
The Skeleton Keys: A Large Scale Analysis of
Credential Leakage in Mini-apps

Yizhe Shi, Zhemin Yang, Kangwei Zhong,

Guangliang Yang, Yifan Yang, and Min Yang

Fudan University

Page 2

App-in-App Ecosystem

• Super-app
• A mobile app with rich functionalities, often delegate sensitive services

to mini-apps

• e.g., WeChat, TikTok, Alipay, Baidu

• Mini-app
• Runs within super-apps, offering a native app-like experience

Payment
Service

AI
Service

Cloud
Space

Mini-app Server Super-app Server

Sensitive
Services

access super-
app services

Page 3

Credential System

• Credential-based access control to safeguard sensitive services

Page 4

Credential System

• Credential-based access control to safeguard sensitive services

21 popular super-app platforms delegate sensitive services to

mini-app servers with 64 critical credentials

Page 5

Credential Leakage

• Proper Practice: Use credentials in the mini-app server side

• Credential Leakage: Improperly share credentials with mini-app clients

obtain

credential

attack

share credential

Page 6

Research Status

• Credential leakage in the open repositories or mobile applications
• Hard-coded and well-structured credentials

• Mostly based on fixed patterns or regular expressions

Missed but Significant Problem : Dynamically Leaked Credentials

patterns of credentials

var awsCred = new AWS.Credentials({
accessKeyId: “AKIA***PLE”,
secretAccessKey: “wJalr***Key”,

});
const s3 = new AWS.S3({...})

matched

wx.request({
url: "https://***/getopenid",
data: {code: login_code, ...},
success(a) => {

var credential = a.key;
}

})

Hard-coded
Credential

Dynamically
Retrieved
Credential

Page 7

Our Insights

• Main Insight: During the credential migration, the credential-use
behaviors still exhibit similar patterns

Page 8

Architecture

• KeyMagnet
• Phase #1: Server-side Credential Semantic Analysis

• Phase #2: Client-side Credential Semantic Analysis

• Phase #3: Semantic-based Similarity Analysis

Page 9

Server-side Credential Semantic Analysis

• Insight: Developer documentation offers the hints of credential-use
semantics in the server side

• Credential-use Semantic Graph: Represent the API-level credential semantics

Page 10

Client-side Credential Semantic Analysis

• Insight: Client-side network behaviors encompass credential-use semantics

• Client-side Behavior Graph: Represent the mini-app client-side semantics

Page 11

Semantic-based Similarity Analysis

• Challenge: Semantic gap between client- and server-side semantics

• Approach: Prove the semantic isomorphism between the CSG and CBG

Page 12

Evaluation - Performance

• Performance of KeyMagnet
• Ground Truth : Randomly sampled 500 mini-apps that are

identified as vulnerable and non-vulnerable

• Precision: 95.04% / Recall: 85.56%

Page 13

Evaluation - Landscape

• Statistics of Credential Leakage
• 84,491 credential leakage issues in 54,728 mini-apps

Page 14

Observation

• Credential Leakage Crossing Apps

• Cross-superapp credential leakage

• Cross-miniapp credential leakage

• Template-based Leakage

• Leakage Scenarios

Page 15

Security Hazards

Account Hijacking

Payment Deception

Phishing Attack

Sensitive Information Theft

Mini-app Function
Manipulation

. . .

security
hazards

Functionality of Credentials in Mini-apps

Page 16

Security Hazards

• Account Hijacking

encrypted
Phone Login

Successfully

180***1010

Phone Login
token

Mini-app
Server Side

decrypt(encryptedPhone)
=> phone(180***1010)

Page 17

Security Hazards

• Account Hijacking

encrypted
Phone Login

Successfully

150***0085

Mini-app
Server Side

decrypt(tamperedPhone)
=> phone(150***0085)

tokenPhone Login

tamper phone with
leaked credential

Page 18

Summary

• Our work is the first to systematically study the app-in-app credential
system and unveil its security implications

• We propose a novel approach, called KeyMagnet, to detect the
credential leakage in mini-apps

• We have evaluated KeyMagnet with 413,775 mini-apps and have
identified 84,491 credential leaks. We analyze the root causes of the
prevalent leakage and propose corresponding mitigation strategies

Thank You!

