

Explanation as a Watermark: Towards Harmless and Multi-bit Model Ownership Verification via Watermarking Feature Attribution

Shuo Shao^{1,2}, Yiming Li^{1,3}, Hongwei Yao^{1,2}, Yiling He^{1,2}, Zhan Qin^{1,2}, Kui Ren^{1,2}

¹State Key Laboratory of Blockchain and Data Security, Zhejiang University ²Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

³Nanyang Technological University

Code

Paper

Application of Deep Neural Networks

Face Recognition

Self-driving Vehicles

Chatbot

Weather Forecast

Deep Neural Networks (DNNs) has been widely applied to various domains!

Application of Deep Neural Networks

<u>costly</u> and <u>resource-intensive</u> work!

The high-value DNNs also face a range of copyright infringements!

DNN should be regarded as an important intellectual property of its developer!

Model Watermarking

Model watermarking is a <u>critical</u> and <u>widely adopted</u> solution for model copyright protection.

- > Watermark embedding.
- Watermark extraction and ownership verification.

White-box model watermarking directly embed the watermark into the parameters!

Drawback: need white-box access to the model during verification.

Black-box Model Watermarking: Backdoor-based

Existing black-box model watermarking methods are mostly based on **backdoor attacks**.

Backdoor Attack: The backdoored model will predict wrong labels when a specific pattern appears.

However, backdoor-based watermarks suffer from harmfulness and ambiguity.

Why Backdoor Watermarks Face Such Limitations?

Such limitations stem from the zero-bit nature of backdoor watermarks.

Why harmful: Backdoor watermarks depend on changing the predictions.

Why ambiguous: Zero-bit Watermark can easily be forged by the adversary.

NDSS

Our Insight

Does there exist an <u>alternative space</u> for <u>multi-bit</u> watermark embedding without impacting model predictions?

Explanation as a Watermark (EaaW)

Yes! We can utilize the space of explanation for multi-bit watermark embedding!

Explanation: Human-readable reasoning behind a model's prediction.

Three stages in EaaW:

(1) Watermark embedding; (2) watermark extraction; (3) ownership verification.

The loss function of watermark embedding:

Utility loss: the loss function used in the primitive task.

Watermark loss: Hinge-like loss to embed the watermark, as follows ($\mathcal{W} \in \{-1, 1\}^k$).

$$\mathcal{L}_{2}(\boldsymbol{\mathcal{E}},\boldsymbol{\mathcal{W}}) = \sum_{i=1}^{k} \max(0, \varepsilon - \boldsymbol{\mathcal{E}}_{i} \cdot \boldsymbol{\mathcal{W}}_{i}), \boldsymbol{\mathcal{E}} = \operatorname{explain}(\boldsymbol{\mathcal{X}}_{T}, \boldsymbol{\mathcal{Y}}_{T}, \boldsymbol{\Theta}).$$

Firstly, get the explanation of the trigger sample:

 $\widetilde{\boldsymbol{W}} = \operatorname{explain}(\boldsymbol{\mathcal{X}}_T, \boldsymbol{\mathcal{Y}}_T, \boldsymbol{\Theta}).$

Then, binarize the explanation to get the final watermark:

$$\widetilde{\boldsymbol{\mathcal{W}}}_i = \operatorname{bin}(\widetilde{\boldsymbol{W}}_i) = \begin{cases} 1, \ \widetilde{\boldsymbol{W}}_i \ge 0\\ -1, \ \widetilde{\boldsymbol{W}}_i < 0 \end{cases}$$

Key in our method: How to Design the function $explain(\cdot)$?

The feature attribution methods in XAI (explainable artificial intelligence) can help!

Local Sampling

Step 1 (Local sampling): generate masked samples X_m

$$\mathcal{X}_m = M \otimes \mathcal{X}_T.$$

Step 2 (Model inference and evaluation): evaluate the output of the masked samples.

First, get the predictions of the masked samples.

$$\boldsymbol{p}=f(\mathcal{X}_m;\boldsymbol{\Theta}).$$

Second, evaluate the predictions using a specific <u>metric function</u> $\mathcal{M}(\cdot)$.

$$\boldsymbol{v} = \mathcal{M}(\boldsymbol{p}, \mathcal{Y}_T).$$

Step 3 (Explanation generation): calculate the importance score and generate the explanation.

Utilize the <u>Ridge Regression</u> to calculate the importance score and weight matrix \widetilde{W} .

$$\widetilde{\boldsymbol{W}} = (M^T M + \lambda I)^{-1} M^T \boldsymbol{\nu}.$$

Task: comparing the extracted watermark $\widetilde{\mathcal{W}}$ and the original watermark \mathcal{W} .

The problem can be formalized as a hypothesis test, as follows.

Proposition 1. Let \widetilde{W} be the watermark extracted from the suspicious model, and W is the original watermark. Given the null hypothesis H_0 : \widetilde{W} is independent of W and the alternative hypothesis H_1 : \widetilde{W} has an association or relationship with W, the suspicious model can be claimed as an unauthorized copy if and only if H_0 is rejected.

Specifically, we utilize <u>Pearson's chi-square test</u> to calculate the p-value of the above test.

TABLE I: The testing accuracy (Test Acc.), the p-value of the hypothesis test, and watermark success rate (WSR) of embedding the watermark into image classification models via EaaW. 'Length' signifies the length of the embedded watermark.

Dataset	Length	Metric↓ Trigger→	No WM	Noise	Abstract	Unrelated	Mask	Patch	Black-edge
		Test Acc.	90.54	90.49	90.53	90.49	90.46	90.38	90.37
	64	p-value	/	10^{-13}	10^{-13}	10^{-13}	10^{-13}	10^{-13}	10^{-13}
		WSR	1	1.000	1.000	1.000	1.000	1.000	1.000
		Test Acc.	90.54	90.53	90.54	90.28	90.49	90.11	90.35
CIFAR-10	256	p-value	/	10^{-54}	10^{-54}	10^{-54}	10^{-54}	10^{-54}	10^{-54}
		WSR	1	1.000	1.000	1.000	1.000	1.000	1.000
		Test Acc.	90.54	90.39	90.47	90.01	90.38	89.04	89.04
	1024	p-value	/	10^{-222}	10^{-222}	10^{-207}	10^{-222}	10^{-218}	10^{-222}
		WSR	1	1.000	1.000	0.989	1.000	0.998	1.000
		Test Acc.	76.38	75.80	76.04	76.00	75.98	75.76	75.78
	64	p-value	/	10^{-13}	10^{-13}	10^{-13}	10^{-13}	10^{-13}	10^{-13}
		WSR	1	1.000	1.000	1.000	1.000	1.000	1.000
		Test Acc.	76.38	75.86	75.96	76.36	76.06	76.06	75.60
ImageNet	256	p-value	/	10^{-54}	10^{-54}	10^{-54}	10^{-54}	10^{-54}	10^{-54}
		WSR	1	1.000	1.000	1.000	1.000	1.000	1.000
		Test Acc.	76.38	75.40	76.22	75.26	75.74	73.48	72.84
	1024	p-value	/	10^{-222}	10^{-222}	10^{-219}	10^{-222}	10^{-219}	10^{-222}
		WSR	/	1.000	1.000	0.999	1.000	0.999	1.000

Results on Image Classification Models

TABLE III: The perplexity (PPL), the p-value of the hypothesis test, and watermark success rate (WSR) of embedding a watermark into text generation models via EaaW.

Dataset	$\text{Length} \rightarrow$	No WM	32	48	64	96	128
	PPL	43.33	46.97	47.88	48.59	48.78	51.09
wikitext	p-value	/	10^{-7}	10^{-10}	10^{-13}	10^{-20}	10^{-27}
	WSR	1	1.000	1.000	1.000	1.000	1.000
	PPL	43.75	44.28	44.76	45.41	47.52	49.61
bookcorpus	p-value	1	10^{-7}	10^{-10}	10^{-13}	10^{-20}	10^{-27}
	WSR	/	1.000	1.000	1.000	1.000	1.000
	PPL	39.49	40.98	42.41	42.68	45.52	48.99
ptb-text-only	p-value	1	10^{-7}	10^{-10}	10^{-13}	10^{-20}	10^{-27}
	WSR	/	1.000	1.000	1.000	1.000	1.000
	PPL	42.07	44.21	44.24	44.48	44.85	47.99
lambada	p-value	/	10^{-7}	10^{-10}	10^{-13}	10^{-20}	10^{-27}
	WSR	/	1.000	1.000	1.000	1.000	1.000

Results on Text Generation Models

Our EaaW can embed a watermark of over 1024 bits to the image classification models and

over 128 bits to the text generation models.

Experiments: Visualization

Visualization of the trigger samples and the extracted watermarks.

Experiments: Resistance to Attacks

TABLE V: Watermark success rate (WSR) of the original watermark (dubbed 'Ori. WM') and the adversary's new watermark (dubbed 'New WM'), the log p-value, and functionality evaluation (test accuracy or PPL) of ResNet-18 and GPT-2 against overwriting attack and unlearning attack.

Model↓	Metric↓	Before	After Overwriting	After Unlearning
	Test Acc.	75.72	69.18	73.62
PorNet 19	p-value	10^{-222}	10^{-134}	10^{-127}
Resilet-18	WSR of Ori. WM	1.000	0.899	0.888
	WSR of New WM	/	0.815	1
	PPL	48.99	50.29	48.96
GPT 2	p-value	10^{-27}	10^{-18}	10^{-24}
UF 1-2	WSR of Ori. WM	1.000	0.906	0.969
	WSR of New WM	/	0.883	1

Resistance to Fine-tuning Attack

Resistance to Pruning Attack

Resistance to Adaptive Attack

The results demonstrate that our EaaW is <u>resistant</u> to watermark removal attacks and two

different types of adaptive attacks.

Experiments: Comparison to Backdoor Watermarks

Detecat	Length /	$Trigger \rightarrow$	No	ise [36]		Unrelated [66]		Ma	Mask [15]		Patch [66]			Black-edge			
Dataset	Trigger Size	Method↓	Test Acc.	H	WSR	Test Acc.	H	WSR	Test Acc.	H	WSR	Test Acc.	H	WSR	Test Acc.	H	WSR
		No WM	90.54	/	1	90.54	/	1	90.54	/	1	90.54	/	1	90.54	/	/
	64	Backdoor	90.38	89.74	1.000	88.74	88.10	1.000	90.34	89.71	0.984	84.28	83.64	1.000	86.24	85.60	1.000
		EaaW	90.49	90.48	1.000	90.49	90.48	1.000	90.46	90.47	1.000	90.38	90.39	1.000	90.37	90.38	1.000
		No WM	90.54	/	/	90.54	/	/	90.54	1	1	90.54	1	/	90.54	/	/
CIFAR-10	256	Backdoor	90.33	87.77	1.000	87.99	85.43	1.000	90.28	87.72	1.000	90.11	87.75	1.000	90.07	87.51	1.000
		EaaW	90.53	90.52	1.000	90.28	90.27	1.000	90.49	90.50	1.000	90.11	90.12	1.000	90.35	90.36	1.000
	1024	No WM	90.54	/	/	90.54	/	/	90.54	/	1	90.54	1	/	90.54	/	/
		Backdoor	90.19	80.19	0.977	88.14	77.93	0.997	90.17	79.93	1.000	90.03	79.79	1.000	89.81	79.57	1.000
		EaaW	90.39	90.38	1.000	90.01	90.00	0.989	90.38	90.39	1.000	89.04	89.05	0.998	89.04	89.05	1.000
	64	No WM	76.38	/	1	76.38	1	1	76.38	/	1	76.38	1	1	76.38	/	/
		Backdoor	73.16	72.67	0.766	75.94	75.30	1.000	75.06	74.42	1.000	74.18	73.54	1.000	73.96	73.32	1.000
		EaaW	75.80	75.79	1.000	76.00	75.99	1.000	75.98	75.99	1.000	75.76	75.77	1.000	75.78	75.79	1.000
		No WM	76.38	/	/	76.38	/	/	76.38	1	1	76.38	1	/	76.38	/	/
Image Net	256	Backdoor	73.70	71.14	1.000	75.92	73.36	1.000	74.08	71.52	1.000	70.34	67.80	0.992	71.10	68.59	0.980
-		EaaW	75.86	75.85	1.000	76.36	76.35	1.000	76.06	76.07	1.000	76.06	76.07	1.000	75.60	75.61	1.000
		No WM	76.38	/	1	76.38	1	1	76.38	1	1	76.38	1	1	76.38	1	/
	1024	Backdoor	73.56	64.22	0.912	75.86	65.62	1.000	74.86	64.62	1.000	73.92	63.68	1.000	74.32	64.08	1.000
		EaaW	75.40	75.39	1.000	75.26	75.25	0.999	75.74	75.75	1.000	73.48	73.49	0.999	72.84	72.85	1.000

TABLE VI: The watermark success rate (WSR), the harmless degree H (larger is better), and test accuracy (Test Acc.) using the backdoor-based model watermarking method and EaaW in the image classification task.

Harmless degree *H*:

$$H = \frac{1}{|\mathcal{X} \cup \mathcal{X}_T|} \sum_{x \in \mathcal{X} \cup \mathcal{X}_T} \mathbb{I}\{f(x; \Theta) = g(x)\}.$$

Our EaaW is more harmless than the backdoor-based watermarks!

Datasat	a during amhadding	c during extraction \downarrow							
Dataset	<i>c</i> during enibedding↓	256	512	1024	2048	4096			
ImageNet	256	0.566	0.590	0.605	0.594	0.633			
	512	0.516	0.676	0.664	0.672	0.695			
	1024	0.563	0.625	0.734	0.770	0.758			
	2048	0.516	0.629	0.789	0.895	0.852			
	4096	0.488	0.582	0.703	0.824	0.945			

In label-only scenario, some information is lost.

We can increase the number of masked samples to compensate the information loss!

Our EaaW is still effective in the label-only scenario!

Our Contributions:

- A novel <u>black-box</u> model watermarking paradigm, EaaW, to embed <u>multi-bit</u> watermarks into explanations.
- An effective watermark embedding and extraction method inspired by LIME. The method can be applied to models of <u>various modalities and tasks</u>.

Future Works:

- Extension to other <u>tasks and modalities</u> (e.g., graph).
- Theoretical guarantee of model watermarking (e.g., robustness or watermark capacity).
- More effective and efficient XAI-based methods for watermark embedding.

THANK YOU FOR LISTENING!

Email: shaoshuo_ss@zju.edu.cn

Code

