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Classical Wireless Communications (i.e., 4G LTE/5G NR/Wi-Fi)
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Key Innovation in ML-Driven Wireless Networks

) Traditional Receiver

) (5

Lossy Channel




Key Innovation in ML-Driven Wireless Networks

) Traditional Receiver

f\
O O O

Lossy Channel



Key Innovation in ML-Driven Wireless Networks

Lossy Channel

( @ )
\ J

Traditional Receiver

f\

ML-based Receiver

(B) ,)))




Key Innovation in ML-Driven Wireless Networks

ML-Driven Wireless Communications

® In addition to image transmission, ML models are tuned for multi-modality (e.g.,
video, text, speech, etc.) to convey semantic information more accurately than
traditional communication systems.
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Key Innovation in ML-Driven Wireless Networks

ML-Driven Wireless Communications

® In addition to image transmission, ML models are tuned for multi-modality (e.g.,
video, text, speech, etc.) to convey semantic information more accurately than

traditional communication systems.
e Is the physical layer of NextG wireless networks secure from attacks?
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Key Innovation in ML-Driven Wireless Networks

ML-Driven Wireless Communications

® In addition to image transmission, ML models are tuned for multi-modality (e.g.,
video, text, speech, etc.) to convey semantic information more accurately than

traditional communication systems.
e Is the physical layer of NextG wireless networks secure from attacks?

No, there is a new attack surface.
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ML is Vulnerable to Adversarial Attacks

e Unfortunately, ML is known to be susceptible to adversarial examples.
® These carefully crafted perturbations can cause the ML system to misbehave in

unexpected ways.
» 538 % o

[1] Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." arXiv preprint arXiv:1412.6572
(2014). 13




Existing Wireless Adversarial Attacks

® Several researchers have proposed new methodologies to craft wireless
adversarial attacks for targeting ML-based wireless systems.
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Our Threat Model

e Magmaw deploys COTS hardware to send the attack signals.
® To ensure stealthiness, Magmaw aims to inject a low-power adversarial signal.
e \We envision a constrained attacker with limited knowledge of victim systems.
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Attack Formulation
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Attack Formulation

Transmitted symbols:
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Attack Formulation

Received symbols when Magmaw doesn’t exist:

}A/;tQ [iv k] = Ht[k]y;tQ [iv k] + W[iv k]
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Attack Formulation

Injected adversarial symbols by Magmaw:
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Attack Formulation

Received symbols when Magmaw exists:
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Experimental Setup

e We consider real-world attack scenarios in which the attacker (red device) sends a
perturbation signal to the receiver.

(a) LoS Tx/Rx path (b) NLoS Tx/Rx path
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Experimental Setup

e Metrics
o PSNR: Representative picture quality measurement for image and video.
o MSE: Mean square error between the original and received speech.
o BLEU: The coherence between the original and received texts.

e Baselines

O

O O O O

Random Attack: Randomly sampled Gaussian Noise.

Vanilla UAP Attack: Entry-level attack where constraints are not considered.
Sync-Free UAP Attack: Expert attack where sync constraint is considered.
One-hot Vector Modality-based (OVM) UAP Attack: Bahramali et al. [3]
White-box Attack: Oracle attack

22



Experimental Results

e High Attack Transferability
o Image Transmission: the PSNR drops by up to 8.04dB.
o Video Transmission: PSNR is lowered by 8.29dB.
o Speech Transmission: MSE is degraded by 3.91x more than the baseline.
o Text Transmission: BLEU score drops to a minimum of 0.338 points.
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Experimental Results

e Downstream Task Attacks (13D Model)
o Random attack performs very poorly compared to Magmaw.
o Magmaw consistently achieves comparable attack performance compared
to the white-box attacks. Specifically, Magmaw achieves an average attack
o Magmaw’s attack success rate is 81.6%, which is only 8.7% lower on
average than white-box attacks.
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Attack Performance against Defenses

e Mitigation-based Defense
o Adversarial Training: Training robust ML-driven wireless networks.
o Perturbation Subtraction: Alleviating the effects of perturbations and
reconstruct the originally transmitted signal.
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Attack Performance against Defenses

Mitigation-based Defense
o Adversarial Training: Training robust ML-driven wireless networks.
o Perturbation Subtraction: Alleviating the effects of perturbations and
reconstruct the originally transmitted signal.
o Results: We see that the source data restored by each ML model is still
degraded because the defender generate exactly the same attack signal.
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Attack Performance against Defenses

e Detection-based Defense
o Perturbation Detection: Input-level detection that aims to correctly find
adversarially manipulated signal. Defender can fine-tune the anomaly
detector based on the perturbation generated by Magmaw.
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Attack Performance against Defenses

e Detection-based Defense

o Perturbation Detection: Input-level detection that aims to correctly find
adversarially manipulated signal. Defender can fine-tune the anomaly
detector based on the perturbation generated by Magmaw.

o Results: Magmaw can bypass detection, even though the fine-tuning
improves the accuracy of the detector. This is because Magmaw is trained
to generate perturbed signals, which are indistinguishable from the clean
signal.
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Magmaw Transferability to Encrypted Channel

Encryption schemes are commonly applied in the communication pipeline to

protect users’ private data.

We see that the OFDM symbols carrying the ciphertext of the image data are
vulnerable to our perturbation signal. Specifically, Magmaw lowers the
performance of secure image transmission by up to 5.88dB.
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Magmaw Transferability to Wireless Sensing

e We consider two ML models: (a) DLoc [4] performs localization task via CSI
received from four fixed access points, and (b) FIRE [5] takes the CSI of the
uplink channel as input and then predicts the downlink CSI.
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[4] Ayyalasomayajula, Roshan, et al. "Deep learning based wireless localization for indoor navigation." Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking. 2020.
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Networking. 2021. 30



Conclusion

® Introduce Magmaw, a novel wireless attack framework implemented over
SDR against ML-driven NextG wireless communication systems.

o Develop a unified mechanism to attack downstream tasks at the same
time.

o Demonstrate Magmaw has high transferability and robustness

o Extensive evaluations on various defense techniques, including
adaptive ones.

e Magmaw will be general to target different ML-driven wireless models, like
wireless localization, channel estimation, and human activity recognition,
to cause the reduction of service quality.

e Code: https://github.com/juc023/Magmaw
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https://github.com/juc023/Magmaw

Thank you!
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