
EvoCrawl: Exploring Web Application Code
and State using Evolutionary Search
Xiangyu Guo, Akshay Kawlay, Eric Liu, David Lie

1

Background

EvoCrawl is a black-box crawler detecting vulnerabilities in client-server web
applications by interacting with the browser on the client-side.

- Black-box: the crawler has no access to the source code
- Why Black-box: More generalized since web applications have been

developed in many different programming languages

2

How do we improve Code Coverage
Performance of a crawler largely depends on how much code it can cover.

How can we improve code coverage for a crawler with no access to source code?

- Number of crawled pages: Heavily Influenced by the Application States

Certain Pages can only be crawled when the application are in
certain states

3

It is still a difficult task to fully explore the states

How does a black-box scanner change the data stored on the server:

- Submit inputs
- Most common method: Submitting HTML forms

4

Submitting HTML forms can be hard

5

Submitting HTML forms can be hard

6

This Pop-up window will make
the elements below it invisible

Submitting HTML forms is not trivial

7

1

2

3

The Simplest
Sequence
Interaction

Submitting HTML forms is not trivial

8

Submitting HTML forms is not trivial

9

For this single page, even for a simple sequence that only contains 3
interactions, there are 33 * 32 * 31 = 32796 possible combinations.
(Approximate 33 elements on the page.)

Submitting HTML forms is not trivial - How to find the right sequence?

10

Possible
Sequences

Submitting HTML forms is not trivial - How to find the right sequence?

11

Avoid sequences with bad
orders:
Elements in black box will be
blocked by the pop-up
window

Submitting HTML forms is not trivial - How to find the right sequence?

12

Explore sequences with
good orders

Submitting HTML forms is not trivial - How to find the right sequence?

13

Explore sequences with
good orders

Need a way to guide the scanner to explore sequences with good orders

Is finding one sequence enough?

14

1

2

3

Should we stop at here?

Is finding one sequence enough?

15

How about other
elements inside the form?

Is finding one sequence enough?

16

- Form submission with
different combination
of inputs can trigger
different codes on the
server

- They can be injecting
points for XSS payload

Submitting HTML forms is not trivial

17

1

2

3

The Simplest
Sequence
Interaction

Submitting HTML forms is not trivial

18

1

2

3

The Simplest
Sequence
Interaction

2

3

4
5

1

Longer
Sequence

Submitting HTML forms is not trivial

19

Avoid certain elements: such us “cancel button” or elements that require
values cannot be inferred by scanners
Partially Preserver the order: Make the “Save” button to be at the end, etc.

EvoCrawl is

20

- A way to effectively generate sequences that preserve good
orders

- A way to generate new sequences from the sequences with
good orders

EvoCrawl is

21

- A way to effectively generate sequences that preserve good
order

- A way to generate new sequences from the sequences with
good order

Evolutionary Search and Dependency Tracking

Diversified Evolutionary Search

Fitness Function: Identify Sequences With good order

Reward:

Punish:

Aims to explore diversified states of the application -> Need Diversified
Sequences

22

Inject inputs Fill in input fields Trigger JavaScript Events

Interact with blocked elements

Diversified Evolutionary Search

Crossover: Generate new sequences based on the Sequences with good order

- Concatenate parts of two sequences together: introducing diversity into sequences
while partially maintaining the order

23

1

2

1 3
2

4

5

Diversified Evolutionary Search

24

1

2

1 3
2

4

5

1 2

1 2 3 4 5

1 2 3 4 2

One Input Injection

Zero Input Injection

Four Input Injection

Parents A

Parents B

Child

Dependency Tracking

We consider dependencies to exist
among elements when interaction with
an element change the status of some
web elements.

We design the scanner to keep track of
these dependencies

- The “Title” and “Save” elements
should follow the “+” elements
instead of others

25

Enable the scanner to quickly generate
sequences with good order

Dependency

Vulnerability Detections

Integrate IDOR and XSS vulnerability Detectors into EvoCrawl (Details are in the
Paper)

Support future integration of other Vulnerability Detector

26

Experiment Setup

Code Coverage

- Evaluate EvoCrawl's performance by comparing it with three state-of-the-art
scanners: BlackWidow, JAK, and CrawlJAX.

Form Submissions (Measure how many states are explored):

- Calculate the total count of HTML forms that have been submitted.
- Compared with BlackWidow

Vulnerability Detection

- Collect the number of vulnerabilities

27

Code Coverage

28

Cover 1.5x lines of code

Form Submissions

29

The count of submitted forms: Unique forms submitted by EvoCrawl, Common forms
submitted by both crawlers and Unique forms submitted by BlackWidow

(Details are in the Paper)

4x Unique Forms

IDOR Vulnerabilities Found

30

- Gitlab: One ajax endpoint that reveals all user’s
information including avatar URL, username and
states

- ImpressCMS:
- One endpoint that allows attacker to force browsing to

private images
- One endpoint that allows attacker to force browsing to

other user’s personal page

IDOR Vulnerabilities Found

31

- Gitlab: One ajax endpoint that reveals all user’s
information including avatar URL, username and
states

- ImpressCMS:
- One endpoint that allows attacker to force browsing to

private images
- One endpoint that allows attacker to force browsing to

other user’s personal page

XSS vulnerability Detector

Humhub: One injection point that allows the website owner to inject a custom
script for tracking page statistics (Not a bug).

Wordpress: Two Stored XSS. (Acknowledged but not fixed because falls outside
their security policy)

HotCRP:

- One stored XSS vulnerability which has been acknowledged and fixed (fixed).
- One reflected XSS vulnerability which cannot be exploited by attackers as it is

only visible to admin users and protected by a CSRF token. (Not
acknowledged)

Kanboard: One stored XSS vulnerability that has been acknowledged and fixed.

32

XSS vulnerability Detector

HotCRP:

- One stored XSS vulnerability which has been acknowledged and fixed (fixed).
- For each step, the scanner need to find the right sequence of interactions

33

Conclusion

- Using an evolutionary search algorithm with dependency tracking enables a
scanner to transition the application into diverse states, thus achieves greater
code coverage

- Evolutionary search can guide the crawler toward favorable objectives, such
as form submission, inputs injection, and elements that triggered JS events.

34

Conclusion

35

Evolutionary
Search

Dependency
Tracking

Main Idea
Cover 1.5x lines of

code

4x Unique FormsFound: 3 IDOR and 5 XSS

https://github.com/dlgroupuoft/evocrawl

Thank you!

36

