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Deploying a solution that can be generalised across different environments/configurations 
simultaneously with robustness in performance and stability over time.

What attributes define practicality in ML-based models?

Which are relevant to practicality in the context of IoT identification?
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What are the key findings of the practicality evaluation?

Mode of Operation

Transferability

Observability

Idle and active modes introduce behavioural shifts 
that reduce performance. 

- Spatial degradation drop of 7.5%–74% .

- Temporal degradation begins after 1 week (19.32%) 
and worsens to 85.90% after a year.

Sampled traffic (e.g., sFlow) reduces performance by 
an average of 70.09%.
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