Hitchhiking Vaccine: Enhancing Botnet g rifact
Remediation With Remote Code Deployment Reuse S NDss

Available

Runze Zhang, Mingxuan Yao, Haichuan Xu, Omar Alrawi, E—

Jeman Park, Brendan Saltaformaggio

- Georgia
- Tech




Botnet Takedown: A Long Battle

TrickBot botnet survives
takedown attempt, but Microsoft
sets new legal precedent l

Researchers and law enforcement have been Botnet fueling residential proxies disrupted in cybercrime
fighting botnets for years with limited success crackdown
Volt Typhoon rebuilds malware botnet following FBI 0
disruption I

W h y i S it S O h a r d ? ByBillToulas popInfect botnet targets REdis servers with new

ransomware module

By Bill Toulas June 25, 2024 06:00 AM 0

T e e, VRN .\"Q,
P e |

<
5.5 %, %
-7,9‘9&;%0 %:"9;6%’%4° 2 g“'b,.
% S22, % %, &, o, T, R, o >

0 v % To A
° %9%909963‘0%-" X o":o %, 0 % A
% “° ’\5_‘_00 <o ‘9&% Q’b oﬂ-o Q ")‘90
D U T, F N, O 5, 8 e
%2, 2. % oy, Ry500, 2%



Procedures For Mobile Botnet Remediation

Botnet Attacker C&C Backends Infected Bots

Peter, Incident Responder

cncl.malicious.com

Step 1: Reverse frontend bot and pinpoint C&C backends



Procedures For Mobile Botnet Remediation

Botnet Attacker C&C Backends Infected Bots

Step 1: Reverse frontend bot and pinpoint C&C backends



Procedures For Mobile Botnet Remediation

C&C Backends Infected Bots

Peter, Incident Responder

cncl.malicious.com

Step 1: Reverse frontend bot and pinpoint C&C backends

Step 2: Backend Remediation
Option 1: Block the C&C server [6, 7]*

[6, 7]: Citation numbers correspond to our published paper.



Procedures For Mobile Botnet Remediation

C&C Backends Infected Bots

Peter, Incident Responder

Step 1: Reverse frontend bot and pinpoint C&C backends

Step 2: Backend Remediation
Option 1: Block the C&C server [6, 7]*

[6, 7]: Citation numbers correspond to our published paper.



Procedures For Mobile Botnet Remediation

C&C Backends Infected Bots

Peter, Incident Responder

Step 1: Reverse frontend bot and pinpoint C&C backends

Step 2: Backend Remediation

Option 1: Block the C&C server [6, 7]*
Option 2: Sinkhole the C&C server [8, 9]*

[6, 7, 8, 9]: Citation numbers correspond to our published paper.



Procedures For Mobile Botnet Remediation

C&C Backends Infected Bots

. cncl.malicious.com
Peter, Incident Responder

I s [ —— R
= o)
\ \\
\ \\
- \ \\\
S ~
\ \\
N ~
\ \\
\ ~
\ S o
- \\ SA
\
\
\
\
\
\
\\
Step 1: Reverse frontend bot and pinpoint C&C backends .

Step 2: Backend Remediation

Option 1: Block the C&C server [6, 7]*
Option 2: Sinkhole the C&C server [8, 9]*

As a result, frontend bots are disabled temporally

[6, 7, 8, 9]: Citation numbers correspond to our published paper.



Botnet May Regain Control

C&C Backends Infected Bots

cncl.malicious.com

Peter, Incident Responder




Botnet May Regain Control

C&C Backends Infected Bots

cncl.malicious.com

Peter, Incident Responder

Home / Tech / Security

TrickBot botnet survives takedown
attempt, but Microsoft sets new legal
precedent

Microsoft successfully argued in court against the use of
Windows SDKs inside malware code, a precedent it would be
able to use again and again in future botnet crackdowns.

Written by Catalin Cimpanu, Contributor
0Oct. 13,2020 at 2:51 p.m. PT|
=




Botnet May Regain Control

C&C Backends Infected Bots

cncl.malicious.com

Peter, Incident Responder

Home / Tech / Security

TrickBot botnet survives takedown
attempt, but Microsoft sets new legal
precedent

Microsoft successfully argued in court against the use of
Windows SDKs inside malware code, a precedent it would be
able to use again and again in future botnet crackdowns.

Botnet operators can regain control with backup C&C servers!



Botnet May Regain Control

C&C Backends Infected Bots

. cncl.malicious.com
Peter, Incident Responder

precegent @~ 1 ) &-=-—--"7""

Microsoft successfully argued in court against the use of
Windows SDKs inside malware code, a precedent it would be
able to use again and again in future botnet crackdowns.

Botnet operators can regain control with backup C&C servers!



|deally, Peter Should Clean The Victims' Device

C&C Backends Infected Bots

cncl.malicious.com

Peter, Incident Responder

What if Peter can notify the user...




|deally, Peter Should Clean The Victims' Device

C&C Backends Infected Bots

cncl.malicious.com

Peter, Incident Responder

What if Peter can notify the user...

Then the users can remove the
frontend bots from their devices




|deally, Peter Should Clean The Victims' Device

C&C Backends Infected Bots

cncl.malicious.com

Peter, Incident Responder

What if Peter can notify the user...

Then the users can remove the
frontend bots from their devices

What if Peter can push code to the bot...



|deally, Peter Should Clean The Victims' Device

C&C Backends Infected Bots

cncl.malicious.com

Peter, Incident Responder

What if Peter can notify the user... A
Then the users can remove the e

frontend bots from their devices @ ‘

What if Peter can push code to the bot...

Peter can push a remediation payload
to clean the infected devices



|deally, Peter Should Clean The Victims’ Device

C&C Backends Infected Bots

cncl.malicious.com

Peter, Incident Responder

What if Peter can notify the user...

Then the users can remove the
frontend bots from their devices

What if Peter can push code to the bot...

Peter can push a remediation payload Even if the attacker has backup C&Cs, they can no longer control frontend bots
to clean the infected devices



|deally, Peter Should Clean The Victims’ Device

C&C Backends Infected Bots

cncl.malicious.com

Peter, Incident Responder

What if Peter can notify the user...

o

Then the users can remove the
frontend bots from their devices

What if Peter can push code to the bot...

Peter can push a remediation payload Even if the attacker has backup C&Cs, they can no longer control frontend bots
to clean the infected devices



Develop Remediation From Attackers’ Favorite Tactics

Malware authors are big fans of remote payload deployment!

C&C Backends Infected Bots

Peter, Incident Responder

cncl.malicious.com




Develop Remediation From Attackers’ Favorite Tactics

Malware authors are big fans of remote payload deployment!

C&C Backends

cncl.malicious.com Separate the malicious code from malware

binary and host them at C&C servers




Develop Remediation From Attackers’ Favorite Tactics

Malware authors are big fans of remote payload deployment!

C&C Backends

cncl.malicious.com @ Separate the malicious code from malware

binary and host them at C&C servers




Develop Remediation From Attackers’ Favorite Tactics

Malware authors are big fans of remote payload deployment!

\ GETITON
>\ Google Play

—g@\ Bot apps can be launched
on app store and pass

J vetting systems!
cncl.malicious.com @ Separate the malicious code from malware

binary and host them at C&C servers

C&C Backends




Develop Remediation From Attackers’ Favorite Tactics

Malware authors are big fans of remote payload deployment!

\ GETITON
P Google Play

C&C Backends Infected Bots

cncl.malicious.com Separate the malicious code from malware
binary and host them at C&C servers




Develop Remediation From Attackers’ Favorite Tactics

Malware authors are big fans of remote payload deployment!

\ GETITON
P Google Play

C&C Backends Infected Bots

cncl.malicious.com Separate the malicious code from malware

binary and host them at C&C servers

After infection, bots will connect to C&C
server and pull malicious code



Develop Remediation From Attackers’ Favorite Tactics

Malware authors are big fans of remote payload deployment!

\ GETITON
P Google Play

C&C Backends Infected Bots

cncl.malicious.com Separate the malicious code from malware

binary and host them at C&C servers

After infection, bots will connect to C&C
server and pull malicious code



Develop Remediation From Attackers’ Favorite Tactics

Malware authors are big fans of remote payload deployment!

\ GETITON
P® Google Play

C&C Backends Infected Bots

cncl.malicious.com Separate the malicious code from malware

binary and host them at C&C servers

After infection, bots will connect to C&C
server and pull malicious code

Hide malicious code & bypass vetting
system of the app markets

Dynamically deploy different cyber attacks



Attackers’ Favorite Tactics Are Also Peter's Chance & |

After taking down and gaining control of the C&C backends and seizing the payload traffic ...

C&C Backends Infected Bots

cnc1l.malicious.com

Peter can push a remediation
payload to infected devices




Attackers’ Favorite Tactics Are Also Peter's Chance & |

After taking down and gaining control of the C&C backends and seizing the payload traffic ...

C&C Backends Infected Bots

cnc1l.malicious.com

Peter can push a remediation
payload to infected devices

Now, Peter can either notify end
users, or uninstall and interrupt
the execution of frontend bots




Unfortunately, With Any Chance, There Are Challenges &

C&C Backends Infected Bots

cnc1.malicious.com

Peter must:

1. Identify the payload-hosting C&C backends




Unfortunately, With Any Chance, There Are Challenges &

C&C Backends Infected Bots

cnc1l.malicious.com

Peter must:

1. Identify the payload-hosting C&C backends

2. Understand the payload deployment
routine implemented by the frontend bots




Unfortunately, With Any Chance, There Are Challenges &

C&C Backends Infected Bots

cnc1l.malicious.com

Peter must:

1. Identify the payload-hosting C&C backends

2. Understand the payload deployment
routine implemented by the frontend bots

3. Rapidly craft a remediation payload that
can be correctly fetched, loaded, and
executed by the bots




Unfortunately, With Any Chance, There Are Challenges &

C&C Backends Infected Bots

cncl.malicious.com

It’s always a reverse engineering task!

can be correctly fetched, loaded, and
executed by the bots




Two Types of Remote Payload

C&C Backends Infected Bots

Various payload deployment
techniques are available:




Two Types of Remote Payload

C&C Backends Infected Bots

cnc1l.malicious.com

Various payload deployment
techniques are available:

Compiled Java binaries can be executed
with code reflection

EI



Two Types of Remote Payload

C&C Backends

cnc1l.malicious.com

Infected Bots

Various payload deployment
techniques are available:

Compiled Java binaries can be executed |=
with code reflection

JavaScript code can be run with WebView,
which can invoke System Java APlIs via
JavaScript Interface

P —

- L1

WebView

JS




JavaScript Interface Example

C&C Backends Infected Bots

cnc1l.malicious.com

=
3.

.

JavaScript
Payload




JavaScript Interface Example

JavaScript Interface Method Pre-Implemented in the Fake Youku Malware Binary*

@JavascriptInterface
@ public final String runCmd(String command) {

C&C Backends Infected Bots StringBuilder sb = new StringBuilder(ConstantsUI.PREF_FILE_PATH);
try {
o BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(
cncl1.malicious.com Runtime.getRuntime().exec(command).getInputStream()));

while (true) {
String readLine = bufferedReader.readLine();
if (readLine !'= null) {
sb.append(readLine);

-_———
sb.append('\n');
} else {
return sb.toString();
}
. }
Javascrlpt } catch (Exception e) {
Paonad com.iapptracker.a.c.a(e);

return ConstantsUI.PREF_FILE_PATH;

*: Malware Binary SHA-256 Hash: 5135210444ad90b3a0d5aa5bd64fb06fedae8b44d0b35a6f7e14be6128b476cf



JavaScript Interface Example

JavaScript Interface Method Pre-Implemented in the Fake Youku Malware Binary*

@JavascriptInterface
public fina aP» runCmd(String command) {
prfligBuilder sb = new StringBuilder(ConstantsUI.PREF_FILE_PATH);

C&C Backends Infected Bots -
ry
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(
ntime.getRuntime().exec(command).getInputStream()));
while (true) {
String readLine = bufferedReader.readLine();
if (readLine !'= null) {
sb.append(readLine);

cnc1l.malicious.com

-_———
sb.append('\n');
} else {
return sb.toString();
}
. }
Javascrlpt } catch (Exception e) {
Paonad com.iapptracker.a.c.a(e);

return ConstantsUI.PREF_FILE_PATH;

*: Malware Binary SHA-256 Hash: 5135210444ad90b3a0d5aa5bd64fb06fedae8b44d0b35a6f7e14be6128b476cf



public fing > runCdeString command* {
C&C Backends Infected Bots pr?0Builder sb = new StrqoburtdericonstantsUI.PREF_FILE_PATH);

cnc1l.malicious.com

JavaScript Interface Example

JavaScript Interface Method Pre-Implemented in the Fake Youku Malware Binary*

@JavascriptInterface

try {
BufferedReader bufi&sfedReader = new BufferedReader(new InputStreamReader(
#intime.getRuntime() getInputStream()));
while (true
String readLine = bufferedReader.readLine();
if (readLine != null) {
sb.append(readLine);

-_———
sb.append('\n');
} else {
return sb.toString();
}
. }
Javascrlpt } catch (Exception e) {
Payload com. iapptracker.a.c.a(e);

return ConstantsUI.PREF_FILE_PATH;

Malware operators can send JS payloads to this malware, which can invoke this
function with a command argument to be executed as a Linux Shell command
*: Malware Binary SHA-256 Hash: 5135210444ad90b3a0d5aa5bd64fb06fedae8b44d0b35a6f7e14be6128b476cf



ECHO's Pipeline: Deployment Routine Formal Modeling

An automatic forensic pipeline for remediating frontend bots by hitchhiking on their payload deployment routines



ECHO's Pipeline: Deployment Routine Formal Modeling

An automatic forensic pipeline for remediating frontend bots by hitchhiking on their payload deployment routines

o LT . .
‘ Vertex Instantiation



ECHO's Pipeline: Deployment Routine Formal Modeling

An automatic forensic pipeline for remediating frontend bots by hitchhiking on their payload deployment routines

o LT . .
‘ Vertex Instantiation

Malware
Samples

N
( Forced Execution



ECHO's Pipeline: Deployment Routine Formal Modeling

An automatic forensic pipeline for remediating frontend bots by hitchhiking on their payload deployment routines

o LT . .
‘ Vertex Instantiation

Logged API Calls (Vertices)

Fetching

)
Malware
—

Samples
&
() Forced Execution



ECHQO's Pipeline: Deployment Routine Formal Modeling

An automatic forensic pipeline for remediating frontend bots by hitchhiking on their payload deployment routines

private static HttpEntity fetchPayload(String url) {

try {
return new DefaultHttpClient().execute(ne
HttpGet(url)).getEntity();

Vertex Instantiation ot e

irn null;

Logged API Calls (Vertices)
Fetching

itputStream byteArrayOutputStream =
ayOutputStream(); 3 > feredInputStream( FileInputS

W (true) { ) i ew ZipInputStream(b);
" int read eInputStream.read(bArr);
Loadin read > 0) { _
/te utputStream.writelbie ™™V, t

STring trim =

- zipInputStream.closeEntry();
PR Butputstre ipInputStream.closeEntry()

Malware T gt o
Samples

irn trim;

.
EXeCutIon )id run)SPayload(TGStatistics tGStatistics, final String str) {

o ‘
( Forced Execution R RTRI—
[ 3 , lic void run() {

TGStatistics.access$6(TGStatistics.this).loadUrl(str);

}

};

tch (Exception e) {

Payload Execution Method



ECHQO's Pipeline: Deployment Routine Formal Modeling

An automatic forensic pipeline for remediating frontend bots by hitchhiking on their payload deployment routines

private static HttpEntity fetchPayload(String url) {

try {
. . return new DefaultHttpClient( 'J.?xecute(‘ e\ URL: Cnc1malICIouscom
Vertex Instantiation Sl e L

Logged API Calls (Vertices)
Fetching

byte by public ath ception
11 am nputStr ew
il re H g
uts utputStream =
_ 2[] bArr byte[4 ;
/ ray
’ ath));
ZipInpu ew Zip );
° ir Llelr rr);
Loadin : i
putS LA™
read); ile file i try.getName());
}
g tr -
zipIn
b\ EadPTay S
wrayOutputSt )
H 3

Malware

Samples _

ics.access$6(TGStatistics.this).loadUrl(str);

/N EXeCution static “w ,'u atistics tGStatistics, final
() Forced Execution  fumapte rumbte < new fumable) Decoding Key: “HTMLContent”
e ) {

Entry Point Method: loadUrl()

_ Runtime Context Logging SR

Payload Execution Method



ECHO's Pipeline: Deployment Routine Formal Modeling
@ Formal Model Instantiation

Fetching Logged API Calls (Vertices)

-



ECHO's Pipeline: Deployment Routine Formal Modeling

Dﬁ‘ Formal Model Instantiation

Formal Definitions (See Paper for Details)

Vertex . Annotation . 1,2 . 1,3
Vertex Type Symbol Vextex Annotations Symbols Edge-In Assertion Edge-Out Assertion
Payload Fetching Stage
. backend URL url _
Network Request Sending v {cq commaunication protocol P N/A (Root Node) vaurl #é ANv.s = Ugpk.8 A
HTTP Session s typeof(vsnk) = v’f_“
response headers h typeof(vare) = vi. A v.h.state = success N\
Request Response Handling vf,, response content/binary b yP srel = Treq v.b# A
HTTP Session 8 V.8 = Vgpe.8 v.b = Vgnk.b
Payload Loading Stage
. . . fil th ile Exist(v. A
Write Binary to File v}w ﬁkc: g?nary be v.fp# dAVD = Vb f:j":}; (=U t{I})p
. . file path bi fileEzxist(v.fp) A
s i pal P P -
Read Binary From File LS file binary b 0.FD = Vong.fP b# ¢ A v.b=vinr.b
decoding algorithm alg Vbpre = Vgpe b A Vbpse £ G A
Binary Decoding v} decoding key k
dec pre-decoding binary bpre (—-v.alg.needsKey Vv b = b
post-decoding binary pat v.k # @) pst = Usnk-
segmentation index idx b — v b A
Binary Segmentation vicg pre-decoding binary bpre prs = Taree V.bpst = Vank-b
post-decoding binary bpst v.ade # ¢
e ¥ vy 6.
Integrity Verification Uy i - v.res = true
verifv  binary b 0.b = vareb A k# o
verification result res T Tarer
Payload Execution Stage
script binary b v.h = vape.b A
Script Code Execution Voo entry point method epm script Executable(v.b) A methodCalled(v.epm)
context-crossing interfaces i methodDe fined(v.epm)
. . e binary b v.b = vareb A typeof(venk) = v, A
Binary Code Loading Ybet compiled class cls binaryCompilable(v.b) cls # ¢ Av.els = vgpp.cls
Entry Point Method Execution ve compiled class cls v.cls = vgre.cls A methodCalled(v.epm)

entry point method

epm

methodDe fined(v.epm)

Fetching

Execution

Logged API Calls (Vertices)



ECHO's Pipeline: Deployment Routine Formal Modeling

Dﬁ‘ Formal Model Instantiation

Formal Definitions (See Paper for Details)

Vertex Annotation

Symbol Vextex Annotations Symbols Edge-In Assertion!*? Edge-Out Assertion?
url
vf,,  communication p N/A (Root Node) vurl £ ¢ Av.e = vemi.s A
HTTP Session S typeof(vonk) = vi,,
response headers h Y _state = success N\
vf,, response content/binary b typeof(vore) = vpeq A " y
HTTP Session 8 V.8 = Vgpe.8 v.b = Vgnk.b

fileEzxist(v.fp) A
Venk-fp = v.fp

i i file path f HeE M
’ ! pa P T _
Read Binary From File LS file bin b -~ A v.b=vinr.b

Fetching Logged API Calls (Vertices)

T——leilh fp _ .
Vi file binary b v.fpF PAV.D= v b

decoding algorithm alg Vbpre = Vaperb A Vbpat # G A
Binary Decoding v} decoding key k
dec pre-decoding binary bpre (—-v.alg.needsKey Vv b = b
post-decoding binary bpst v.k # @) pst = Usnk-
segmentation index idx b — v b A
Binary Segmentation vicq pre-decoding binary bpre prs = Taree V.bpst = Vank-b
. post-decoding binary bpst v.ide # ¢
;lgomhn'l alg vealg £ ¢ A
i ) . 1 ey or hash k . .
Integrity Verification Vyerify binary b v.res = true
verification result res Vb =vere:b A kF S
inary b v.h = vape.b A
Voo entry poin! epm script Executable(v.b) A methodCalled(v.epm)
context-crossing interfaces 2 Me fined(v.epm)
. . . binary b v.b = vape.b N Vonk) = Vg, A
Binary Code Loading Ybet compiled class cls binaryCompilable(v.b) cls # ¢ .
Entry Point Method Execution ve compiled class cls v.cls = vgre.cls A methodCalled(v.epm)

exe entry point method epm methodDe fined(v.epm)

Execution




ECHO's Pipeline: Deployment Routine Formal Modeling

Dﬁ‘ Formal Model Instantiation

Generate edges and build the graph with payload

Formal Definitions (See Paper for Details) deployment-related vertices

Vertex . Annotation
Vextex Annotations

Edge-In Assertion!*? Edge-Out Assertion’'?

Symbol Symbols
url
va:cq o BT » N/A (Root Node) vaurl #é ANv.s = Ugpk.8 A
HTTP Session S typeof(vonk) = vi,,
response headers h Y _state = success N\
vf,, response content/binary b typeof(vore) = vpeq A " y
HTTP Session 8 V.8 = Vgpe.8 v.b = Vgnk.b
Payload Loading — Fetchin Logged API Calls (Vertices)
. o fp v.fp# A VD= vared fileEzxist(v.fp) A g
fw file binary b : : srer Vank.fp = v.fp
ing - 1 file path fp JUucs M -
Read Binary From File Uy, file binary b 0. fD = Vo IP A v.b=vinr.b
decoding algorithm alg Vbpre = Vgpe b A Vbpse # & A
Binary Decoding v} decoding key k
dec pre-decoding binary bpre (—-v.alg.needsKey Vv b, — b .
post-decoding binary pat vk # ) pst = Vonk- Loadin g
segmentation index idx - bA
Binary Segmentation vicq pre-decoding binary bpre Upre = Usre. V.bpst = Vani-b
. post-decoding binary bpst v.ide # ¢ D
ata Dependency (Edges)
algorithm alg p y g
) v.alg # ¢ A
i ) . 1 key or hash k _
Integrity Verification verify bin: b v.res = true
ay- vh=vgpeb A k#E @
verification result res Loa d i n g
inary b v.h = vape.b A
Voo entry poin! epm script Executable(v.b) A methodCalled(v.epm)

context-crossing interfaces

i thod De fined(v.epm)

. . e binary b v.b = Vape b A Vonk) = Vi, A
Binary Code Loading Ybel compiled class cls binaryCompilable(v.b) cls # ¢ "
. . e compiled class cls v.els = Vape.cls A .
Entry Point Method Execution vl entry point method epm methodDe fined(v.epm) methodCalled(v.epm) EXGC utl O n




ECHO's Pipeline: Deployment Routine Formal Modeling

D‘_E| Formal Model Instantiation

Formal Definitions (See Paper for Details)

Vertex . Annotation . 1,2 . 1,3
Vertex Type Symbol Vextex Annotations Symbols Edge-In Assertion Edge-Out Assertion
Payload Fetching Stage
. backend URL url —
Network Request Sending v {cq commaunication protocol P N/A (Root Node) vaurl #é ANv.s = Ugpk.8 A
HTTP Session s typeof (vank) = v,
response headers h . 7 y=vl A v.h.state = success N\
Request Response Handling vf,, response content/binary b YpeoJVare) = Vreq v.b# A
HTTP Session 8 V.8 = Vgpe.8 v.b = vgpi.b
Payload Loading Stage
C . 1 file path fp . fileEzxist(v.fp) A
Write Binary to File Vi file binary b v.fp# dAV.D=vgpc.b Vonk fp = v.fp
. . ! file path fp fileExist(v.fp) A _
Read Binary From File LS file binary b 0.FD = Vong.fP b# ¢ A v.b=vinr.b
decoding algorithm al
.mg kegy kg V.bpre = Vgpe.b A v.bpe £ PN
Binary Decoding vh,. S
dec pre-decoding binary bpre (—-v.alg.needsKey Vv b, — b
post-decoding binary pat v.k # @) pst = Vank:
segmentation index idx - bA
Binary Segmentation vicg pre-decoding binary bpre Opre = Vsre- V.bpst = Vank.b
post-decoding binary bpst v.ade # ¢
algorithm alg
o . key or hath k valg # 6 A
Integrity Verification Uy i - v.res = true
verifv  binary b 0.b = vareb A k# o
verification result res T Tarer
Payload Execution Stage
script binary b v.h = vape.b A
Script Code Execution Voo entry point method epm script Executable(v.b) A methodCalled(v.epm)
context-crossing interfaces i methodDe fined(v.epm)
. . e binary b v.b = vareb A typeof(venk) = v, A
Binary Code Loading Ybet compiled class cls binaryCompilable(v.b) cls # ¢ Av.els = vgpp.cls
Entry Point Method Execution vl compiled class cls v.cls = vgre.cls A methodCalled(v.epm)

entry point method

epm

methodDe fined(v.epm)

Generate edges and build the graph with payload
deployment-related vertices

Remove unnecessary edges with pre-defined
assertion based on runtime context

Fetching Logged API Calls (Vertices)

Loading

Data Dependency (Edges)

Loading

Execution



ECHO's Pipeline: Deployment Routine Formal Modeling

I]‘_5| Formal Model Instantiation

Formal Definitions (See Paper for Details)

Vertex Type S‘;‘:nngl Vextex Annotations A;;;t:;ll(;n Edge-In Assertion™? Edge-Out Assertion?
Payload Fetching Stage
. backend URL url _
Network Request Sending v{e " communication protocol P N/A (Root Node) vurl # ¢ Av.s = venk.s A
HTTP Session s typeof(vank) = vi,,
response headers h : ( y=vl A v.h.state = success N\
Request Response Handling v{u response content/binary b YpeoJVare) = Vreq v.b# o A
HTTP Session s V.8 = Vgpe 8 v.b = vgni.b
orlond e f fil (v.fp)

. . . 1 file path P _ ileExist(v.fp) A
Write Binary to File Vo file binary b v.fp# dAV.D=vg.c.b Uenr.fp = v.fp
Read Binary From File v, g:: g?:law &” f :r[eflf:z:fg;{ _’})p" b#é A vb=venp.b

. _ ‘ "°°°d| .ﬁi ;“‘;’m‘hm “,‘cg Vbpre = Vare.b A Vibpae £ b A
Binary Decoding Vdec pre-decoding binary bpre (—v.alg.needsKey VvV b, = b
post-decoding binary bpse v.k # @) pst = Vank:
segmentation index idz b — e b A
Binary Segmentation vhey pre-decoding binary bpre Opre = Vsre: V.bpst = Vank-b
post-decoding binary bpst v.ide # ¢
ilgomhm alg v.alg £ ¢ A
" S 1 ey or hash k _
Integrity Verification Vyerify binary b v.res = true
verification result res Vb =vere:b A kF S
Payload Execution Stage
seript binary b v.b = vgpe.b A
Script Code Execution Voo entry point method epm script Executable(v.b) A methodCalled(v.epm)
context-crossing interfaces i methodDe fined(v.epm)
. Loadi . binary b v.b = vape.b A typeof(Venk) = v, A
Binary Code ing Ybet compiled class cls binaryCompilable(v.b) cls # ¢ Av.els = vgpp.cls
Entry Point Method Execution vl,. :z:';l;ciln‘:l:::m ecpf;t me. : };‘C’?Di;i’;'; Z;f(té\pm) methodCalled(v.epm)

Generate edges and build the graph with payload
deployment-related vertices

Remove unnecessary edges with pre-defined
assertion based on runtime context

Fetching Logged API Calls (Vertices)

Data Dependency (Edges)




ECHO'’s Pipeline: In-Vivo Influence Analysis

With payload deployment routines, Peter can send a payload to execute on infected devices. But what can it do?



ECHO's Pipeline: In-Vivo Influence Analysis

With payload deployment routines, Peter can send a payload to execute on infected devices. But what can it do?

In-Vivo Influence Analysis

Loading

Loading

Execution




ECHO's Pipeline: In-Vivo Influence Analysis

With payload deployment routines, Peter can send a payload to execute on infected devices. But what can it do?

In-Vivo Influence Analysis

Loading

Loading

Execution

@

Identify the capabilities that the remediation payload
can reach to influence the frontend malware



ECHO's Pipeline: In-Vivo Influence Analysis

With payload deployment routines, Peter can send a payload to execute on infected devices. But what can it do?

In-Vivo Influence Analysis @ Identify the capabilities that the remediation payload

can reach to influence the frontend malware
Fetching

Command Execution

Application Termination ‘

Intent Control

: Popup Toast Message
Loading

Load Visible Webpage

Execution



ECHO's Pipeline: In-Vivo Influence Analysis

With payload deployment routines, Peter can send a payload to execute on infected devices. But what can it do?

In-Vivo Influence Analysis @ Identify the capabilities that the remediation payload

can reach to influence the frontend malware
Fetching

Command Execution

Remove or Interrupt
bot’s execution

Application Termination

Intent Control

: Popup Toast Message
Loading

Load Visible Webpage

Execution

Notify infected
devices’ owners




ECHO's Pipeline: Remediation Payload Construction

With identified in-vivo capabilities, ECHO generates remediation payloads templates.



ECHO's Pipeline: Remediation Payload Construction

With identified in-vivo capabilities, ECHO generates remediation payloads templates.

Remediation Payload Construction

C dE ti ifyi
ommand Execution \ Notlfy infected

devices’ owners
Application Termination

Intent Control

Popup Toast Message
Remove or Interrupt

bot’s execution

Load Visible Webpage



ECHO's Pipeline: Remediation Payload Construction

With identified in-vivo capabilities, ECHO generates remediation payloads templates.

Remediation Payload Construction

ECHO maps reachable in-vivo influence

to remediation capabilities.

Command Execution

Application Termination

Intent Control

Popup Toast Message

Load Visible Webpage

\ Notify infected

devices’ owners

Remove or Interrupt
bot’s execution

\

1 template = function(){

// Variable to be updated by incident responders

var urlToNotifyUser = "<notification_to_users>";

var shouldNotifyUser = true;

var shouldUninstall = true;

// ECHO-generated payload deployment routine info

var packageName = "tv.huohua.android.ocher™;

// context-switching interface info

var jsiObjectMame = "RequestInfoControllerBridge";

var jsiExecApiName = "runCmd";

// ECHO-generated code execution template

// execute Linux shell command via context-swtiching interface
if(shouldNotifyUser){ //execute code to notify end user

var cmdNotifyUser = "am start -a android.intent.action.VIEW

-d " + urlToNotifyUser;
eval(jsiObjectName + '.' + jsiExecApiName)(cmdNotifyUser)
if(shouldUninstall){ //execute code to uninstall app

var cmdDelete = "am start -a android.intent.action.DELETE -d
package:" + packageName;
eval(jsiObjectName + '.°'
}

)i

+ jsiExecApiName)(cmdDelete)




ECHO's Pipeline: Remediation Payload Construction

With identified in-vivo capabilities, ECHO generates remediation payloads templates.

Remediation Payload Construction

Additionally, ECHO provides payload deployment
m routines for incident responders to package, test,
= ' and deploy it for frontend botnet takedown

ECHO maps reachable in-vivo influence
to remediation capabilities.

C dE ti ifyi
ommand Execution \ Notlfy infected

1 template = function(){
devices’ owners 2 // Variable to be updated by incident responders
. . . . 3 var urlToNotifyUser = "<notification_to_users>";
Application Termination 4 var shouldNotifyUser = true;
S var shouldUninstall = true;
6 // ECHO-generated payload deployment routine info
7 var packageName = "tv.huohua.android.ocher™;
8 // context-switching interface info
Intent CO”trOl 9 var jsiObjectMame = "RequestInfoControllerBridge";
var jsiExecApiName = "runCmd";

// ECHO-generated code execution template
// execute Linux shell command via context-swtiching interface
if(shouldNotifyUser){ //execute code to notify end user

Popup Toast Message

var cmdNotifyUser = "am start -a android.intent.action.VIEW
Remove or Interrupt "d " + urlToNotifybser;
b ’ . 16 eval(jsiObjectName + '.' + jsiExecApiName)(cmdNotifyUser)
17 }
.. Ot S eXECUtIon \18 if(shouldUninstall){ //execute code to uninstall app
Load VISIbIe Webpage » var cmdDelete = "am start -a android.intent.action.DELETE -d
20 package:" + packageName;
21 eval(jsiObjectName + '.' + jsiExecApiName)(cmdDelete)

23 Ok




To This End, Peter

C&C Backends

cnc1.malicious.com

1 template = function(){
2 // Variable to be upd

d by incident responders

23 H):

-d

3 var urlToNotifyUser = notification_to_user

a var shouldNotifyUser = true;

5 var shouldUninstall = true;

3 // ECHO-generated payload deployment routine info

7 var packageName = "tv.huohua.android.ocher™;

8 // context-switching interface info

9 var jsiObjectName = "RequestInfoControllerBridge";

16 var jsiExecApiName "runCmd";

11 // ECHO-generated ¢ execution t

12 ute Linux sh tiching interface
13 if(shouldNotifyUser){ // t ) y end user

14 var cmdNotifyUser = "am start -a android.intent.action.VIEW
15 -d " + urlToNotifyUser;

16 eval(jsiObjectName + '.' + jsiExecApiName)(cmdNotifyUser)
17

18 if(shouldUninstall){ //execute code to uninstall app

19 var cmdDelete = "am start -a android.intent.action.DELETE
20 package:™ + packageName;

21 eval(jsiObjectName + '.' + jsiExecApiName)(cmdDelete)

22

 -—=-—=-=-=-=--

Infected Bots

e ——

an Remediate

)

Bots With ECHO!

As a result, ECHO reveals the C&C backend

hosting the remote payload and generates
the remediation payload template



To This End, Peter Can Remediate Bots With ECHO!

C&C Backends

cnc1.malicious.com

Infected Bots

As a result, ECHO reveals the C&C backend

hosting the remote payload and generates
the remediation payload template

Peter can test, package, and deploy the
remediation payload fast and confidently!



To This End, Peter Can Remediate Bots With ECHO!

C&C Backends

cnc1.malicious.com

Infected Bots

As a result, ECHO reveals the C&C backend

hosting the remote payload and generates
the remediation payload template

Peter can test, package, and deploy the
remediation payload fast and confidently!



ECHO's Experiment Setup & Takedown Evaluation



ECHO’s Experiment Setup & Takedown Evaluation @

Netskope, cloud and edge security provider, aims to
identify & proactively mitigate malware attacks




ECHO's Experiment Setup & Takedown Evaluation

Our Collaborator!

ECHO is evaluated with 702 malware samples across 22 malware families \p

Malware may execute either remote Java binaries or JavaScript payloads Netskope, cloud and edge security provider, aims to
identify & proactively mitigate malware attacks

Java Bytecode Execution Routines JavaScript Payload Execution Routines
Family # Samples Takedown (%)

# Routines  # Samples  # Backends Capabilities ~ # Routines  # Samples  # Backends
hiddenapp 113 2 109 54 - 0 0

o

109 (96.46%)

shedun 94 9 67 6 0 0 0 67 (71.28%)

fakeadblocker 69 2 68 39 0 0 0 68 (98.55%)

skymobi 66 9 56 4 - 0 0 0 56 (84.85%)

graware 48 3 30 11 Toast Msg, 2 19 2 32 (66.67%)
Intent

spyagent 46 0 0 0 Toast Msg, 2 31 1 31 (67.39%)
Intent

youku 7 0 0 0 Command 1 5 1 5(71.43%)

Execute

Total 702 18 465 136 - 23 75 22 523 (74.50%)




ECHO's Experiment Setup & Takedown Evaluation

ECHO is evaluated with 702 malware samples across 22 malware families

Malware may execute either remote Java binaries or JavaScript payloads Netskope, cloud and edge security provider, aims to
identify & proactively mitigate malware attacks

523 out of 702 (7450%) Java Bytecode Execution Routines JavaScript Payload Execution Routines
] Family # Samples Takedown (%)
frontend bots remediated #Routines  # Samples  # Backends Capabilities ~ #Routines  # Samples  # Backends
hiddenapp 113 2 109 54 - 0 0 0 109 (96.46%)
shedun 94 9 67 6 0 0 0 67 (71.28%)
fakeadblocker 69 2 68 39 0 0 0 68 (98.55%)
skymobi 66 9 56 4 - 0 0 0 56 (84.85%)
graware 48 3 30 11 Toast Msg, 2 19 2 32 (66.67%)
Intent
spyagent 46 0 0 0 Toast Msg, 2 31 1 31 (67.39%)
Intent
youku 7 0 0 0 Command 1 5 1 5(71.43%)
Execute

Total 702 18 465 136 - 23 75 22 523 (74.50%)




ECHO's Experiment Setup & Takedown Evaluation

. . - K,:»J*f}f} p
ECHO is evaluated with 702 malware samples across 22 malware families {i\
Malware may execute either remote Java binaries or JavaScript payloads Netskope, cloud and edge security provider, aims to

identify & proactively mitigate malware attacks

0 Java Bytecode Execution Routines JavaScript Payload Execution Routines
523 out of 702 (74.50% yt pt Pay
] Family # Samples Takedown (%)
frontend bots remediated #Routines  # Samples  # Backends Capabilities ~ #Routines  # Samples  # Backends
hiddenapp 113 2 109 54 - 0 0 0 109 (96.46%)
465 Wlth Java byteCOde shedun 94 9 67 6 0 0 0 67 (71.28%)
. . fakeadblocker 69 2 68 39 0 0 0 68 (98.55%
execution routine ( )
skymobi 66 9 56 4 - 0 0 0 56 (84.85%)
graware 48 3 30 11 Toast Msg, 2 19 2 32 (66.67%)
Intent
spyagent 46 0 0 0 Toast Msg, 2 31 1 31 (67.39%)
Intent
youku 7 0 0 0 Command 1 5 1 5(71.43%)
Execute

Total 702 18 465 136 - 23 75 22 523 (74.50%)




ECHO's Experiment Setup & Takedown Evaluation

ECHO is evaluated with 702 malware samples across 22 malware families

Malware may execute either remote Java binaries or JavaScript payloads Netskope, cloud and edge security provider, aims to
identify & proactively mitigate malware attacks

523 out of 702 (7450%) Java Bytecode Execution Routines JavaScript Payload Execution Routines
] Family # Samples Takedown (%)
frontend bots remediated #Routines  # Samples  # Backends Capabilities ~ #Routines  # Samples  # Backends
hiddenapp 113 2 109 54 - 0 0 0 109 (96.46%)
465 W|th Java byteCOde shedun 94 9 67 6 - 0 0 0 67 (71.28%)
execution routine fakeadblocker 69 2 68 39 - 0 0 0 68 (98.55%)
skymobi 66 9 56 4 - 0 0 0 56 (84.85%)
. . graware 48 3 30 11 Toast Msg, 2 19 2 32 (66.67%)
75 with JavaScript payload Intent
execution routine spyagent 46 0 0 0 Toast Msg, 2 31 1 31(67.39%)
Intent
youku 7 0 0 0 Command 1 5 1 5(71.43%)
Execute

Total 702 18 465 136 - 23 75 22 523 (74.50%)




ECHO's Experiment Setup & Takedown Evaluation

ECHO is evaluated with 702 malware samples across 22 malware families ‘\p

Malware may execute either remote Java binaries or JavaScript payloads Netskope, cloud and edge security provider, aims to
identify & proactively mitigate malware attacks

523 out of 702 (7450%) Java Bytecode Execution Routines JavaScript Payload Execution Routines
] Family # Samples Takedown (%)
frontend bots remediated #Routines  # Samples  # Backends Capabilities ~ #Routines  # Samples  # Backends
hiddenapp 113 2 109 54 - 0 0 0 109 (96.46%)
465 W|th Java byteCOde shedun 94 9 67 6 0 0 0 67 (71.28%)
execution routine fakeadblocker 69 2 68 39 0 0 0 68 (98.55%)
skymobi 66 9 56 4 - 0 0 0 56 (84.85%)
. . graware 48 3 30 11 Toast Msg, 2 19 2 32 (66.67%)
75 with JavaScript payload Intent
execution routine spyagent 46 0 0 0 Toast Msg, 2 31 1 31(67.39%)
Intent
) ] youku 7 0 0 0 Command 1 5 1 5(71.43%)
Routines enable different Execute

capability for remediation

Total 702 18 465 136 - 23 75 22 523 (74.50%)




ECHQO’s Backend Measurement

Among 158 identified payload-hosting backends, this table lists the top 15 backends by the number of connected samples

Backend IP # Hosted # Samples # Routines # Mal.\A.lare Ownership
Payload Families

**jaocft.com  *.*.229.90 1 77 3 2 DXTL-HK
**shui.com **.7.123 1 47 5 3 HK Megaplayer
**9g.com *.*.226.35 1 17 1 1 ChinaNet
**xapt.com *.*.125.182 4 13 1 1 Hostinger
**|lion.pro *.*.36.203 1 7 1 2 Cloudflare
**jone.club *.*.48.13 1 6 1 2 Cloudflare
**ngba.info *.%.24.228 1 6 1 2 Cloudflare
**neeu.info *.*.4.129 1 6 1 2 Cloudflare
**kets.pro *.*.59.132 1 6 1 2 Cloudflare
**ceme.info  *.*.58.122 1 6 1 2 Cloudflare
**sme.info * *.58.164 1 6 1 2 Cloudflare
**ker.cn *.*.33.27 1 5 1 1 China Telecom




ECHQO’s Backend Measurement

Among 158 identified payload-hosting backends, this table lists the top 15 backends by the number of connected samples

Backend IP # Hosted # Samples # Routines # Mal.\A.lare Ownership
. . Payload Families
Single payload is fetched by 77 samples **jaocft.com  *.*.229.90 1 77 3 2 DXTL-HK
across 2 families, with 3 routines — —
shui.com *.7.123 1 47 5 3 HK Megaplayer
**9g.com *.*.226.35 1 17 1 1 ChinaNet
**xapt.com *.*.125.182 4 13 1 1 Hostinger
**|lion.pro *.*.36.203 1 7 1 2 Cloudflare
**jone.club *.*.48.13 1 6 1 2 Cloudflare
**ngba.info *.%.24.228 1 6 1 2 Cloudflare
**neeu.info *.*.4.129 1 6 1 2 Cloudflare
**kets.pro *.*.59.132 1 6 1 2 Cloudflare
**ceme.info  *.*.58.122 1 6 1 2 Cloudflare
**sme.info * *.58.164 1 6 1 2 Cloudflare
**ker.cn *.*.33.27 1 5 1 1 China Telecom




ECHQO’s Backend Measurement

Among 158 identified payload-hosting backends, this table lists the top 15 backends by the number of connected samples

Backend IP # Hosted # Samples # Routines # Mal.\A.lare Ownership
Singl load is fetched by 77 | Payload Families
I m
INgle Pay oa” > e_c €a by , >amples **jaocft.com  *.*.229.90 1 77 3 2 DXTL-HK
across 2 families, with 3 routines _
**shui.com **.7.123 1 47 5 3 HK Megaplayer
Withi Q| Jf b 43 b **gg.com * *.226.35 1 17 1 1 ChinaNet
Ithin on r net ots
{ _O _e oudtiare subnet, **xapt.com  *.*.125.182 4 13 1 1 Hostinger
fetch similar payloads from 7 backends :
**|lion.pro *.*.36.203 1 7 1 2 Cloudflare
**jone.club *.*.48.13 1 6 1 2 Cloudflare
**ngba.info *.%.24.228 1 6 1 2 Cloudflare
**neeu.info **.4.129 1 6 1 2 Cloudflare
**kets.pro *.*.59.132 1 6 1 2 Cloudflare
**ceme.info * *.58.122 1 6 1 2 Cloudflare
**sme.info * *.58.164 1 6 1 2 Cloudflare
**ker.cn * *.33.27 1 5 1 1 China Telecom




ECHQO’s Backend Measurement

Among 158 identified payload-hosting backends, this table lists the top 15 backends by the number of connected samples

Backend IP # Hosted # Samples # Routines # Mal.\A.lare Ownership
Singl load is fetched by 77 | Payload Families
INgIE pay oa” 'S e_c €a by . >amples **jaocft.com  *.*.229.90 1 77 3 2 DXTL-HK
across 2 families, with 3 routines _
**shui.com **.7.123 1 47 5 3 HK Megaplayer
Withi Cloudfl b 43 b **9g.com *.*.226.35 1 17 1 1 ChinaNet
It |n-or-1e oudflare subnet, ots **xapt.com *.%.125.182 4 13 1 1 Hostinger
fetch similar payloads from 7 backends _
**|lion.pro *.*.36.203 1 7 1 2 Cloudflare
Ben . i **jone.club *.%.48.13 1 6 1 2 Cloudflare
enign service providaer, .COm, was
b gdt h tp lici » 44 | ’d **ngba.info  *.*.24.228 1 6 1 2 Cloudflare
malici S
abUSEA TO NOSL MATICIOUs payloa **neeu.info  *.*.4.129 1 6 1 2 Cloudflare
**kets.pro *.*.59.132 1 6 1 2 Cloudflare
**ceme.info  *.*.58.122 1 6 1 2 Cloudflare
**sme.info * *.58.164 1 6 1 2 Cloudflare
**ker.cn * *.33.27 1 5 1 1 China Telecom




Payload Routine Identification Findings

We grouped deployment routines by their implementation

Type Deployment Routine # Samples  # Families # Routines
JSON — APK — Reflection 297 5 3
APK — MD5 Verify — Intent 107 3 9
Java APK — Reflection 30 3 2
Bytecode
Execution Zip — APK — Reflection 17 1 2
Routines
DEX — Reflection 13 1 1
Data — XOR — DEX — Reflection 1 1 1
JS Payload Zip — JSON — HTML — WebView 5 1 1
Execution i
Routines HTML — WebView 70 19 22
Total 8 Groups of Routines 523 22 41




Payload Routine Identification Findings

We grouped deployment routines by their implementation

297 samples from 5 families use JSON to delivery Type Deployment Routine # Samples  # Families # Routines
APK binaries JSON — APK — Reflection 297 5 3
APK — MD5 Verify — Intent 107 3 9
Java APK — Reflection 30 3 2
Bytecode
Execution  zip — APK — Reflection 17 L 2
Routines
DEX — Reflection 13 1 1
Data — XOR — DEX — Reflection 1 1 1
JS Payload Zip — JSON — HTML — WebView 5 1 1
Execution .
Routines HTML — WebView 70 19 29

Total 8 Groups of Routines 923 22 41




Payload Routine Identification Findings

We grouped deployment routines by their implementation

297 samples from 5 families use JSON to delivery Type Deployment Routine # Samples  # Families # Routines
APK binari
binaries JSON — APK — Reflection 297 5 3
9 Java bytecode routines implement MD5 code APK — MDS Verify — Intent 107 3 ?
verification Java APK — Reflection 30 3 2
Bytecode
Execution Zip — APK — Reflection 17 1 2
Routines
DEX — Reflection 13 1 1
Data — XOR — DEX — Reflection 1 1 1
JSPayload  ZiP—JSON — HTML — WebView 5 1 1
Execution i
Routines HTML — WebView 70 19 22

Total 8 Groups of Routines 923 22 41




Payload Routine Identification Findings

We grouped deployment routines by their implementation

297 samples from 5 families use JSON to delivery Type Deployment Routine # Samples  # Families # Routines
APK binaries JSON — APK — Reflection 297 5 3
9 Java bytecode routines implement MD5 code APK — MDS Verify — Intent 107 3 2
verification Java APK — Reflection 30 3 2
Bytecode
. _ Execution  Zip — APK — Reflection 17 L 2
1 Java bytecode routine uses XOR for encoding Routines
DEX — Reflection 13 1 1
Data — XOR — DEX — Reflection 1 1 1
JSPayload  ZiP—JSON — HTML — WebView 5 1 1
Execution i
Routines  HTML — WebView 70 19 22

Total 8 Groups of Routines 923 22 41




Payload Routine Identification Findings

We grouped deployment routines by their implementation

297 samples from 5 families use JSON to delivery Type Deployment Routine # Samples  # Families # Routines
inari
APK binaries JSON — APK — Reflection 297 5 3
9 Java bytecode routines implement MD5 code APK — MDS Verify — Intent 107 3 2
verification Java APK — Reflection 30 3 2
Bytecode
. _ Execution  zip — APK — Reflection 17 L 2
1 Java bytecode routine uses XOR for encoding Routines
DEX — Reflection 13 1 1
5 samples use a complex encoding sequence for Data — XOR — DEX — Reflection 1 1 1
HTML payload - :
Execution -
Routines  HTML — WebView 70 19 22

Total 8 Groups of Routines 923 22 41




Payload Routine Identification Findings

We grouped deployment routines by their implementation

297 samples from 5 families use JSON to delivery Type Deployment Routine # Samples  # Families # Routines
inari
APK binaries JSON — APK — Reflection 297 5 3
9 Java bytecode routines implement MD5 code APK — MDS Verify — Intent 107 3 2
verification Java APK —> Reflection 30 3 2
Bytecode
. _ Execution  zip — APK — Reflection 17 L 2
1 Java bytecode routine uses XOR for encoding Routines
DEX — Reflection 13 1 1
5 samples use a complex encoding sequence for Data — XOR — DEX — Reflection 1 1 1
HTML payload : :
. ) . Execution i
These are all the routines found in our Evaluation. Routines ~ HTML— WebView 70 19 22

ECH n handle more advanced routines (see
CHO ca d ( Total 8 Groups of Routines 523 22 41

details in the paper)



Much More in the Paper!
Many thanks!

&

; Full running example with demo video, and

= two more case studies ‘\p

@ ECHO'’s routine modeling implementation

. . Netskope
ﬁ Countermeasures against adversarial attackers

Hitchhiking Vaccine: Enhancing Botnet Remediation
With Remote Code Deployment Reuse

Zhang, R., Yao, M., Xu, H., Alrawi, O., Park, J., Saltaformaggio, B.
NDSS 2025

Artifact
Evaluated

O https://github.com/CyFI-Lab-Public/ECHO.git ANDss

Available

° https://www.youtube.com/@CyFILab Functional



https://github.com/CyFI-Lab-Public
https://github.com/CyFI-Lab-Public/ECHO.git
https://www.youtube.com/@CyFIL
https://www.youtube.com/@CyFILab

Thank you!
Questions?

Georgia [0! Cyber Forensics

Runze Zhang Tech
runze.zhang@gatech.edu
https://runzezhang.me

Innovation Lab



mailto:haichuanxu@gatech.edu
https://haichuanxuken.github.io/

Appendix



ECHO Toward Adversarial Attackers

If attackers encodes the payload

ECHO helps Peter to identify the routine used #
for decoding and thus it can be reversed )

sl Base64,
Y XOR encoding

before remediation payload deployment

If attacker verify the payload with hash

ECHO identifies additional signature
hosting backend that Peter can sinkhole

If attackers sign the payload with private key N

In one way, ECHO still identifies the C&C backends,
thus C&C blocking /sinkholing still appliable

Besides, if Peter can collect the key in any way, Peter can still take down the bot with GLEAN

Infected Bots

84



Who is Peter

In the real-world setup, Peter, can usually be incident
responders from legal authorities

Avast, authorized by French Police, remediated the botnet
via exactly the same idea [1]

After sinkholing the C&C backend and updating the
payload, the bots connected to this sinkhole server
and pull the payload with disinfection command

[1]: https://blog.avast.com/emotet-botnet-takedown-avast

85



