter [17] | GSMK Overwatch [18], [19] | SeaGlass [20] | Our Approach |
| Noisy Background RF                                         | 0          | O         | •          | •           | 0          | 0                 | •         | 0         | •              | 0                     | •                         | •             |              |
| Weak Cipher Use                                             | 0          | 0         | •          | •           | •          | $\bullet$         | •         | •         | O              | •                     | •                         | 0             | $\bullet$    |
| Freq Reassociation                                          | O          | O         | •          |             | Ο          |                   |           | •         | Ο              | •                     | O                         | Ο             | $\bullet$    |
| rieq. Reassociation                                         | $\sim$     | $\cap$    |            | •           | •          | O                 | $\bullet$ | •         | O              | •                     | •                         | $\bullet$     | $\bullet$    |
| Freq. Downgrade                                             | $\bigcirc$ | $\cup$    |            |             |            |                   |           |           |                |                       |                           |               |              |
| Freq. Downgrade<br>Anomalous Propagation                    | 0          | •         | Õ          | $\bigcirc$  | Ο          | Ο                 | Ο         | Ο         | Ο              | Ο                     | Ο                         | Ο             | $\bullet$    |
| Freq. Downgrade<br>Anomalous Propagation<br>Temporary Tower | 0          | •         | 0<br>0     | 0<br>0      | 0<br>0     | 0<br>0            | 0<br>0    | 0<br>0    | 0<br>0         | 0<br>0                | 0<br>0                    | 0<br>0        | •            |

Table I: Efficacy of various detection methods when exposed to suboptimal cellular network conditions.  $\bigcirc$  indicates the condition will directly lead to increased false positives in the detection mechanism,  $\bigcirc$  indicates the condition may lead to false positives in the detection mechanism under certain circumstances, and  $\bigcirc$  indicates the condition has no effect on the detection rate of the mechanism.

| Fal                     | se         | $\left \right $ | ٦e          | g           | at             | IV                | es         |            |                |                       |                           |               |              |  |
|-------------------------|------------|-----------------|-------------|-------------|----------------|-------------------|------------|------------|----------------|-----------------------|---------------------------|---------------|--------------|--|
|                         | IC-SC [10] | TMSB [11]       | NB-ICD [21] | ICD-CN [12] | SITCH [13]     | Apple Patent [14] | mICC [15]  | sICC [15]  | App-Based [16] | Crocodile Hunter [17] | GSMK Overwatch [18], [19] | Seaglass [20] | Our Approach |  |
| No Jamming              | ۲          | •               | ۲           | ۲           | ۲              | ۲                 | •          | 0          | •              | ۲                     | ۲                         | •             | •            |  |
| Fixed Location          | $\bullet$  | •               | $\bullet$   | $\bullet$   | $\bullet$      | Ο                 | $\bullet$  | $\bullet$  | $\bullet$      | Ο                     | lacksquare                | $\bullet$     | $\bullet$    |  |
| Long-Term Campaign      | $\bullet$  |                 | $\bullet$   | $\bullet$   | $\bullet$      | $\bullet$         | Ο          | $\bullet$  | $\bullet$      | $\bullet$             | Ο                         | Ο             | $\bullet$    |  |
| Benign Radio Freq.      | $\bullet$  | 0               | lacksquare  | $\bullet$   | Ο              | $\bullet$         | $\bullet$  | Ο          | ullet          | ullet                 | $\bullet$                 | Ο             | $\bullet$    |  |
| No Unusual Paging       | $\bullet$  |                 | $\bullet$   | $\bullet$   | $\bullet$      | $\bullet$         | Ο          | Ο          | $\bullet$      | $\bullet$             | Ο                         | Ο             | $\bullet$    |  |
| Benign Ciphers          | $\bigcirc$ | Ο               | $\bullet$   | Ο           | $\bullet$      | $\bullet$         | $\bullet$  | $\bullet$  | $\bullet$      | $\bullet$             | $\bullet$                 | lacksquare    | $\bullet$    |  |
| Parroted Cell-ID        | $\bullet$  |                 | lacksquare  | lacksquare  | $\bigcirc$     | Ο                 | Ο          | $\bigcirc$ | Ο              | lacksquare            | lacksquare                | lacksquare    | lacksquare   |  |
| Plausible RF Power      | $\bullet$  |                 | $\bigcirc$  | lacksquare  | Ο              | Ο                 | lacksquare | lacksquare | Ο              | Ο                     | lacksquare                | Ο             | lacksquare   |  |
| Benign Broadcast Params | $\bullet$  |                 | lacksquare  | lacksquare  | ${}^{\bullet}$ | Ο                 | Ο          | $\bigcirc$ | Ο              | Ο                     | Ο                         | Ο             | lacksquare   |  |
| Parroted LAC            | $\bullet$  | Ο               | Ο           | Ο           | ${}^{\bullet}$ | lacksquare        | Ο          | lacksquare | Ο              | Ο                     | lacksquare                | Ο             | lacksquare   |  |
| LTE-Only                | Ο          | Ο               | $\bigcirc$  | Ο           | $\bigcirc$     | ●                 | Ο          | $\bigcirc$ | Ο              | lacksquare            | ●                         | Ο             | lacksquare   |  |
| New Location            | Ο          | Ο               | $\bigcirc$  | Ο           | $\bigcirc$     | ullet             | Ο          | $\bigcirc$ | ●              | $\bigcirc$            | $\bigcirc$                | Ο             | ullet        |  |
| DL Overshadow           | Ο          | Ο               | $\bigcirc$  | Ο           | $\bigcirc$     | $\bigcirc$        | Ο          | $\bigcirc$ | $\bigcirc$     | $\bigcirc$            | $\bigcirc$                | Ο             | ullet        |  |
| UL Overshadow           | Ο          | Ο               | $\bigcirc$  | Ο           | $\bigcirc$     | $\bigcirc$        | $\bigcirc$ | $\bigcirc$ | $\bigcirc$     | $\bigcirc$            | $\bigcirc$                | Ο             | ullet        |  |

Table II: Efficacy of various detection methods against an IMSI-Catcher exhibiting the specified behavior.  $\bigcirc$  indicates the behavior will lead to increased false negatives in the detection mechanism,  $\bigcirc$  indicates the behavior may lead to false negatives in the detection mechanism under certain conditions, and  $\bigcirc$  indicates the behavior has no effect on the detection rate of the mechanism.





- Existing solutions ask the question, "How might IMSI-Catchers behave?"
  - Detectors target variables such as odd configurations, physical layer anomalies, and weak cipher usage
  - As a result, no academic publication has produced plausible evidence of an IMSI-Catcher



This image was created with the assistance of DALL  $\dot{\mathrm{E}}$ 



- Existing solutions ask the question, "How might IMSI-Catchers behave?"
  - Detectors target variables such as odd configurations, physical layer anomalies, and weak cipher usage
  - As a result, no academic publication has produced plausible evidence of an IMSI-Catcher
- Conversely, we ask, "What must IMSI-Catchers do to achieve their goal?"
  - They must always force a UE to transmit its IMSI



This image was created with the assistance of DALL  $\ensuremath{\mathsf{E}}$ 





- Let's Flip This
  - Let's find out what the cellular standards say can cause a phone to transmit its IMSI?



- Let's find out what the cellular standards say can cause a phone to transmit its IMSI?
- It turns out there are 53 different ways to do so throughout 2G through 5G-NSA
  - These messages represent what IMSI-Catchers must transmit

| Generation  | Downlink Message                                                      | Reference                      |
|-------------|-----------------------------------------------------------------------|--------------------------------|
| 2G GSM      | Identity Request                                                      | GSM TS 04.08 Sec. 4.3.3.1      |
|             | Authentication Reject                                                 | GSM TS 04.08 Sec. 4.3.2.5      |
|             | Abort, Cause #6                                                       | GSM TS 04.08 Sec. 4.3.5.2      |
|             | Location Updating Reject, #2-3, 6, 11-13                              | GSM TS 04.08 Sec. 4.4.4.7      |
|             | CM Service Reject, Cause #4 or 6                                      | GSM TS 04.08 Sec. 4.5.1.1      |
|             | Identity Request                                                      | 3GPP TS 124.008 Sec. 4.3.3     |
| 3G UMTS     | Authentication Reject                                                 | 3GPP TS 124.008 Sec. 4.1.1.2   |
|             | Abort, Cause #6                                                       | 3GPP TS 124.008 Sec. 4.3.5.2   |
|             | Location Updating Reject, Cause #2-3, 6, 11-12                        | 3GPP TS 124.008 Sec. 4.4.4.7   |
|             | CM Service Reject, Cause #4, 6                                        | 3GPP TS 124.008 Sec. 4.5.1.1   |
|             | Attach Reject, Cause #3, 6-8, 11-15                                   | 3GPP TS 124.008 Sec. 4.7.3.1.3 |
|             | Detach Request, Type "re-attach not required", Cause #2-3, 6-8, 11-15 | 3GPP TS 124.008 Sec. 4.7.4.2.2 |
|             | Routing Area Update Reject, Cause #3, 6-7, 9, 11-12, 14               | 3GPP TS 124.008 Sec. 4.7.5.1.4 |
|             | Authentication and Ciphering Reject                                   | 3GPP TS 124.008 Sec. 4.7.7.5   |
|             | Service Reject, Cause #3, 6-7, 9, 11-12                               | 3GPP TS 124.008 Sec. 4.7.13.4  |
| 4G LTE      | Identity Request                                                      | 3GPP TS 124.301 Sec. 4.3.3     |
|             | Attach Reject, Cause #3, 6-8, 11-15, 35                               | 3GPP TS 124.301 Sec. 5.5.1.2.5 |
|             | Detach Request, Type "re-attach not required", Cause #3, 6-8, 11-15   | 3GPP TS 124.301 Sec. 5.5.2.3.2 |
|             | Tracking Area Update Reject, Cause #3, 6-7, 9, 11-12, 14              | 3GPP TS 124.301 Sec. 5.5.3.2.5 |
|             | Service Reject, Cause #3, 6-7, 9, 11-12                               | 3GPP TS 124.301 Sec. 5.6.1.5   |
| 5G NR (NSA) | Same as 4G LTE                                                        | 3GPP TS 137.340 Sec. 7.1       |





• We hypothesize that legitimate cell towers will tend to minimize those 53 IEMs to protect user privacy



- We hypothesize that legitimate cell towers will tend to minimize those 53 IEMs to protect user privacy
- To test this hypothesis, we devise a metric called the IMSI Exposure Ratio (IER) that represents the number of connections that contain at least one IEM to the total number of connections

 $IER = \frac{IMSI Exposing Connections}{Total Number of Connections}$ 











- SDRs can tune to cellular frequencies and see traffic coming from a cell tower
- From this perspective, we can calculate the IER of a base station for a given time window





- We calculate IER on 400<sup>+</sup> hours of passive network captures from commercial base stations
  - Our captures occur in different countries, cities of varying population density, and events producing temporary periods of high population density (e.g., college football game)
  - Our results show a median IER of 3% for commercial base stations







- Obtaining a commercial grade IMSI-Catcher is currently infeasible
  - Therefore, we used public guides and open-source code to create our own 2G GSM, 3G UMTS, and 4G LTE IMSI-Catchers





- Obtaining a commercial grade IMSI-Catcher is currently infeasible
  - Therefore, we used public guides and open-source code to create our own 2G GSM, 3G UMTS, and 4G LTE IMSI-Catchers
- During our tests, we calculated that all connections made to our IMSI-Catchers included an IEM (median IER = 100%)







• As a final exercise, we took our detector on the road to several events and locations where we thought an IMSI-Catcher may be in use



- As a final exercise, we took our detector on the road to several events and locations where we thought an IMSI-Catcher may be in use
- These locations included public areas surrounding government buildings and two political events with notable law enforcement precautions



- As a final exercise, we took our detector on the road to several events and locations where we thought an IMSI-Catcher may be in use
- These locations included public areas surrounding government buildings and two political events with notable law enforcement precautions
- At one political event, we logged the following results during a fifteenminute window



























Florida Institute for Cybersecurity Research

|4





- We disclosed our findings to the Department of Homeland Security (DHS), who thanked us but did not confirm our findings
  - Recognizing this, we offer statistical analysis to strengthen our findings in this setting



- We disclosed our findings to the Department of Homeland Security (DHS), who thanked us but did not confirm our findings
  - Recognizing this, we offer statistical analysis to strengthen our findings in this setting
- Our detector analyzes downlink messages therefore, we can also detect downlink overshadow attacks
  - Notably, this class of attacks does not rely on a fake base station



- We disclosed our findings to the Department of Homeland Security (DHS), who thanked us but did not confirm our findings
  - Recognizing this, we offer statistical analysis to strengthen our findings in this setting
- Our detector analyzes downlink messages therefore, we can also detect downlink overshadow attacks
  - Notably, this class of attacks does not rely on a fake base station
- Using a 5G sniffer, our approach could be adapted to detect 5G SUCI-Catchers as well



- To support future data collection and community interaction, we provide the source code necessary to run our tool on new data
  - "Bring your own software-defined radio (SDR)"
  - If possible, testing this detector (and others) on a commercial-grade IMSI-Catcher would be incredibly insightful







- We implement a new IMSI-Catcher detection methodology based on cellular standards that avoids false classifications
  - In doing so, we reveal over 50 unique messages that IMSI-Catchers can achieve their goal (previous techniques only considered 1 to 2)





- We implement a new IMSI-Catcher detection methodology based on cellular standards that avoids false classifications
  - In doing so, we reveal over 50 unique messages that IMSI-Catchers can achieve their goal (previous techniques only considered 1 to 2)
- We evaluate our approach using 400 hours of cellular traffic captures, tests on lab-controlled IMSI-Catchers, and a public event necessitating IMSI-Catcher presence



- Conclusion
  - We implement a new IMSI-Catcher detection methodology based on cellular standards that avoids false classifications
    - In doing so, we reveal over 50 unique messages that IMSI-Catchers can achieve their goal (previous techniques only considered 1 to 2)
  - We evaluate our approach using 400 hours of cellular traffic captures, tests on lab-controlled IMSI-Catchers, and a public event necessitating IMSI-Catcher presence
  - Our publication is the first to substantiate evidence of public IMSI-Catcher use with statistical significance



Tyler Tucker tylertucker I @ufl.edu www.cise.ufl.edu/~tucker/



Find our project on Zenodo