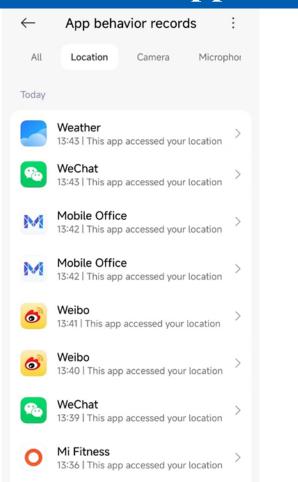
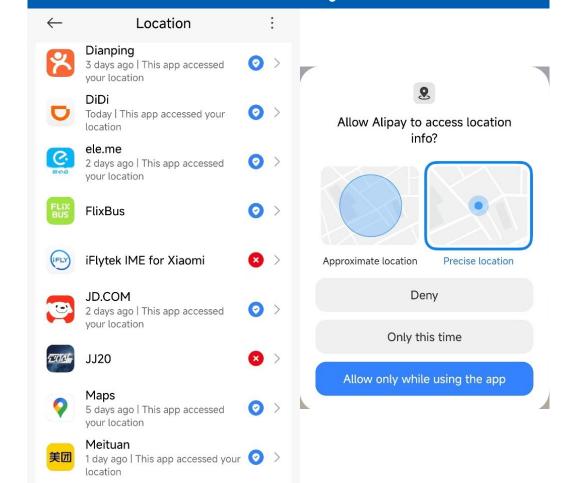
What's Done Is Not What's Claimed: Detecting and Interpreting Inconsistencies in App Behaviors

Chang Yue^{1,2}, Kai Chen^{1,2,*}, Zhixiu Guo^{1,2}, Jun Dai³, Xiaoyan Sun³ and Yi Yang^{1,2}

¹Institute of Information Engineering, Chinese Academy of Sciences, China
²School of Cyber Security, University of Chinese Academy of Sciences, China
³Department of Computer Science, Worcester Polytechnic Institute, USA
{yuechang,chenkai,yangyi}@iie.ac.cn, gzhixiu@gmail.com, {jdai,xsun7}@wpi.edu



OVERVIEW


- Background
- Motivation
- Method
- Evaluation
- Findings
- Summary

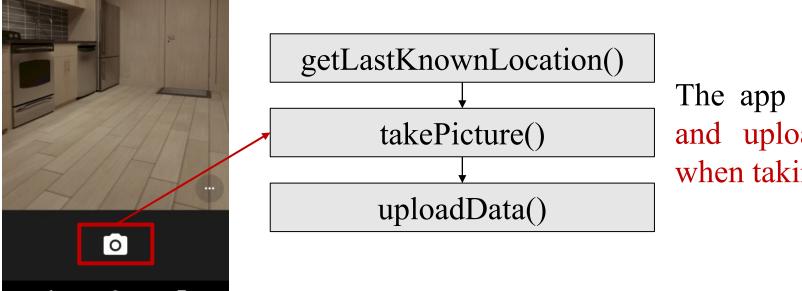
BACKGROUND

Numerous privacy access in mobile apps

Permission management in mobile system

BACKGROUND

• **Privacy leakage** remains one of the most critical issues


Comparison Between 2016-2024						
OWASP-2016	OWASP-2024-Release	Comparison Between 2016-2024				
M1: Improper Platform Usage	M1: Improper Credential Usage	New				
M2: Insecure Data Storage	M2: Inadequate Supply Chain Security	New				
M3: Insecure Communication	M3: Insecure Authentication / Authorization	Merged M4&M6 to M3				
M4: Insecure Authentication	M4: Insufficient Input/Output Validation	New				
M5: Insufficient Cryptography	M5: Insecure Communication	Moved from M3 to M5				
M6: Insecure Authorization	M6: Inadequate Privacy Controls	New				
M7: Client Code Quality	M7: Insufficient Binary Protections	Merged M8&M9 to M7				
M8: Code Tampering	M8: Security Misconfiguration	Rewording [M10]				
M9: Reverse Engineering	M9: Insecure Data Storage	Moved from M2 to M9				
M10: Extraneous Functionality	M10: Insufficient Cryptography	Moved from M5 to M10				

BACKGROUND

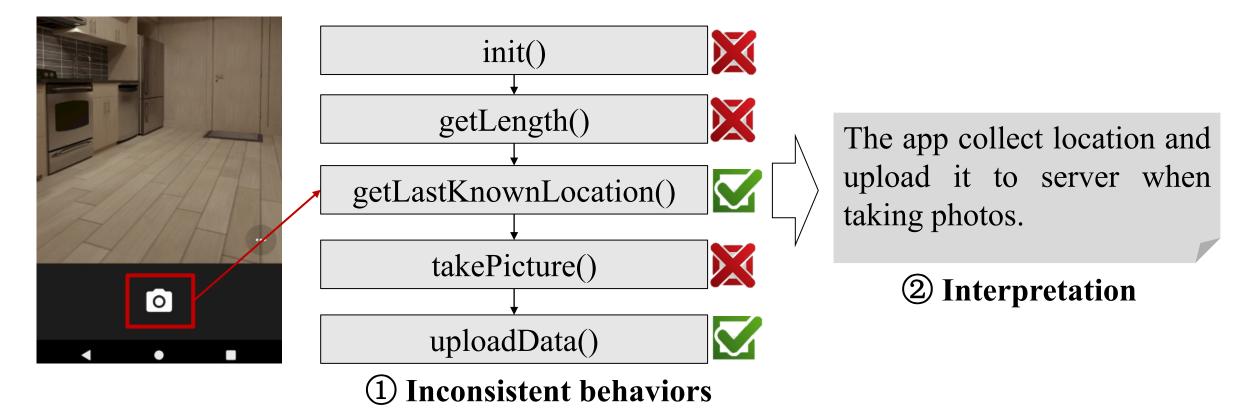
>Users feel difficult to understand why each permission is required

> Apps may perform sensitive behaviors without users' consent

The app collects location and upload it to server when taking photos

MOTIVATION

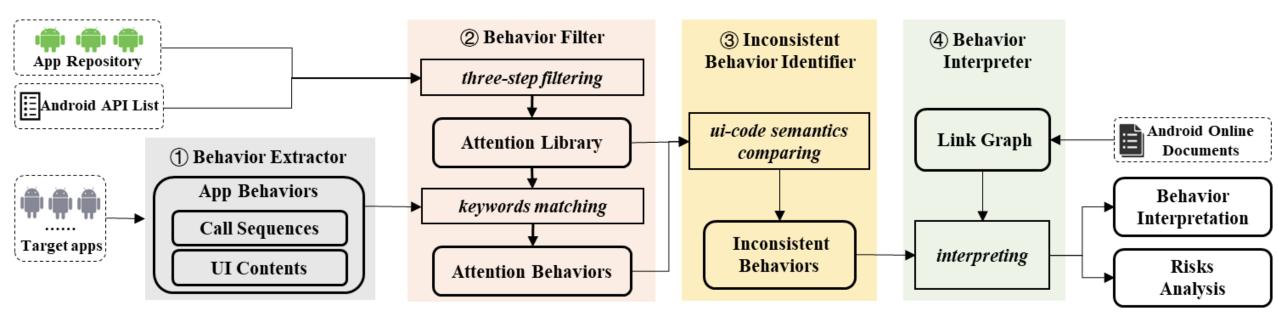
Research questions:


- Do users know the behaviors the app is performing?
 - Does the app notify users about the behaviors it is performing?
 - Does the app notify users about its behaviors consistently with the behaviors it actually performs?

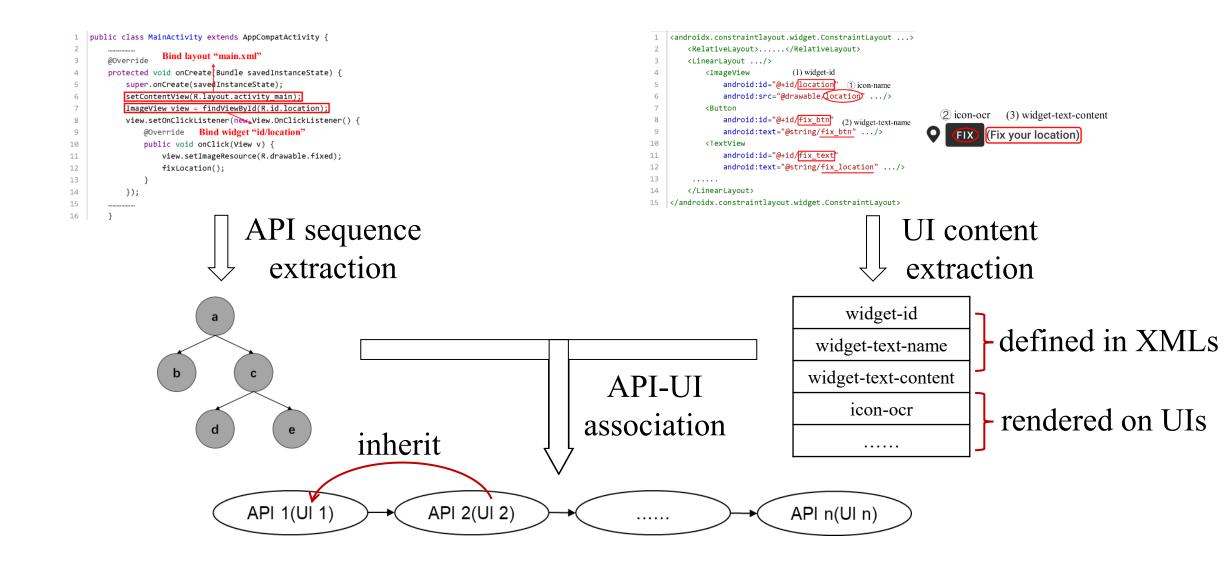
Goals:

• Help app users better understand app behaviors so that they can independently assess the associated risks.

MOTIVATION

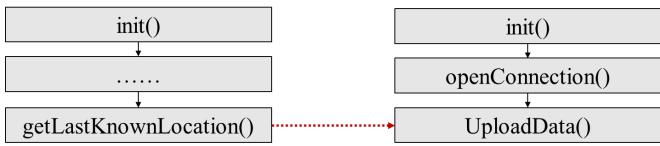

- **Inconsistent behaviors.** UI elements do not inform users about the relevant information regarding the behavior being performed.
- Interpretation. Present inconsistent behaviors in user-friendly natural language.

METHOD


Inconsistent behaviors extraction based on static analysis

Behaviors interpretation using LLMs

Framework of InconPreter

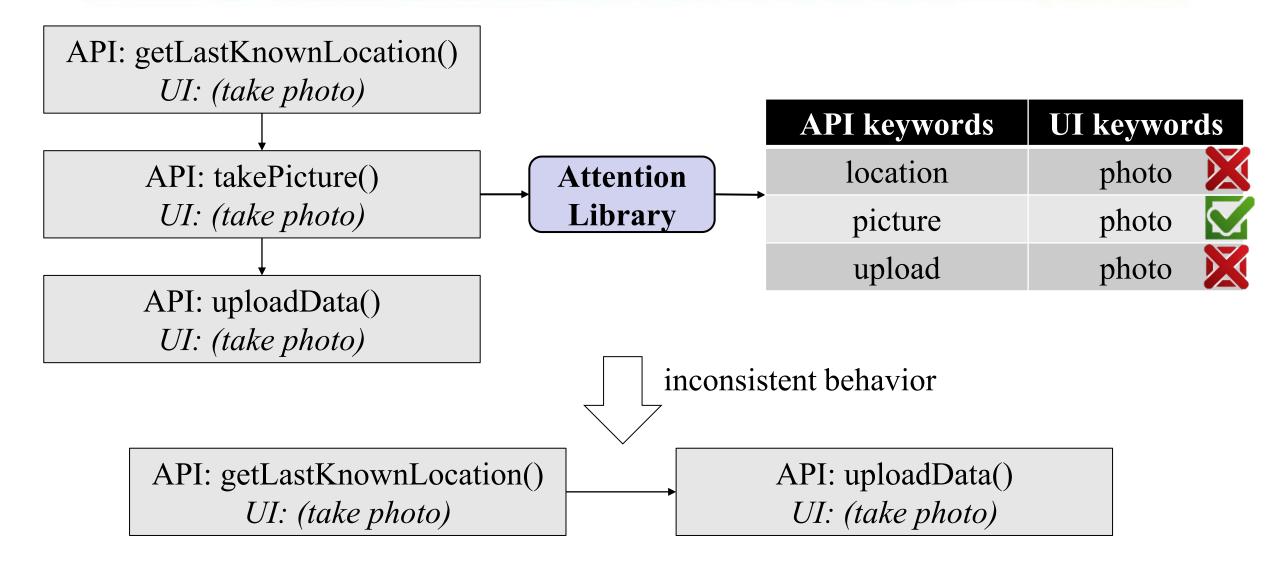

1 Behavior Extraction

1 Behavior Extraction

To ensure the completeness of behaviors:

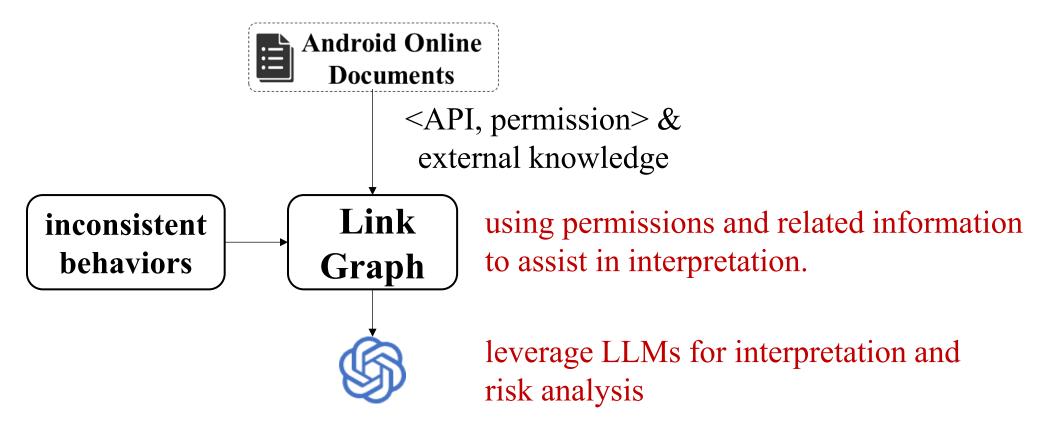
• Data flow

• Implicit calling

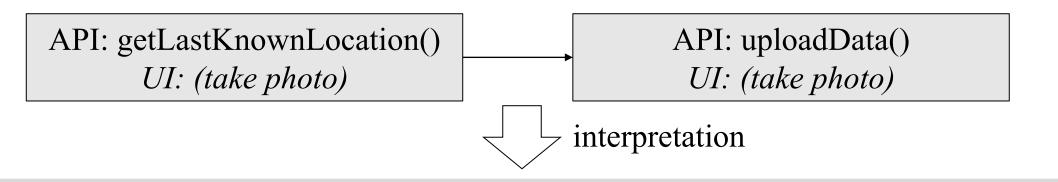

Caller	Callee
Thread.start	Thread.run
Thread.start	Runnable.run
Handler.post	Runnable.run
Handler.sendMessage	Handler.handleMessage
Activity.runOnUiThread	Runnable.run
	doInBackground
AsyncTask.execute	onPreExecute
	onPostExecute

2 Behavior Filtering

- In various apps, unimportant words appear more frequently than those related to sensitive resources.
- Words that combine with many other words are not important.
- An API should be important when it is semantically related to its UI elements.



3 Inconsistent Behavior Identification



(4) Behaviors Interpretation

- APP needs APIs with **specific permissions** to access sensitive data and resources.
- LLMs perform well in summarization and reasoning tasks.

(4) Behaviors Interpretation

• Summary

When users use a photography app to take a photo, the app unexpectedly accesses location data (ACCESS_FINE_LOCATION) and upload the location to a server (NETWORK).

- **Risky operation:** [ACCESS_FINE_LOCATION, NETWORK]
- Explanation:
- ACCESS_FINE_LOCATION: While some photography apps may use location data to tag photos with geolocation metadata, this is not essential for the primary function of taking a photo. Accessing precise location data can expose users' real-time location, leading to potential privacy risks if the data is stored or shared without consent.
- NETWORK: Network access is not directly required. It could be used for uploading photos or user location. This poses risks of unauthorized data transmission or exposure to network-based attacks.

EVALUATION

Performance in behaviors interpretation

User Study (the highest score is 5)

- The interpretation is **easy to understand** (4.07)
- The interpretation is **reasonable** (4.15)
- The interpretation is **helpful** for understanding apps' behavior (4.12)

EVALUATION

Performance in risky inconsistent behaviors identification

- **①** Comparison between different LLMs on 100 labeled apps
- GPT-4 performs best in risk analysis

	TP	FP	TN	FN	Precision	Recall	Accuracy
GPT-4	233	18	201	13	92.83%	94.72%	93.33%
GPT-3.5	214	61	158	32	77.82%	86.99%	80.00%
Llama-2	66	38	181	180	63.46%	26.83%	53.12%

EVALUATION

Performance in risky inconsistent behaviors identification

② Comparison with SOTA on 600 labeled apps

- 94.89% risky inconsistent behaviors identification rate
- **704 more** risky inconsistent behaviors than SOTA

Common	InconP	reter Only	DeepIntent Only			
Common	with widget	without widget	Deepintent Only			
838	280	424	86			

③ On 100 Android Malware Dataset samples

- 94.56% risky behaviors identification rate
- 27 new additional risky behaviors

FINDINGS

Distribution of risky inconsistent behaviors

- **413 wild apps** are identified containing **1664 risky inconsistent behaviors**, and these apps **cover all app categories**.
- **89 (21.55%)** apps have downloads **exceeding 1 million**.
- 322 (77.97%) apps contain 740 self-starting risky inconsistent behaviors.

Category	Communication	Education	Entertainment	Finance	Game	Fitness	Life & Traveling	Reading	Office	Gallery	Photography & Beauty	Tools	Video & Audio	Total
app num	29	29	26	11	59	14	43	42	24	20	23	59	34	413
risks	206	76	161	28	156	41	102	158	154	51	82	313	136	1664
risks per app	7.10	2.62	6.19	2.55	2.64	2.93	2.37	3.76	6.42	2.55	3.57	5.31	4.00	4.03

FINDINGS

Evolution of risky inconsistent behaviors between periods

- Due to increasing privacy concerns and stricter market regulations, risky inconsistent behaviors have significantly **decreased**.
- Due to the decreased frequency of phone call usage but increased reliance on online communication, risky behaviors related to **user contact information** have a declining trend, but those associated with **location**, **Wi-Fi**, **Bluetooth** show an increasing trend.

	2010-2014	2015-2019	2020-2024
percentage of apps containing risks	26.44%	15.64%	3.80%
number of risky behav- iors which more than 10% apps contain	22	14	8

- Propose InconPreter to extract and interpret inconsistent behaviors in apps, enabling users to better understand what the app is doing and independently assess the potential risks.

- Identify **1,664 risky inconsistent behaviors** from 413 apps, including leakage of location, SMS, and contact information, as well as unauthorized audio recording, etc., **affecting millions of users**.

Thank You

Q &A