

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

Haotian Zhu*, Shuchao Pang^{*12}, Zhigang Lu⁺¹, Yongbin Zhou^{*}, and Minhui Xue[‡]

^{1:} equal contribution

^{2:} corresponding author

Outline

1. Background

2. Technical Challenges

- JPEG Compression Effects
- Existing Protection Limitations

3. Methodology

- Generator Module
- Pre-processing Simulation
- Fine-tuning T2I-DM

4. Experimental Results

5. Conclusion

Finetuned Text to Image Diffusion Models (FT-T2I-DMs) can generate customized photos using only 3-5 identity images

Easily obtain customized images through a FT-T2I-DM based on different prompts

Potential misuse for creating fake contentPrivacy and security risks

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

Fake images generated by carefully designed customization

BBC

Home News Sport Business Innovation Culture Arts Travel Earth Video Live

Trump supporters target black voters with faked AI images

4 March 2024

Share < Save 🔲

Finetuned Text to Image Diffusion Models (FT-T2I-DMs) can generate customized photos using only 3-5 identity images

Easily obtain customized images through a FT-T2I-DM based on different prompts

• How to protect facial privacy from diffusionbased customization?

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

Fake images caused by carefully designed customization

BBC

Home News Sport Business Innovation Culture Arts Travel Earth Video Live

Trump supporters target black voters with faked AI images

4 March 2024

Share < Save 🔲

Adding protective noise to images

*Thanh Van Le, Hao Phung, Thuan Hoang Nguyen, Quan Dao, Ngoc N Tran, and Anh Tran. Anti-dreambooth: Protecting users from personalized text-toimage synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2116–2127, 2023.

Technical Challenges

Adding protective noise to images

*Thanh Van Le, Hao Phung, Thuan Hoang Nguyen, Quan Dao, Ngoc N Tran, and Anh Tran. Anti-dreambooth: Protecting users from personalized text-toimage synthesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2116–2127, 2023.

How to protect facial privacy from model customization while maintaining resistance to JPEG compression?

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

Existing works often use the idea of PGD attacks to iteratively

Pixel-level Iterative Process

Original Pixels

$$x^{k+1} = \prod_{(x,\eta)} (x^k + \alpha sgn(\nabla_x L(f(x+\delta, y_{true}))))$$

leads to sudden changes and sharp local differences between pixel values ==> a widely distributed high-frequency noise across the entire image

Technical Challenges

generate adversarial protective noise against customization.

Random Changes

High-frequency Noise

Possible approaches to consider:

- an adaptive method to generate protective noise iteratively, focusing only on low-frequency regions that are less likely to be eliminated by JPEG compression.
- Use neural networks to learn the generation of noise, allowing the model to generate a protective noise pattern that is difficult to be removed by JPEG compression.

Possible approaches to consider:

- an adaptive method to generate protective noise iteratively, focusing only on low-frequency regions that are less likely to be eliminated by JPEG compression.
- Use neural networks to learn the generation of noise, allowing the model to generate a protective noise pattern that is difficult to be removed by JPEG compression.

A proposed differentiable JPEG simulation method:

JPEG-Mask* simulates compression by:

- Retaining 5×5 low-frequency region (Y channel)
- Retaining 3×3 low-frequency region (U,V channels)
- Zeroing out other high-frequency coefficients

*Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks. In Proceedings of the European Conference on Computer Vision (ECCV), pages 657–672, 2018.

Fine-tune Diffusion models:

$$\mathcal{L}_{\text{cond}}(\theta, x_0) = \mathbb{E}_{x_0, t, c, \epsilon \sim \mathcal{N}(0, \mathbf{I})} ||\epsilon - \epsilon_{\theta}(x_{t+1}, t, c)||_2^2$$

$$\mathcal{L}_{\mathrm{ft}}(\theta, x_0^n) = \mathbb{E}_{x_0^n, t, t'} ||\epsilon - \epsilon_{\theta}(x_{t+1}^n, t, c)||_2^2 + \lambda ||\epsilon' - \epsilon_{\theta}(x_{t'+1}', t', c_{pr})||_2^2$$

$$\mathcal{L}_{\text{ft'}}(\theta, x_0^{pre}) = \mathbb{E}_{x_0^{pre}, t, t'} ||\epsilon - \epsilon_{\theta}(x_{t+1}^{pre}, t, c)||_2^2 + \lambda ||\epsilon' - \epsilon_{\theta}(x_{t'+1}', t', c_{pr})||_2^2$$

N-1

Fine-tune Diffusion models:

$$\mathcal{L}_{\text{cond}}(\theta, x_0) = \mathbb{E}_{x_0, t, c, \epsilon \sim \mathcal{N}(0, \mathbf{I})} ||\epsilon - \epsilon_{\theta}(x_{t+1}, t, c)||_2^2$$

$$\mathcal{L}_{\mathrm{ft}}(\theta, x_0^n) = \mathbb{E}_{x_0^n, t, t'} ||\epsilon - \epsilon_{\theta}(x_{t+1}^n, t, c)||_2^2 + \lambda ||\epsilon' - \epsilon_{\theta}(x_{t'+1}', t', c_{pr})||_2^2$$

0

N-1

GAP-Diff Framework Overview

- Three Core Modules:
 - 1. Generator: Produces adversarial perturbations via U-Net.

2. Pre-processing Simulation: Simulates JPEG compression along with other potential preprocessings during training.

3. Fine-tuning T2I-DM: Disrupts the denoising learning process of diffusion models through adversarial loss.

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

$\mathcal{L}_{\text{GAP-Diff}} = \alpha \mathcal{L}$	$\mathcal{L}_{\mathrm{D}}(x) + \beta \mathcal{L}_{\mathrm{adv}}(x,c,t) + \gamma \mathcal{L}_{\mathrm{adv}}(x^{pre},c,t)$
	$x) = \mathbb{E}_{x \in \mathcal{X}}[log(1 - D(x))]$
• GAN-based Training \mathcal{L}_{GAN}	$(x^n, x) = \mathbb{E}_{x^n \in \mathcal{X}^n} [log D(x^n)] + \mathbb{E}_{x \in \mathcal{X}} [log(1 - D(x))]$
X Adversariality Counter-direction Generation Strategy	$\mathcal{L}_{adv}(x,c,t) = \mathbb{E}_t[-\alpha(t)\mathbb{E}_{x,c}d(\epsilon,\epsilon_{\theta}(x_{t+1},t,c))]$
Robustness Preprocessing Simulation Layer	$\mathbb{E}_{x^n \in \mathcal{X}^n, t \in (0,T)} \mathcal{L}_{adv}(p(x^n + \eta \times g_{\psi}(x^n)), c, t)$

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

$$\mathcal{L}_{adv}(x,c,t) = \mathbb{E}_t[-\alpha(t)\mathbb{E}_{x,c}d(\epsilon,\epsilon_\theta(x_{t+1},t,c))]$$

Different time steps in the diffusion model have distinct characteristics

• Experiment— Quantitative Results

Methods	"a photo of sks person"				"a dslr portrait of sks person"					
	FDFR↑	ISM↓	BRISQUE↑	SER-FIQ↓	FDFR↑	ISM↓	BRISQUE↑	SER-FIQ↓		
No Defense	5.33	0.61	26.27	0.69	21.57	0.48	9.64	0.71		
Photoguard [36]	6.22	0.55	29.38	0.71	19.44	0.46	13.74	0.71		
Glaze 38	6.57	0.53	30.42	0.69	18.78	0.45	11.04	0.69		
Mist 24	14.89	0.46	35.68	0.60	19.56	0.38	20.43	0.63		
Anti-DB 45	22.89	0.41	40.19	0.40	32.67	0.34	32.72	0.44		
ACE 53	8.44	0.47	37.22	0.61	15.22	0.38	27.80	0.64		
MetaCloak 26	31.69	0.44	38.82	0.51	35.28	0.36	27.31	0.56		
CAAT 49	25.44	0.43	42.01	0.45	21.67	0.38	25.07	0.57		
SimAC 47	19.11	0.49	39.43	0.52	23.56	0.41	24.15	0.62		
GAP-Diff (ours)	77.56	0.25	42.04	0.23	76.33	0.19	48.97	0.20		
Methods	"a photo	"a photo of sks person looking at the mirror"				"a photo of sks person in front of eiffel tower"				
	FDFR↑	ISM↓	BRISQUE↑	SER-FIQ↓	FDFR↑	ISM↓	BRISQUE↑	SER-FIQ↓		
No Defense	8.67	0.44	19.61	0.56	20.67	0.22	20.11	0.44		
Photoguard [36]	9.67	0.40	23.43	0.56	19.56	0.21	17.91	0.45		
Glaze 38	9.33	0.41	19.69	0.55	17.44	0.20	19.78	0.43		
Mist ^[24]	12.33	0.35	22.17	0.50	27.33	0.18	21.05	0.36		
Anti-DB 45	21.67	0.30	24.77	0.37	34.88	0.14	31.21	0.26		
ACE 53	12.44	0.30	31.90	0.42	36.11	0.15	25.25	0.26		
MetaCloak 26	32.76	0.32	34.14	0.36	30.57	0.15	31.22	0.25		
CAAT 49	16.33	0.32	23.82	0.37	34.22	0.14	31.82	0.25		
SimAC 47	14.89	0.33	31.09	0.42	28.56	0.14	32.98	0.25		
GAP-Diff (ours)	84.56	0.14	47.30	0.13	72.78	0.08	41.69	0.08		

PromptA "a photo of sks person", PromptB "a dslr portrait of sks person",

PromptC "a photo of sks person looking at the mirror", and PromptD "a photo of sks person in front of eiffel tower".

• Experiment — Quantitative Results

Methods		noto of sks per	son"	"a dslr portrait of sks person"				
memous	FDFR↑	ISM↓	BRISQUE↑	SER-FIQ↓	FDFR↑	ISM↓	BRISQUE↑	SER-FIQ↓
Photoguard [36]	4.78	0.55	32.72	0.70	22.89	0.44	9.52	0.68
Glaze 38	4.89	0.56	30.81	0.71	23.11	0.43	8.76	0.68
Mist 24	10.89	0.52	34.92	0.69	21.22	0.42	12.02	0.68
Anti-DB 45	10.44	0.50	36.45	0.57	23.00	0.39	19.33	0.62
ACE 53	7.55	0.51	37.94	0.68	17.67	0.38	21.24	0.67
MetaCloak 26	32.16	0.46	40.05	0.54	38.25	0.41	27.76	0.60
CAAT 49	10.44	0.52	37.50	0.61	17.44	0.42	13.90	0.65
SimAC [47]	10.22	0.51	37.19	0.65	18.89	0.43	14.60	0.67
Ours	62.44	0.32	45.85	0.35	64.80	0.24	49.78	0.27
Methods	i "a photo	o of sks	person looking	g at the mirror"	"a photo of sks person in front of eiffel tower"			
	FDFR↑	ISM↓	BRISQUE↑	SER-FIQ↓	FDFR ↑	ISM↓	BRISQUE↑	SER-FIQ↓
Photoguard [36]	4.33	0.39	20.76	0.55	19.56	0.21	17.91	0.45
Glaze 38	6.89	0.40	20.71	0.56	20.56	0.20	20.34	0.44
Mist 24	7.78	0.37	22.69	0.51	21.56	0.18	20.91	0.38
Anti-DB 45	17.78	0.32	14.82	0.42	26.89	0.17	28.11	0.28
ACE 53	7.89	0.32	28.09	0.48	32.56	0.16	22.97	0.31
MetaCloak 26	28.40	0.33	33.87	0.38	24.73	0.17	30.89	0.27
CAAT 49	11.11	0.36	13.17	0.46	28.33	0.18	27.84	0.31
SimAC 47	7.22	0.36	26.90	0.49	20.67	0.18	27.57	0.35
Ours	76.73	0.22	52.93	0.15	58.61	0.11	44.67	0.15

PromptA "a photo of sks person", PromptB "a dslr portrait of sks person",

PromptC "a photo of sks person looking at the mirror", and PromptD "a photo of sks person in front of eiffel tower".

13

Resistance to JPEG compression at different intensities

Protection effectiveness under different noise budgets

14

• Experiment — Ablation Studies

Maaa	"a photo of sks person"		- Method	a phot	o of sks	person lookin	g at the mirror"		
Method	FDFR↑	ISM↓	BRISQUE↑	SER-FIQ↓		FDFR↑	ISM↓	BRISQUE↑	SER-FIQ↓
w/o preprocess Random noise Gaussian blur Quantization Resize Super resolution	95.22 26.44 83.78 93.89 90.56 93.67	0.12 0.41 0.24 0.11 0.17 0.13 "a dslr	45.73 29.41 42.25 43.44 42.50 42.82 portrait of sks	0.06 0.49 0.18 0.06 0.12 0.10 person"	w/o preprocess Random noise Gaussian blur Quantization Resize Super resolution	94.11 30.46 86.11 94.00 87.11 90.11	0.09 0.28 0.14 0.11 0.18 0.15 0 of sks	45.93 34.73 44.71 46.63 46.16 49.24 person in fron	0.05 0.32 0.09 0.05 0.09 0.08 t of eiffel tower''
Method	 FDFR↑	ISM↓	BRISQUE [↑]	SER-FIQ↓	Method	FDFR↑	ISM↓	BRISQUE↑	SER-FIQ↓
w/o preprocess Random noise Gaussian blur Quantization Resize Super resolution	87.67 35.33 82.44 85.44 82.67 85.22	$\begin{array}{c} 0.16 \\ 0.31 \\ 0.19 \\ 0.15 \\ 0.17 \\ 0.16 \end{array}$	$\begin{array}{r} 42.44\\ 36.30\\ 46.67\\ 43.05\\ 41.89\\ 42.75\end{array}$	$\begin{array}{c} 0.11 \\ 0.45 \\ 0.12 \\ 0.12 \\ 0.15 \\ 0.15 \end{array}$	w/o preprocess Random noise Gaussian blur Quantization Resize Super resolution	77.00 24.89 73.11 77.33 78.33 78.44	$\begin{array}{c} 0.07 \\ 0.12 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.09 \end{array}$	41.15 26.89 43.90 41.06 41.34 40.43	0.06 0.32 0.07 0.06 0.06 0.07

Method	Runtime (second)	Memory Usage (GB)
Photoguard [36]	194	16
Glaze 38	118	4
Mist 24	294	5
Anti-DB 45	308	18
ACE [53]	175	6
MetaCloak 26	$1.1 imes 10^4$	504
CAAT [49]	98	18
SimAC 47	$1.2 imes 10^3$	33
GAP-Dift (ours)	0.04	2

Major Contributions

- Novel generative framework with JPEG compression resistance
- Efficient one-step noise generation compared to iterative methods
- Robust performance across various scenarios and settings

Future Directions

- Server API deployment for real-time protection
- Optimize training strategy for better balance between protection and visual quality
- Extend to other preprocessing techniques and customization methods

Thank You!

Please email to haotian.zhu@njust.edu.cn for any question

Code: <u>https://github.com/AIASLab/GAP-Diff</u>