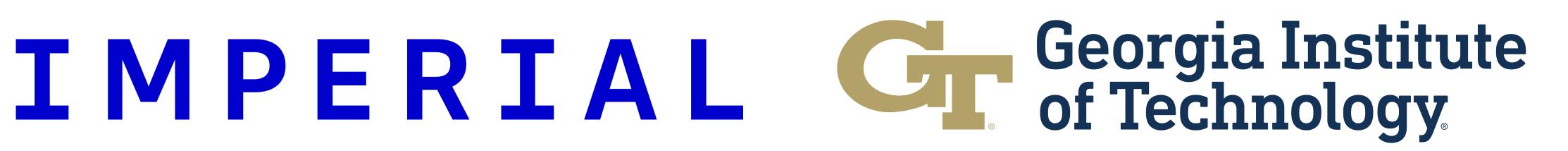
# Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

Eman Maali, Omar Alrawi, and Julie McCann



Images source: https://www.intuz.com/blog/iot-applications-in-smart-warehouse-management



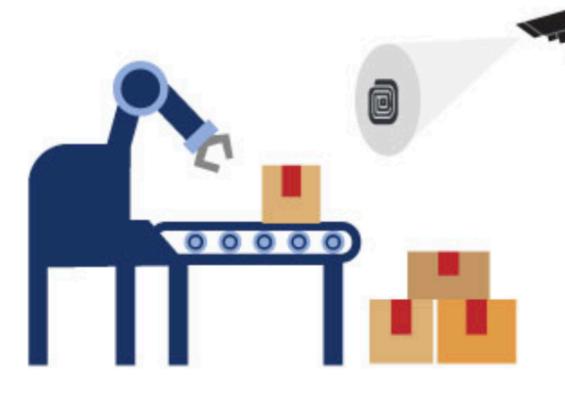


### Network Operator

Images source: https://www.intuz.com/blog/iot-applications-in-smart-warehouse-management



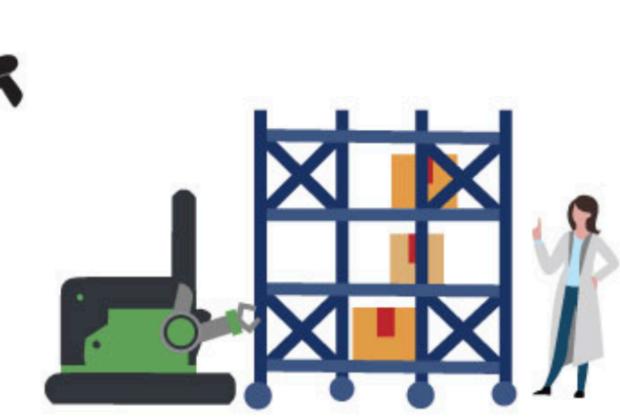
Network Operator



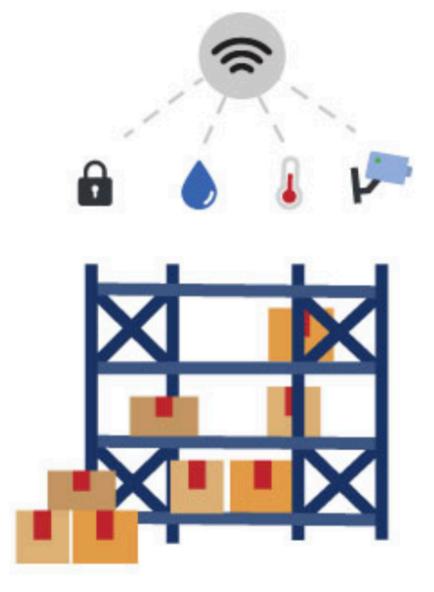
Automated items tracking

Images source: https://www.intuz.com/blog/iot-applications-in-smart-warehouse-management

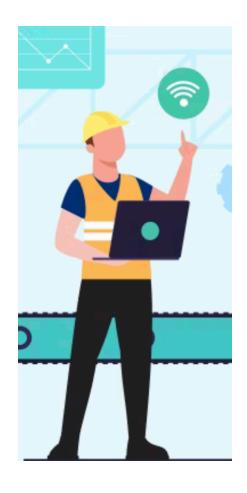
### Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications



Storage racks moved by robots



Smart warehouse maintenance

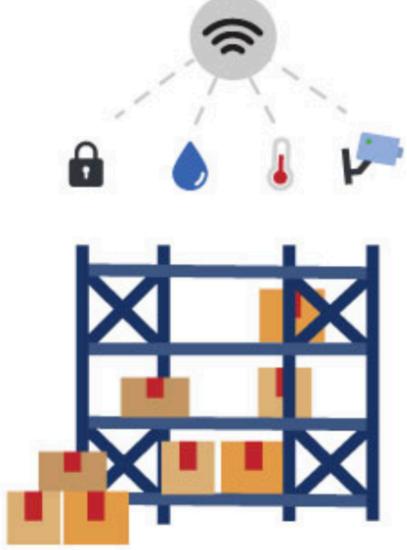


Network Operator



Images source: https://www.intuz.com/blog/iot-applications-in-smart-warehouse-management

### Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications



Smart warehouse maintenance



Images source: https://www.intuz.com/blog/iot-applications-in-smart-warehouse-management

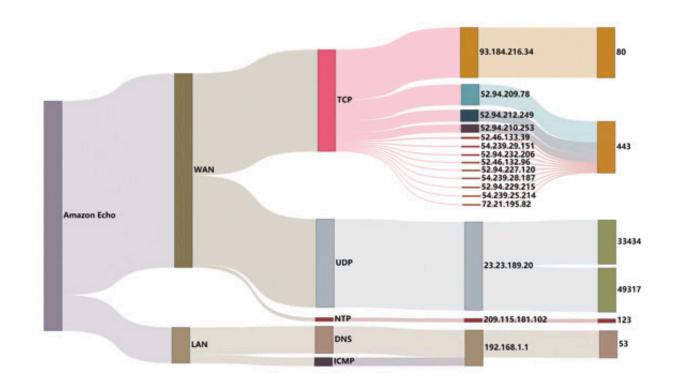


What IoT device identification models are currently available?

## What IoT device identification models are currently available?

## Static/Rule Based

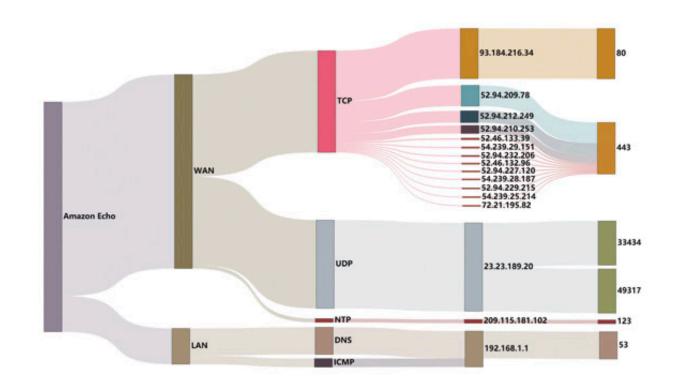
Manufacturer Usage **Description (MUD)** 



## What IoT device identification models are currently available?

## Static/Rule Based

### Manufacturer Usage **Description (MUD)**

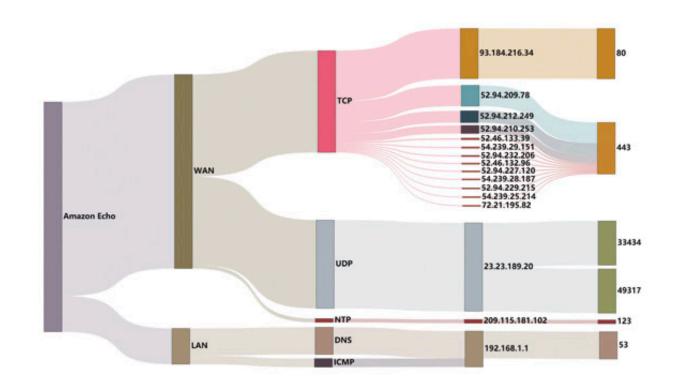




## What IoT device identification models are currently available?

## Static/Rule Based

### Manufacturer Usage **Description (MUD)**



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

## Machine Learning Based

- Supervised Learning.
- Unsupervised Learning.
- Semi-Supervised Learning.

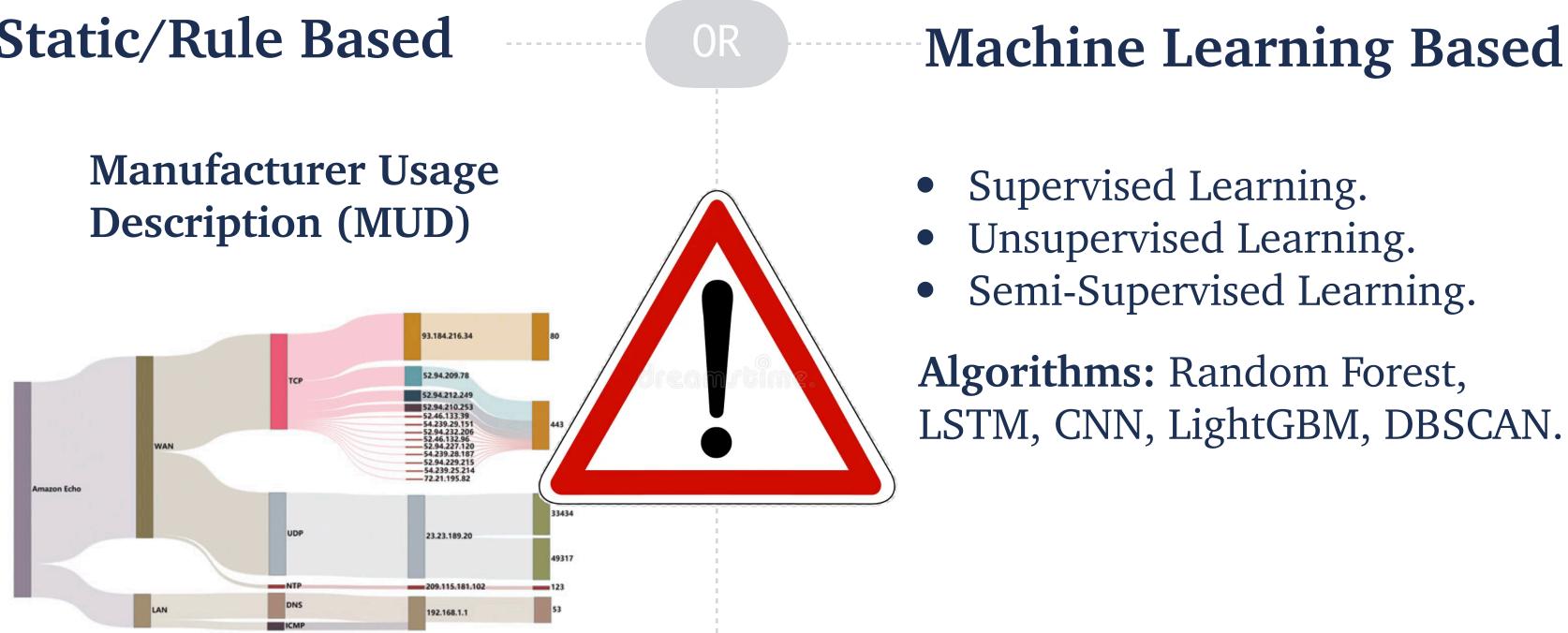
**Algorithms:** Random Forest, LSTM, CNN, LightGBM, DBSCAN.

OR

## What IoT device identification models are currently available?

## Static/Rule Based

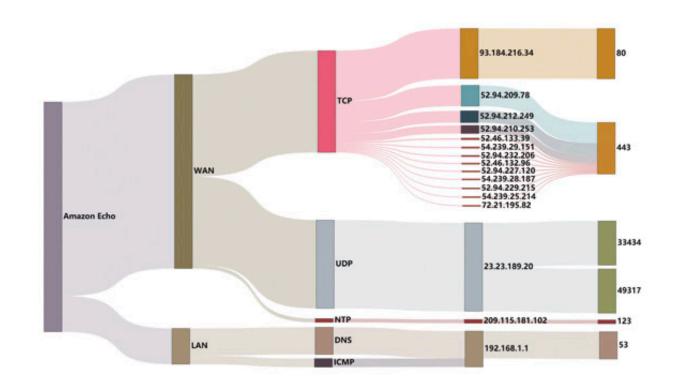




## What IoT device identification models are currently available?

## Static/Rule Based

### Manufacturer Usage **Description (MUD)**



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

## Machine Learning Based

- Supervised Learning.
- Unsupervised Learning.
- Semi-Supervised Learning.

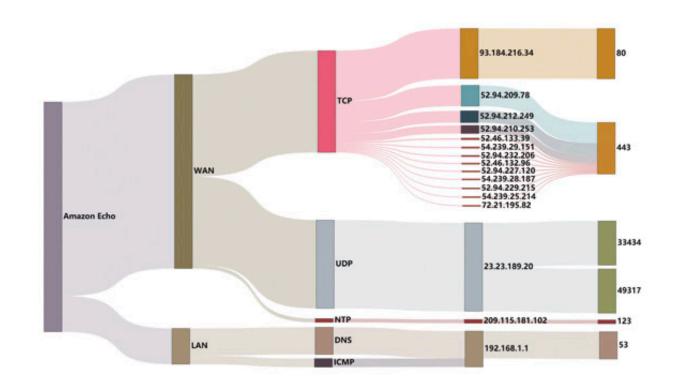
**Algorithms:** Random Forest, LSTM, CNN, LightGBM, DBSCAN.

OR

## What IoT device identification models are currently available?

## Static/Rule Based

### Manufacturer Usage **Description (MUD)**



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

## Machine Learning Based

- Supervised Learning.
- Unsupervised Learning.
- Semi-Supervised Learning.

**Algorithms:** Random Forest, LSTM, CNN, LightGBM, DBSCAN.

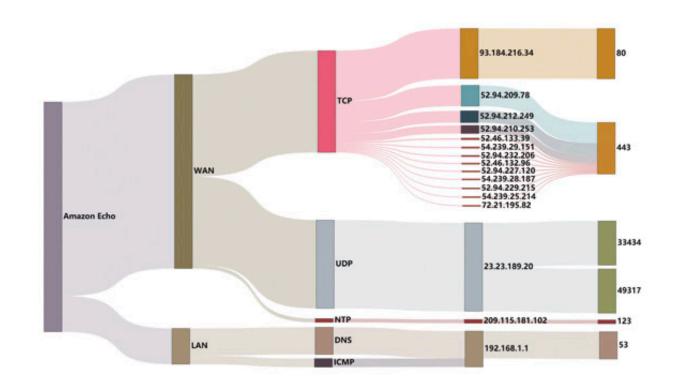
# 70% of current SoA

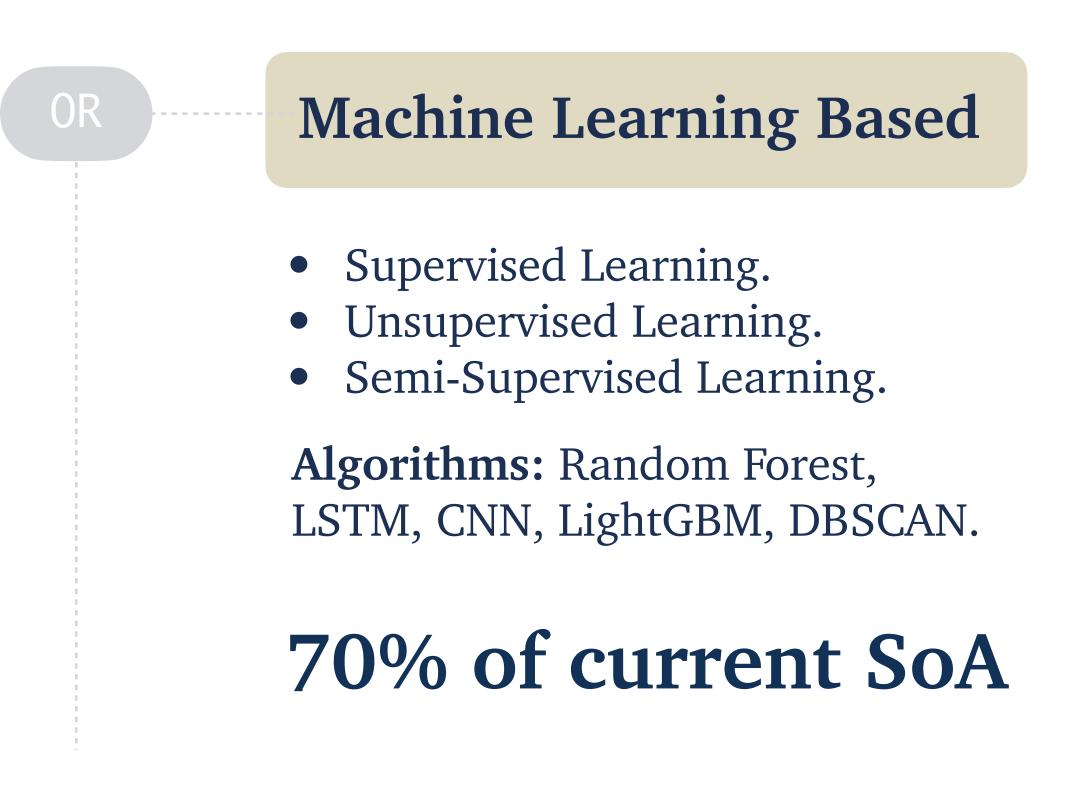
OR

## What IoT device identification models are currently available?

## Static/Rule Based

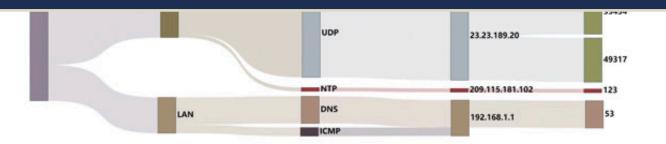
### Manufacturer Usage **Description (MUD)**



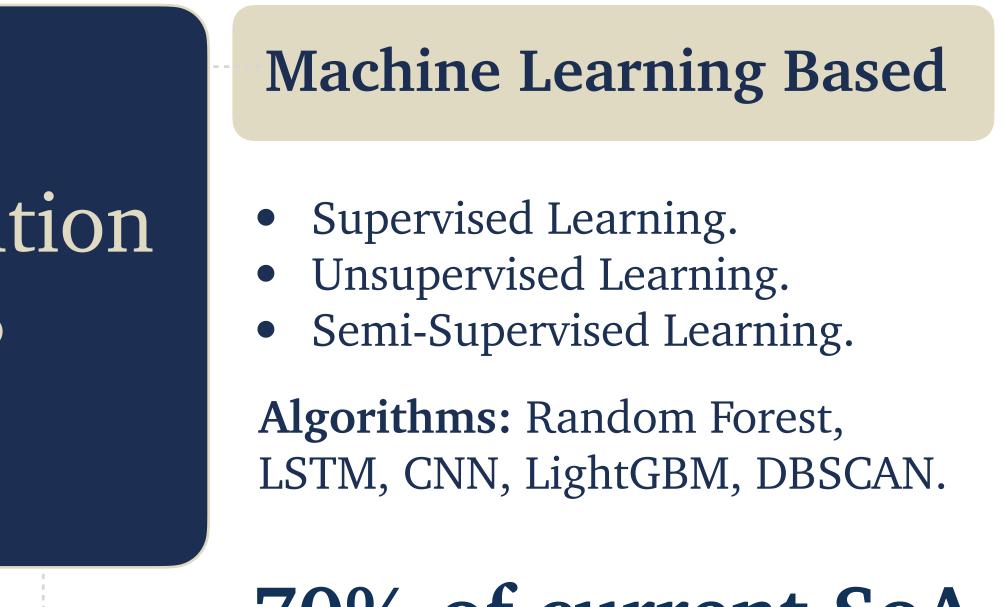


## What IoT device identification models are currently available?

# Can IoT device identification models be deployed?



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications



# 70% of current SoA

**Practicality Definition and Attributes** 

## **Practicality Definition and Attributes**

The model's capability to ensure robust and reliable IoT device identification across different operational modes, deployment environments, and network conditions.

## **Practicality Definition and Attributes**

The model's capability to ensure robust and reliable IoT device identification across different operational modes, deployment environments, and network conditions.

## **Practicality Definition and Attributes**

The model's capability to ensure robust and reliable IoT device identification across different operational modes, deployment environments, and network conditions.

## **Practicality Definition and Attributes**

The model's capability to ensure robust and reliable IoT device identification across different operational modes, deployment environments, and network conditions.

## **Practicality Definition and Attributes**

The model's capability to ensure robust and reliable IoT device identification across different operational modes, deployment environments, and network conditions.

## **Practicality Definition and Attributes**

The model's capability to ensure robust and reliable IoT device identification across different operational modes, deployment environments, and network conditions.

## **Practicality Definition and Attributes**

The model's capability to ensure robust and reliable IoT device identification across different operational modes, deployment environments, and network conditions.

## **Practicality Definition and Attributes**

The model's capability to ensure robust and reliable IoT device identification across different operational modes, deployment environments, and network conditions.



What defines a robust and reliable solution?

## **Practicality Definition and Attributes**

The model's capability to ensure robust and reliable IoT device identification across different operational modes, deployment environments, and network conditions.

- What defines a robust and reliable solution?
- What do varying modes and deployment environments mean? 2

## **Practicality Definition and Attributes**

The model's capability to ensure robust and reliable IoT device identification across different operational modes, deployment environments, and network conditions.

- What defines a robust and reliable solution?
- What do varying modes and deployment environments mean? 2
  - What network conditions must a solution consider?

3

## What attributes define practicality in ML-based models?

## What attributes define practicality in ML-based models?

- Generalisation and Robustness
- Stability Over Time
- Model Scalability
- Data Efficiency

- Deployment Compatibility
- Cost Metric
- Ethics and Societal Impact
- Fairness and Accountability

# What attributes define practicality in ML-based models?

- Generalisation and Robustness
- Stability Over Time
- Model Scalability
- Data Efficiency

- Deployment Compatibility
- Cost Metric
- Ethics and Societal Impact
- Fairness and Accountability

## What attributes define practicality in ML-based models?

- Generalisation and Robustness
- Stability Over Time
- Model Scalability
- Data Efficiency

# Which are relevant to practicality in the context of IoT identification?

- Deployment Compatibility
- Cost Metric
- Ethics and Societal Impact
- Fairness and Accountability

# What attributes define practicality in ML-based models?

- Generalisation and Robustness
- Stability Over Time
- Model Scalability
- Data Efficiency

# Which are relevant to practicality in the context of IoT identification?

Deploying a solution that can be generalised across different environments/configurations simultaneously with robustness in performance and stability over time.

- Deployment Compatibility
- Cost Metric
- Ethics and Societal Impact
- Fairness and Accountability

## What generalise, robustness and stability over time mean in IoT environments?

## What generalise, robustness and stability over time mean in IoT environments?

### **Practicality Definition and Attributes**

## What generalise, robustness and stability over time mean in IoT environments?

### **Practicality Definition and Attributes**

## What generalise, robustness and stability over time mean in IoT environments?

### **Practicality Definition and Attributes**

Attributes

### **Practicality Definition and Attributes**

Defintion

The model's ability to generalise across variability introduced by the IoT device life cycle (active vs. idle).

Attributes

### **Practicality Definition and Attributes**

Defintion

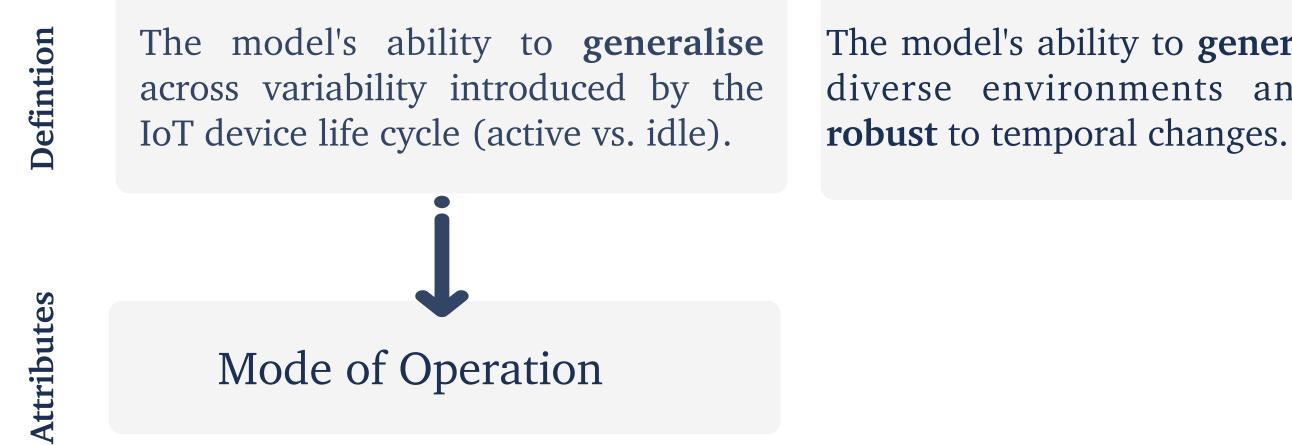
The model's ability to generalise across variability introduced by the IoT device life cycle (active vs. idle).

Attributes

### **Practicality Definition and Attributes**



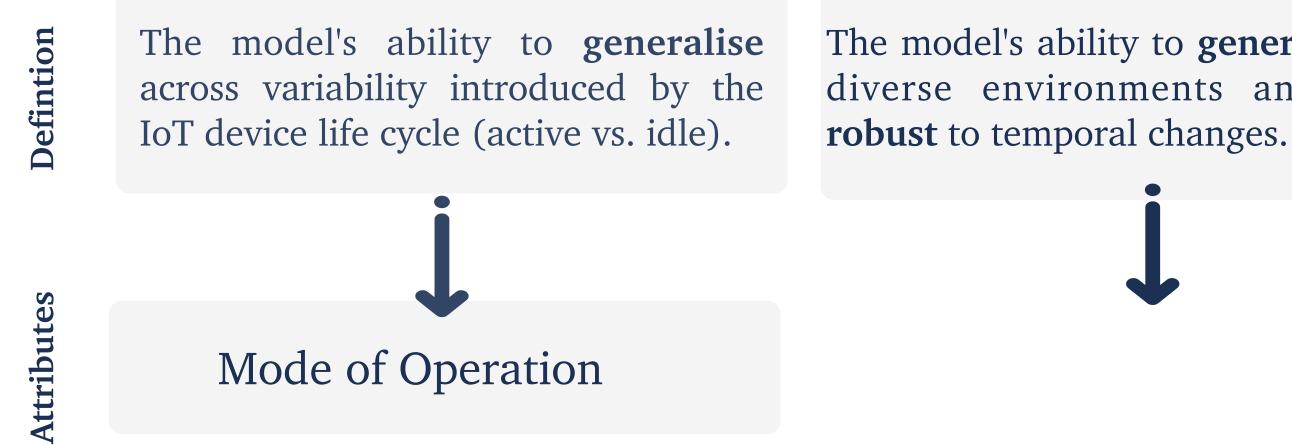
## **Practicality Definition and Attributes**



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

The model's ability to generalise across diverse environments and remains

## **Practicality Definition and Attributes**

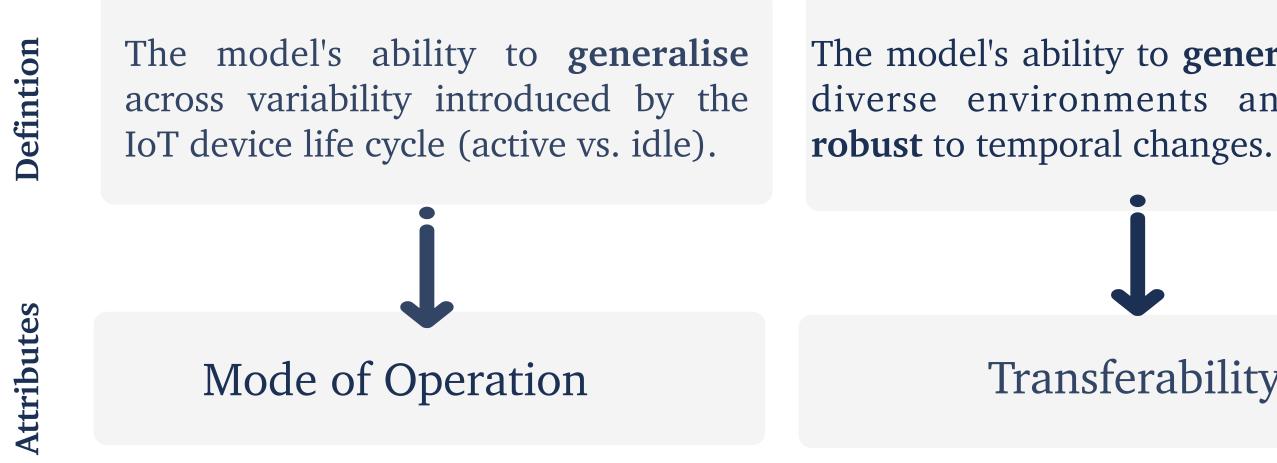


Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

The model's ability to **generalise** across diverse environments and remains



## **Practicality Definition and Attributes**

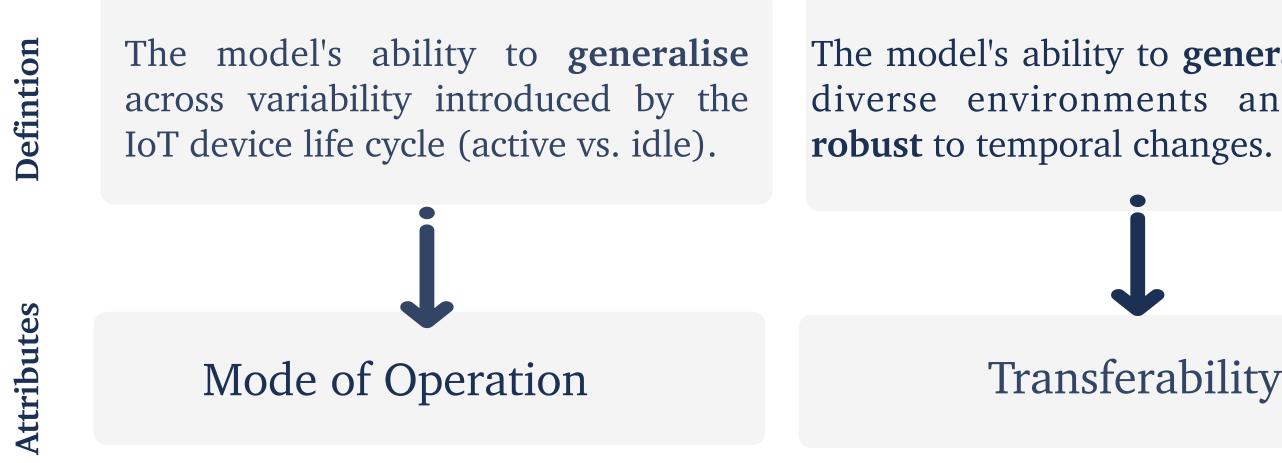


Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

The model's ability to **generalise** across diverse environments and remains

Transferability

## **Practicality Definition and Attributes**



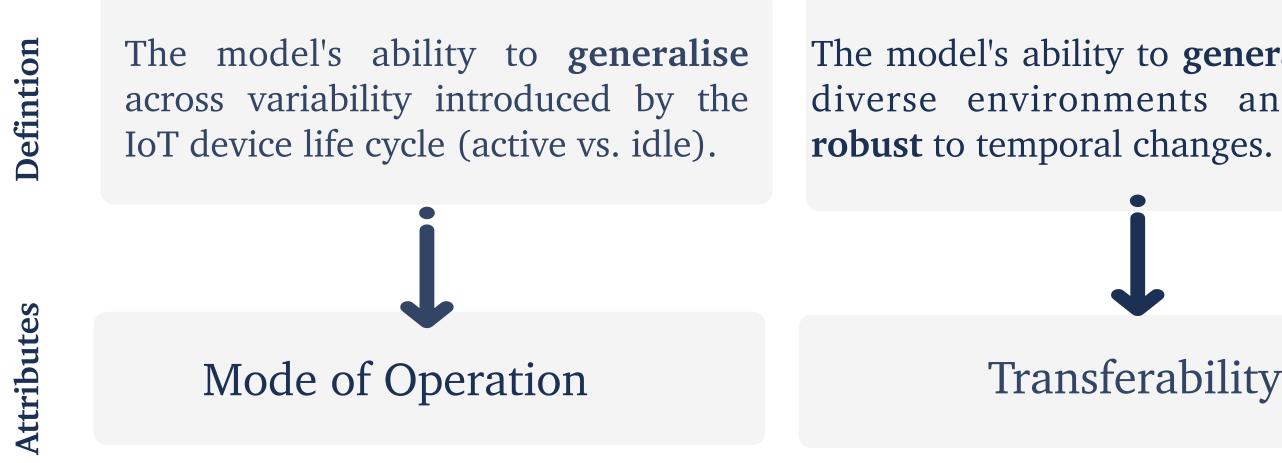
Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

The model's ability to **generalise** across diverse environments and remains

Transferability

The model's ability to maintain **robust** performance across various network conditions and sampling rates.

## **Practicality Definition and Attributes**



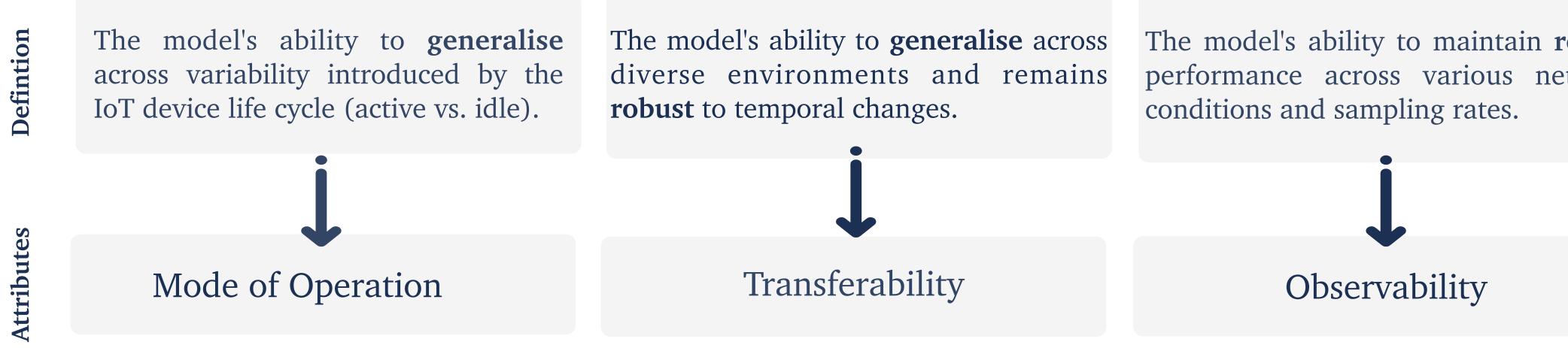
Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

The model's ability to **generalise** across diverse environments and remains

Transferability

The model's ability to maintain **robust** performance across various network conditions and sampling rates.

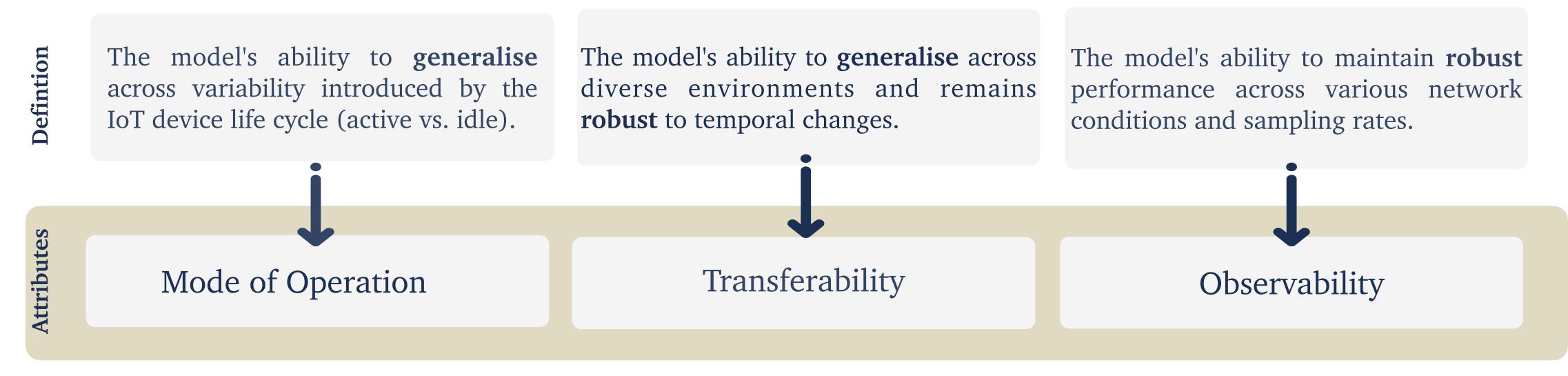
## **Practicality Definition and Attributes**



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

The model's ability to maintain **robust** performance across various network

## **Practicality Definition and Attributes**



# How should current solutions be evaluated against the three attributes?

# How should current solutions be evaluated against the three attributes?

**Components of ML-based Model** 

# How should current solutions be evaluated against the three attributes?

**Components of ML-based Model** 

IoT Identification Problem

# How should current solutions be evaluated against the three attributes?

**Components of ML-based Model** 

IoT Identification Problem

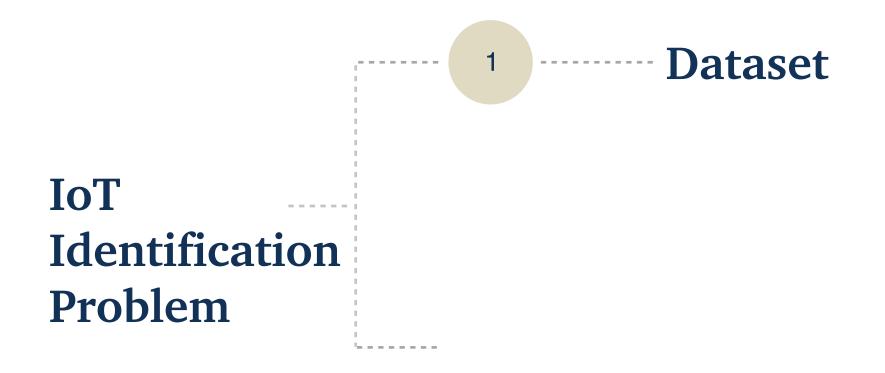
# How should current solutions be evaluated against the three attributes?

### **Components of ML-based Model**

IoT Identification Problem

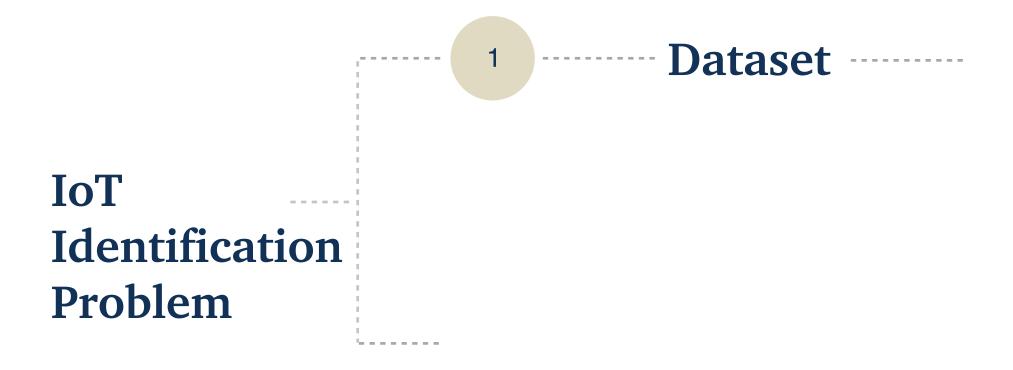
# How should current solutions be evaluated against the three attributes?

### **Components of ML-based Model**



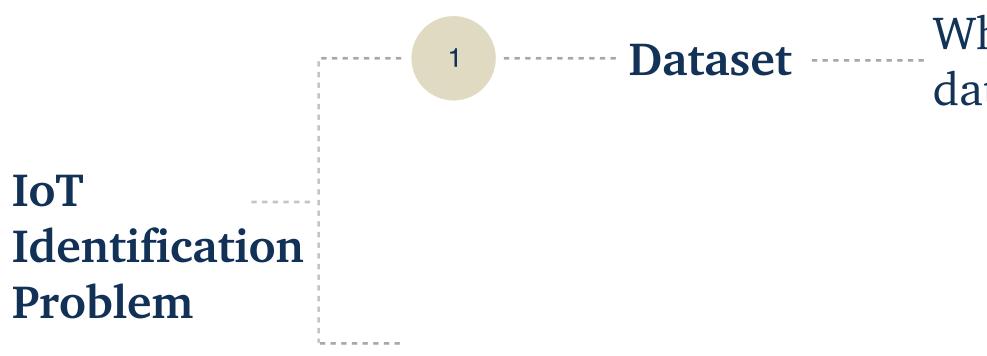
# How should current solutions be evaluated against the three attributes?

### **Components of ML-based Model**



# How should current solutions be evaluated against the three attributes?

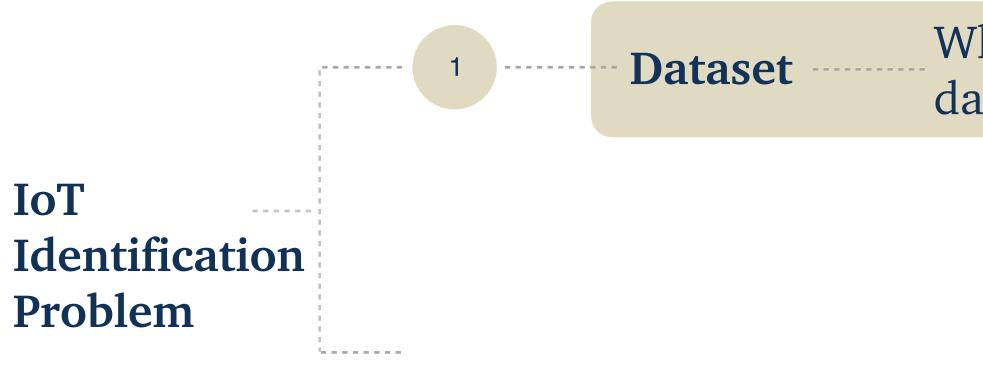
### **Components of ML-based Model**



<sup>1</sup> **Dataset** What data should be collected, and how should the dataset be gathered for evaluation?

# How should current solutions be evaluated against the three attributes?

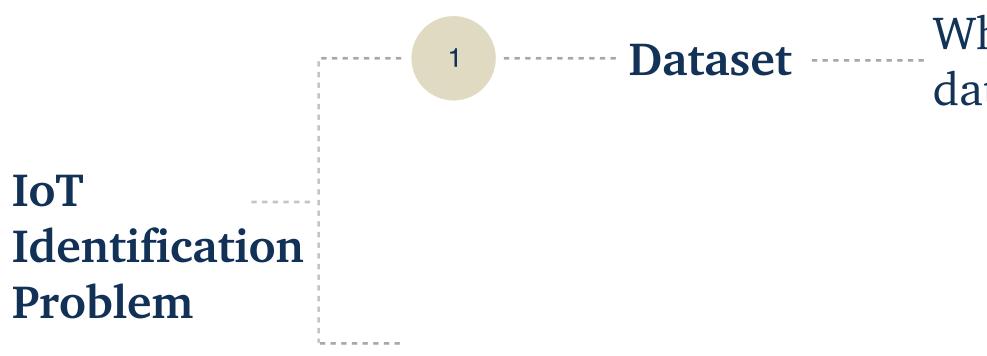
### **Components of ML-based Model**



What data should be collected, and how should the dataset be gathered for evaluation?

# How should current solutions be evaluated against the three attributes?

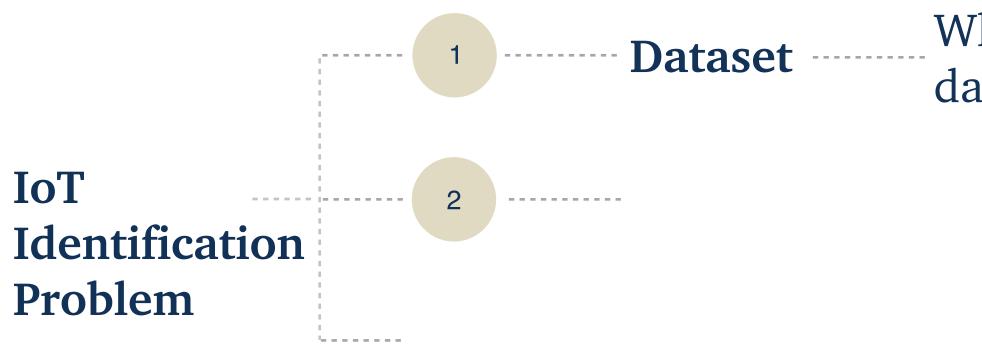
### **Components of ML-based Model**



<sup>1</sup> **Dataset** What data should be collected, and how should the dataset be gathered for evaluation?

# How should current solutions be evaluated against the three attributes?

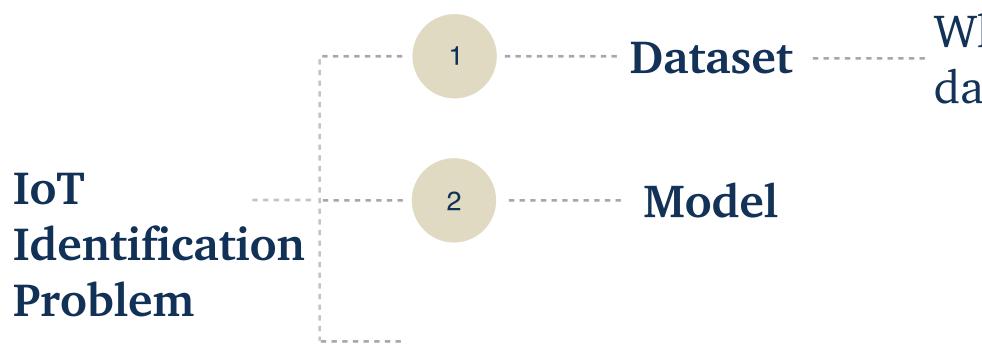
### **Components of ML-based Model**



**Dataset** What data should be collected, and how should the dataset be gathered for evaluation?

# How should current solutions be evaluated against the three attributes?

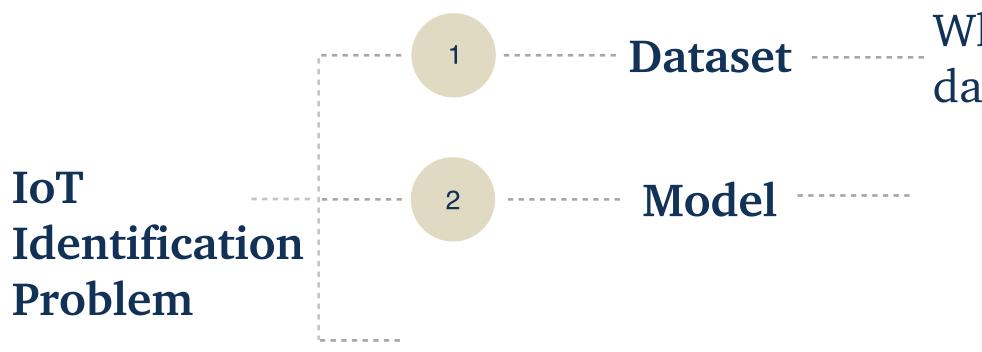
### **Components of ML-based Model**



**Dataset** What data should be collected, and how should the dataset be gathered for evaluation?

# How should current solutions be evaluated against the three attributes?

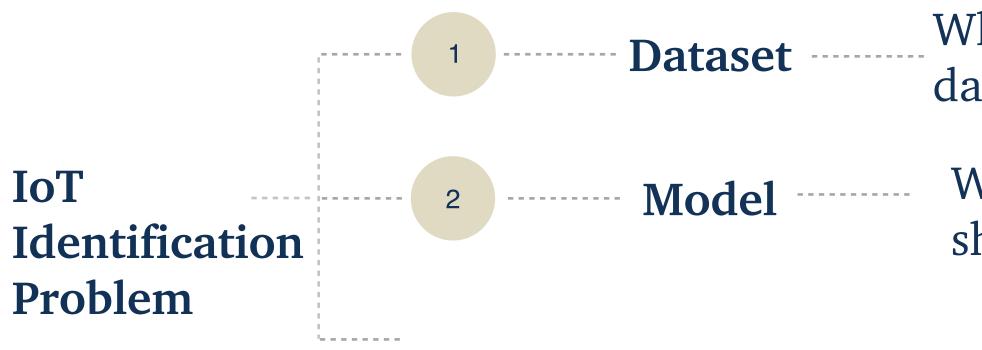
### **Components of ML-based Model**



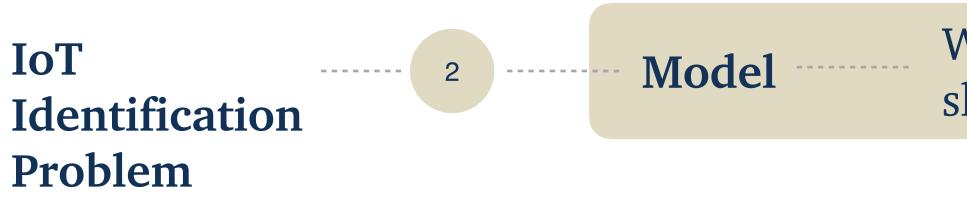
**Dataset** What data should be collected, and how should the dataset be gathered for evaluation?

# How should current solutions be evaluated against the three attributes?

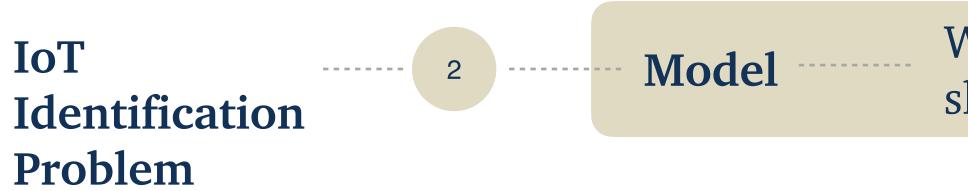
## **Components of ML-based Model**



- What data should be collected, and how should the dataset be gathered for evaluation?
- Which model should be used, and how complex should it be?

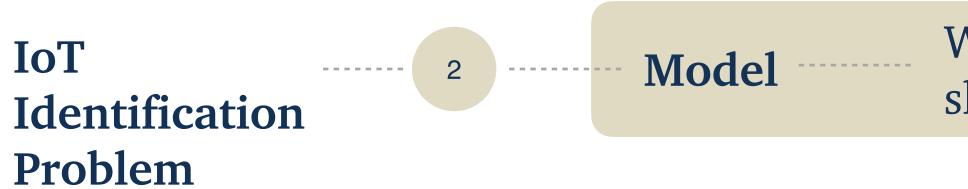


Which model should be used, and how complex should it be?





Which model should be used, and how complex should it be?

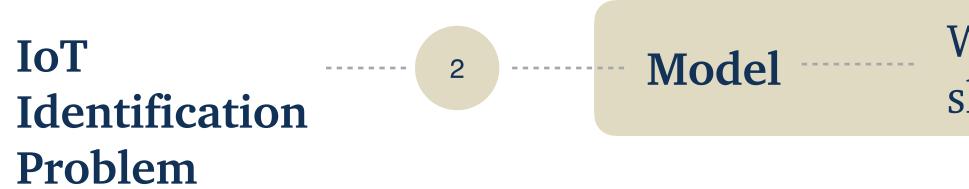




IoT identification.

#### Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

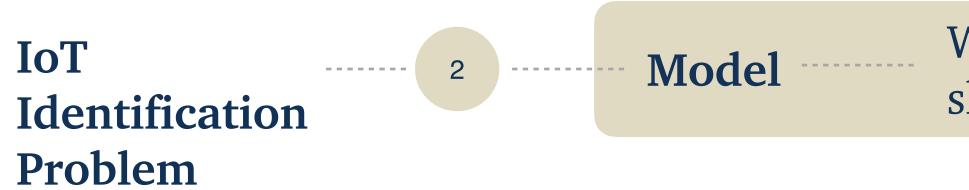
Which model should be used, and how complex should it be?



# **96** Papers 200 Papers

IoT identification.

#### Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

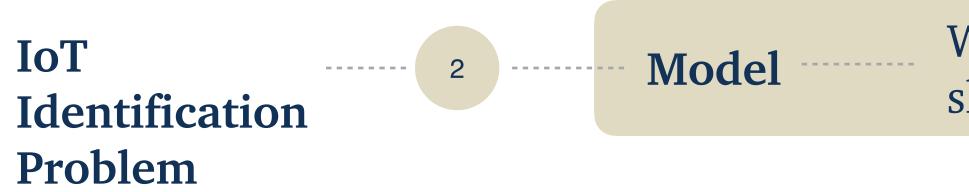


#### 200 96 Papers Papers

IoT identification.

Representative work.

#### Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

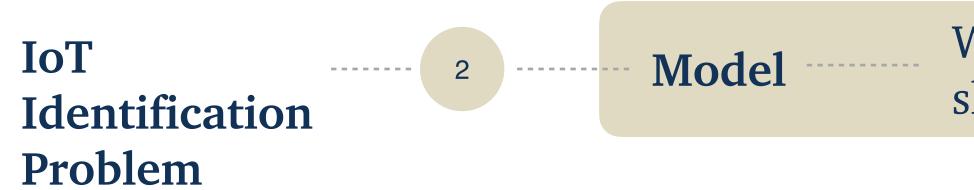


#### 200 96 14 Papers Papers Papers

IoT identification.

Representative work.

#### Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

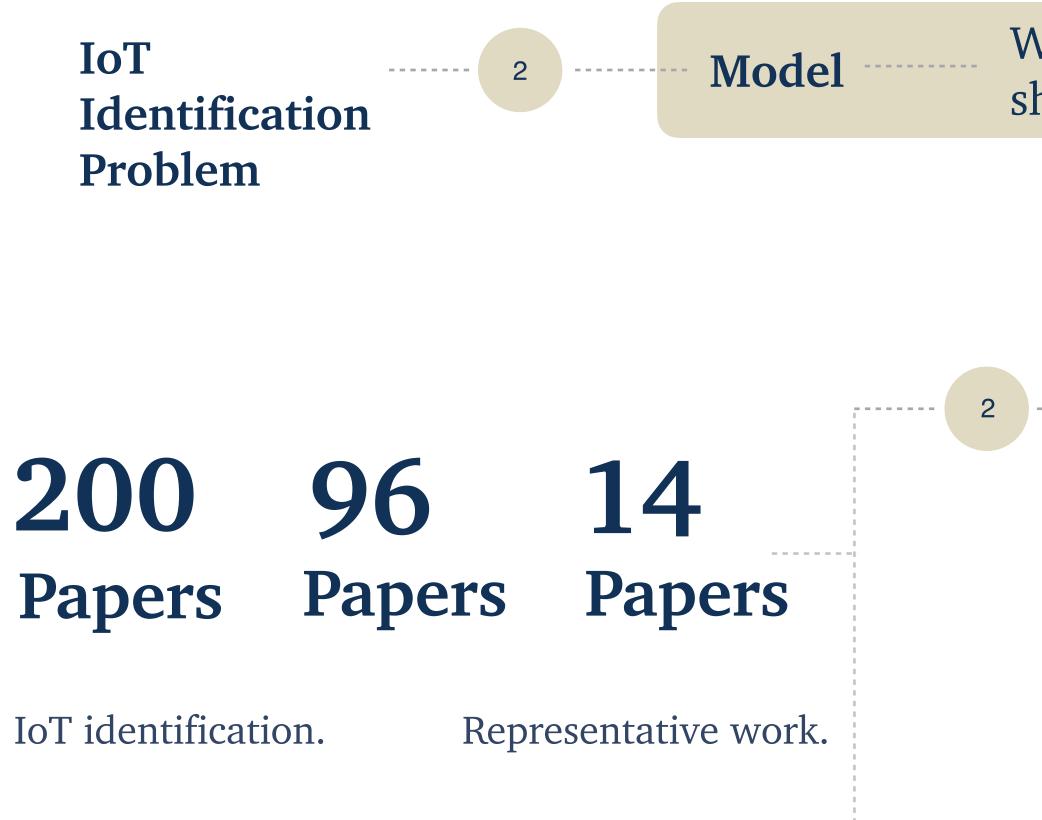




IoT identification.

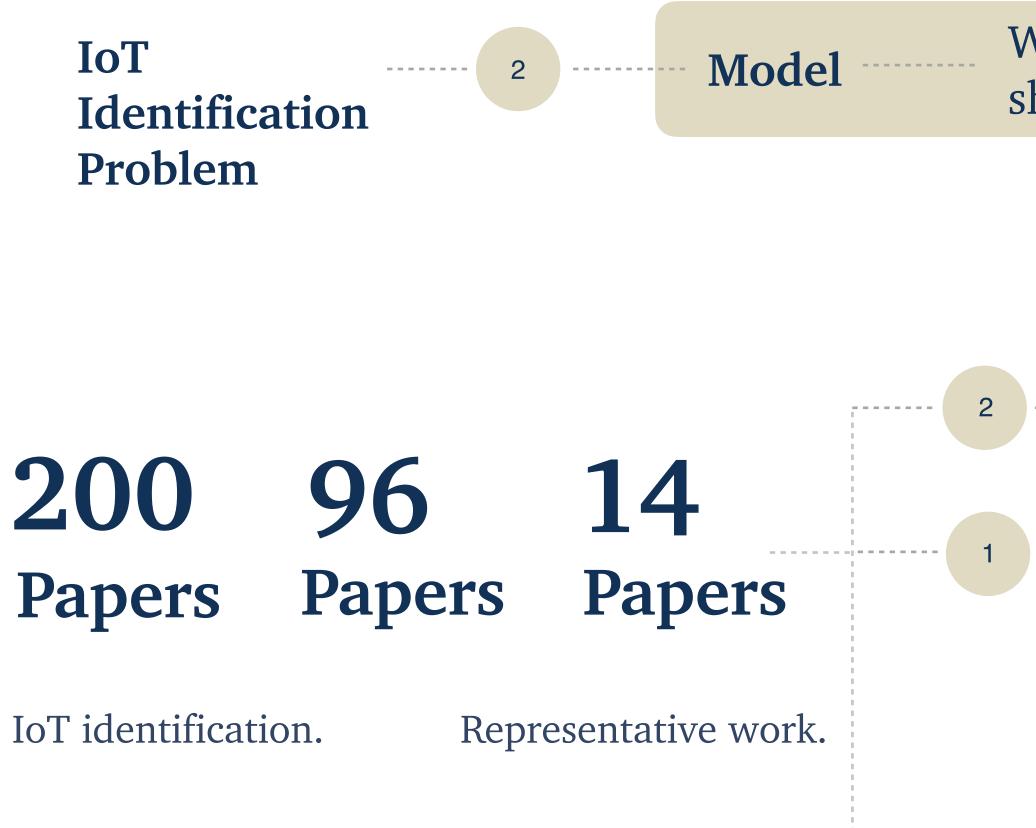
Representative work.

#### Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications



Which model should be used, and how complex should it be?

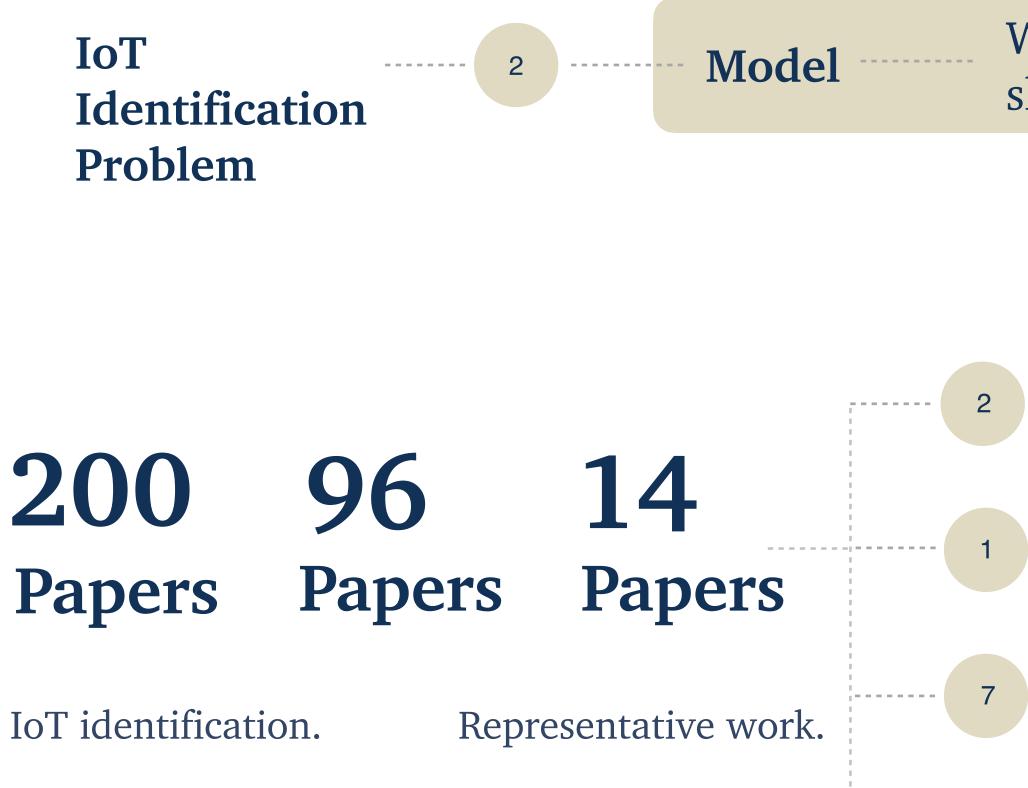
<sup>2</sup> Original code public.



Which model should be used, and how complex should it be?

----- Original code public.

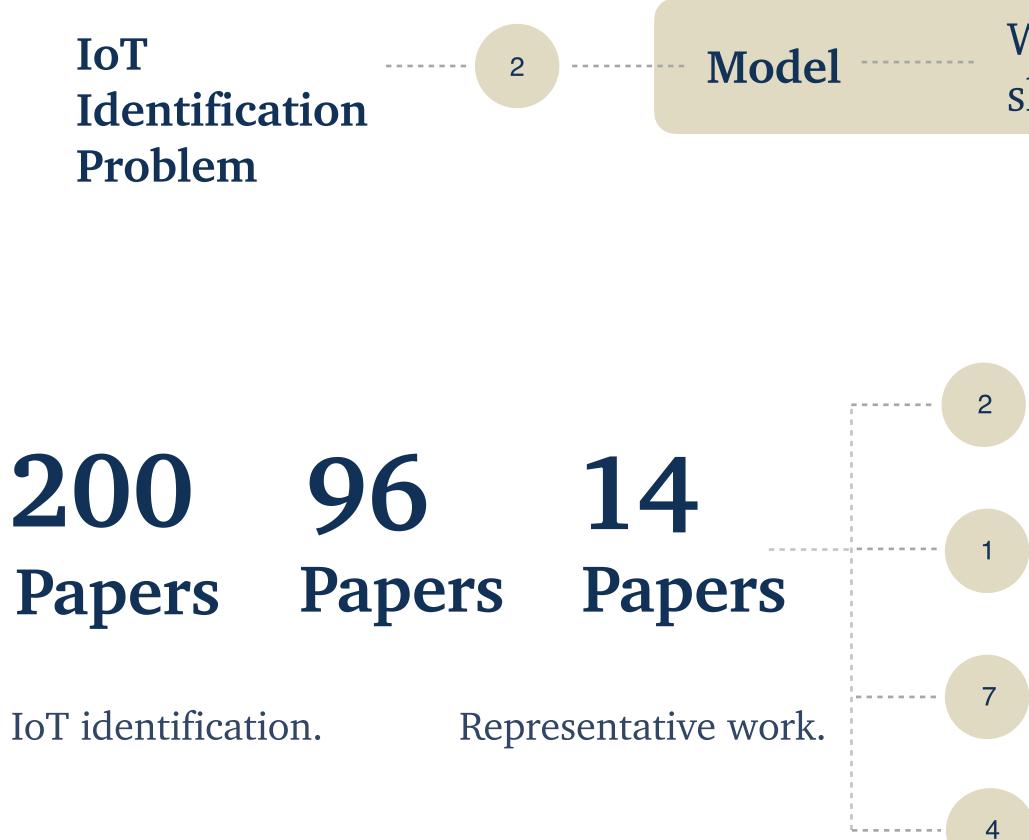
------ Original code with few modifications.



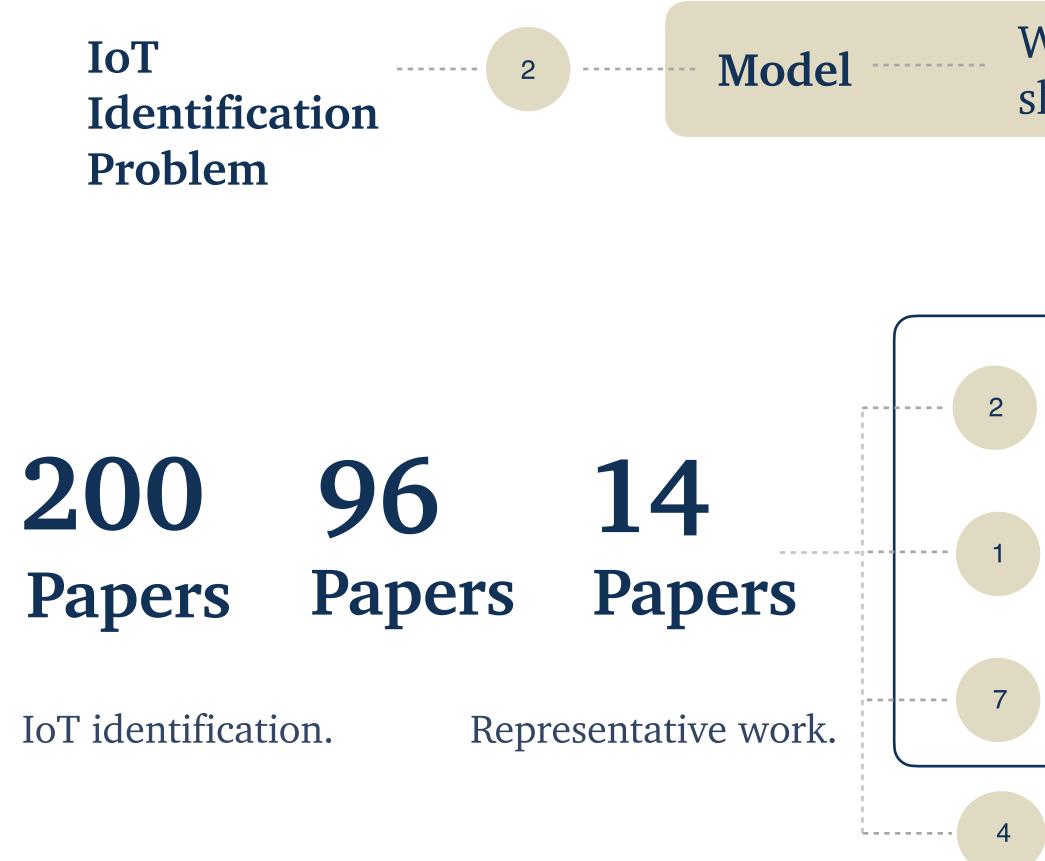
Which model should be used, and how complex should it be?

----- Original code public.

- ------ Original code with few modifications.
- ------ Implemented using original paper description.



- ---- Original code public.
- ----- Original code with few modifications.
- ------ Implemented using original paper description.
- -----No sufficient information about feature extraction.



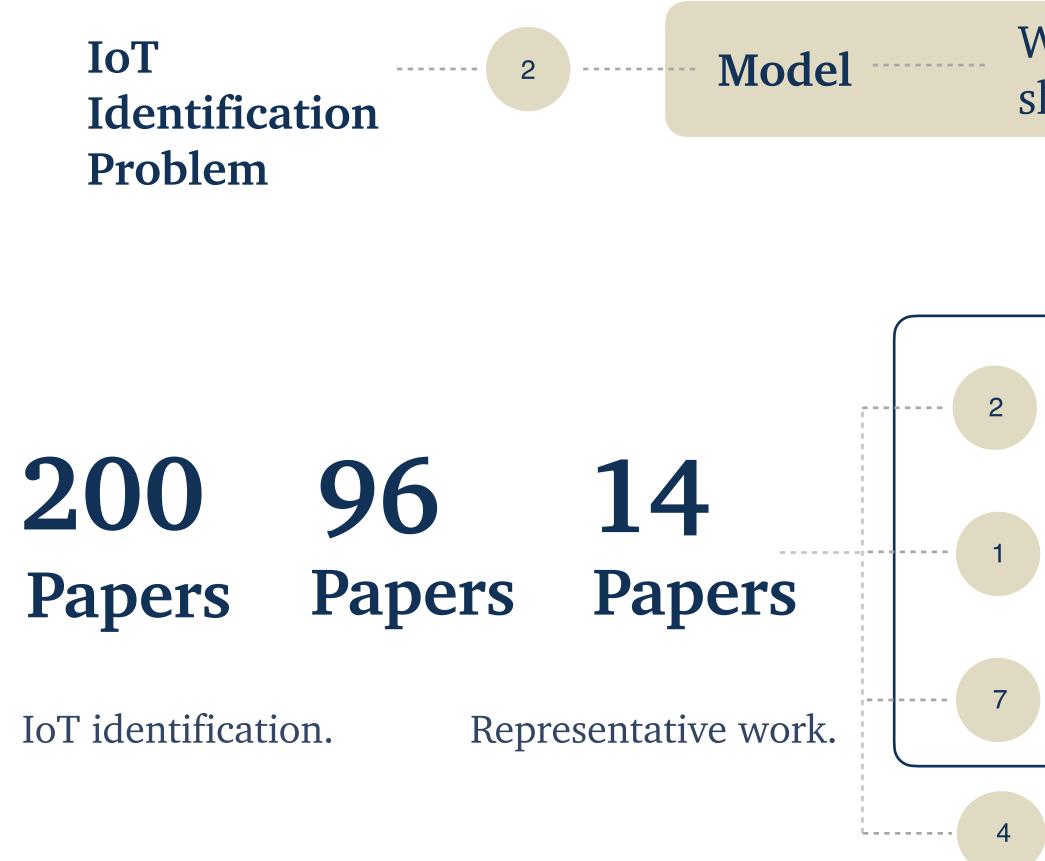
Which model should be used, and how complex should it be?

Original code public.

Original code with few modifications.

------ Implemented using original paper description.

-----No sufficient information about feature extraction.



Which model should be used, and how complex should it be?

----- Original code public.

10 Papers

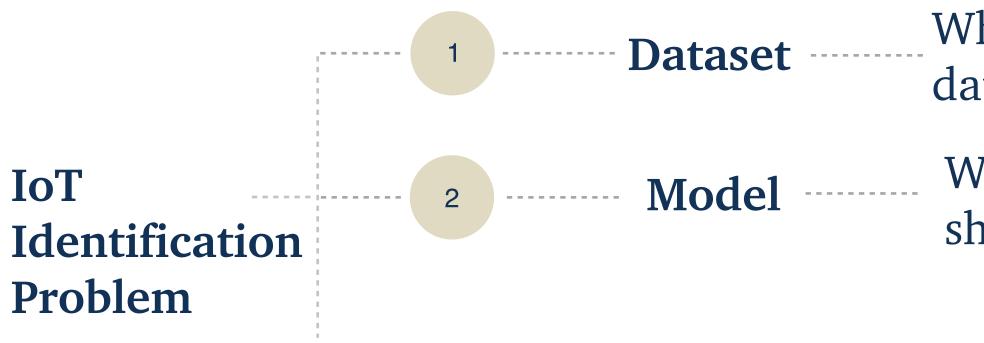
------ Original code with few modifications.

------ Implemented using original paper description.

-----No sufficient information about feature extraction.

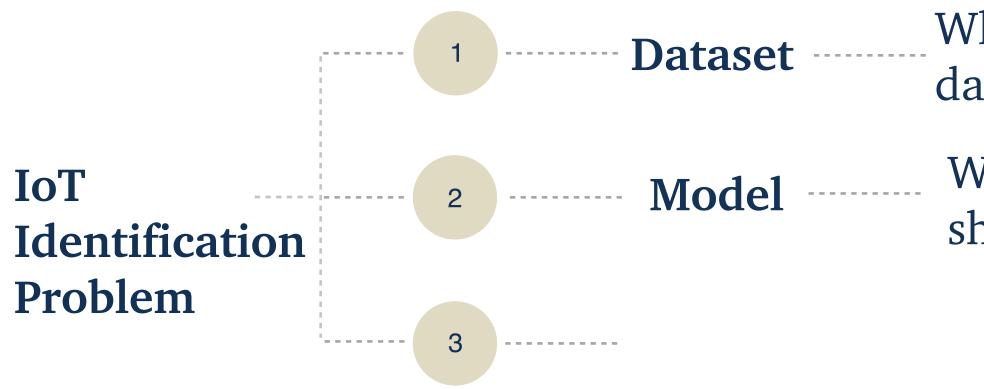
## How should current solutions be evaluated against the three attributes?

## How should current solutions be evaluated against the three attributes?



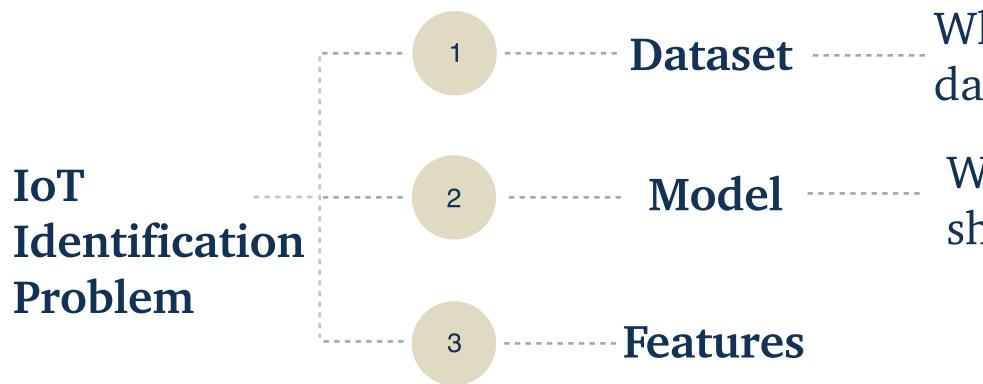
- What data should be collected, and how should the dataset be gathered for evaluation?
- Which model should be used, and how complex should it be?

## How should current solutions be evaluated against the three attributes?



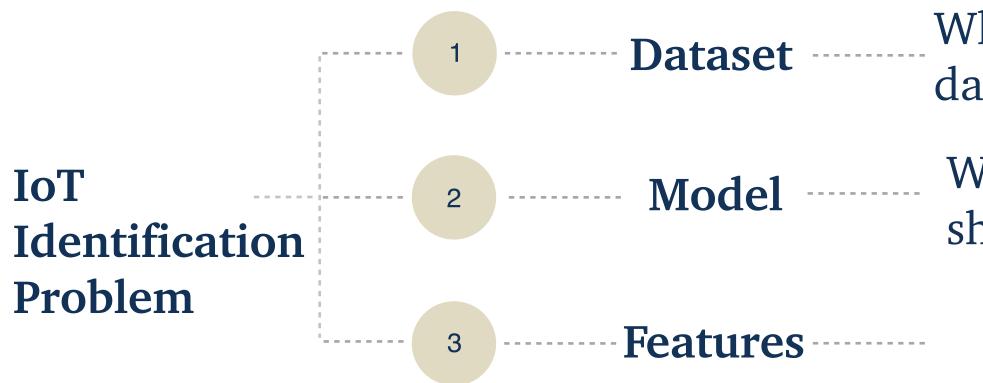
- What data should be collected, and how should the dataset be gathered for evaluation?
- Which model should be used, and how complex should it be?

## How should current solutions be evaluated against the three attributes?



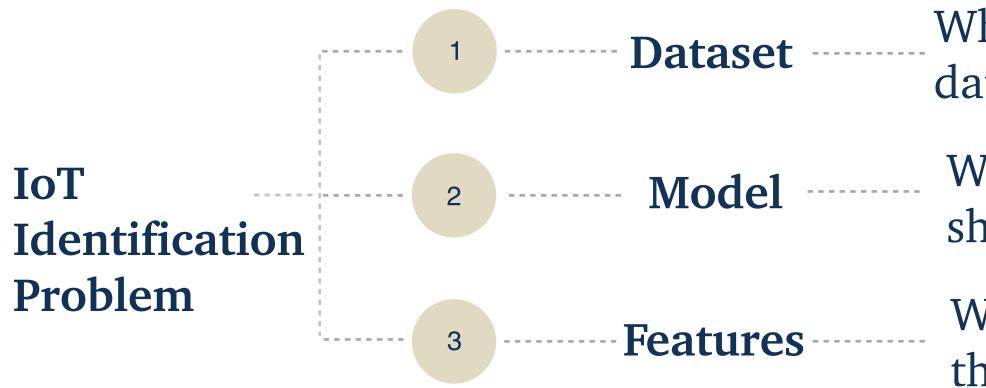
- What data should be collected, and how should the dataset be gathered for evaluation?
- Which model should be used, and how complex should it be?

## How should current solutions be evaluated against the three attributes?



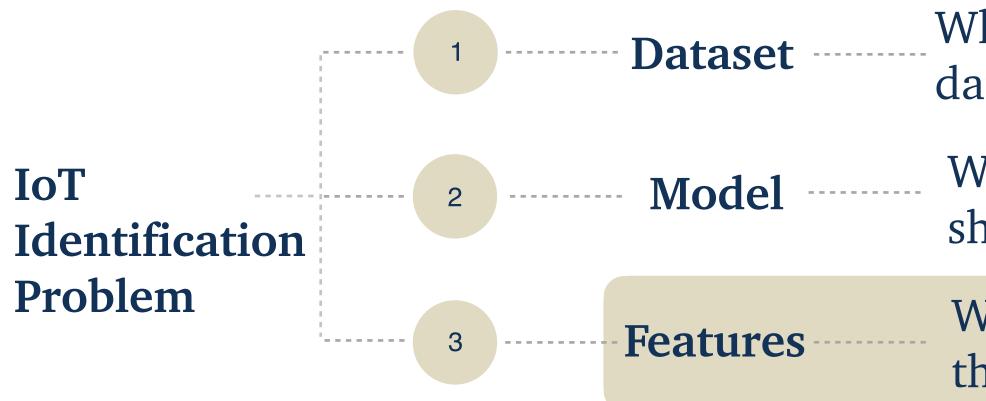
- What data should be collected, and how should the dataset be gathered for evaluation?
- Which model should be used, and how complex should it be?

## How should current solutions be evaluated against the three attributes?



- What data should be collected, and how should the dataset be gathered for evaluation?
- Which model should be used, and how complex should it be?
- What features should be extracted, and how should they be represented?

#### How should current solutions be evaluated against the three attributes?



- What data should be collected, and how should the dataset be gathered for evaluation?
- Which model should be used, and how complex should it be?
- What features should be extracted, and how should they be represented?

## What is the experimental setup for practicality evaluation and attributes?

For each of 10 papers, we have a baseline, and perform the following experimental scenarios:

For each of 10 papers, we have a baseline, and perform the following experimental scenarios:

Attributes

For each of 10 papers, we have a baseline, and perform the following experimental scenarios:

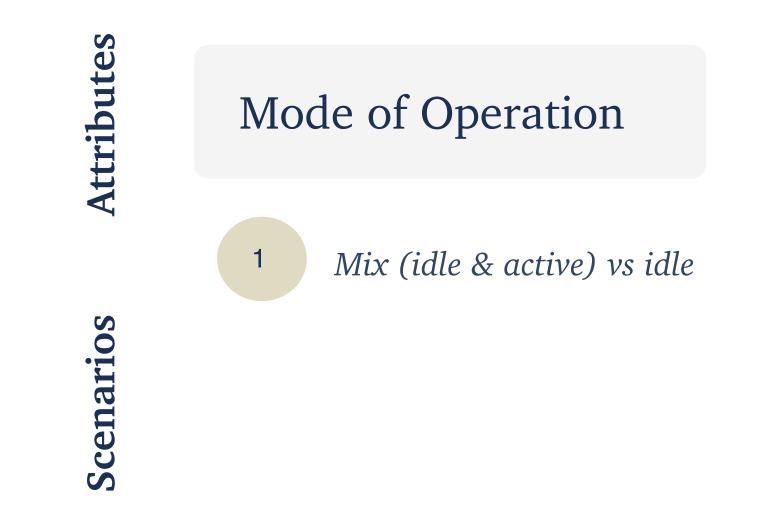
Attributes

Mode of Operation

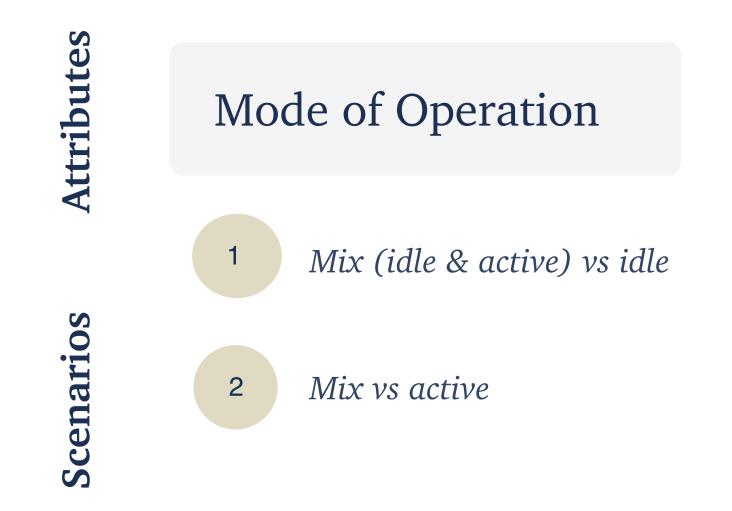
For each of 10 papers, we have a baseline, and perform the following experimental scenarios:



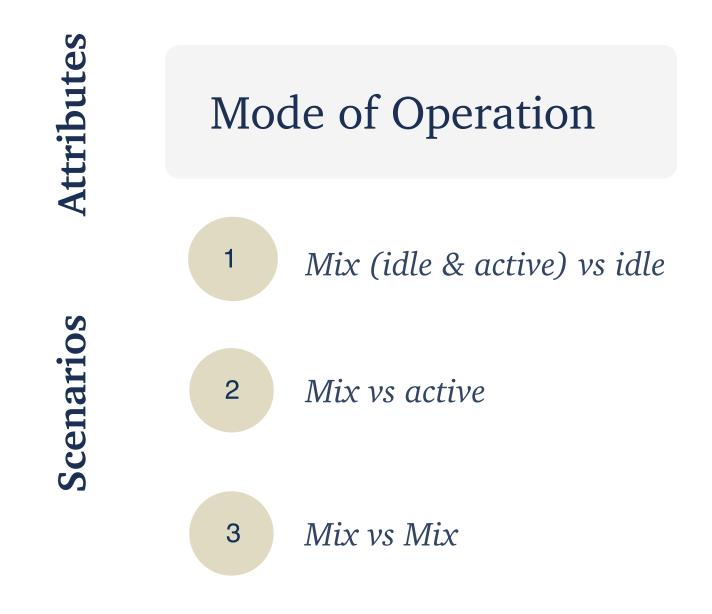
Mode of Operation



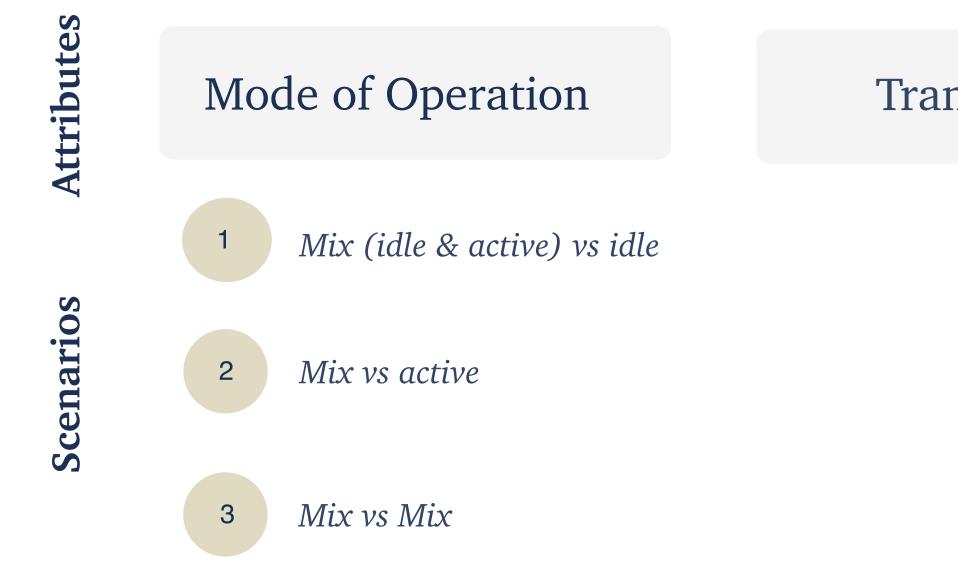
Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications



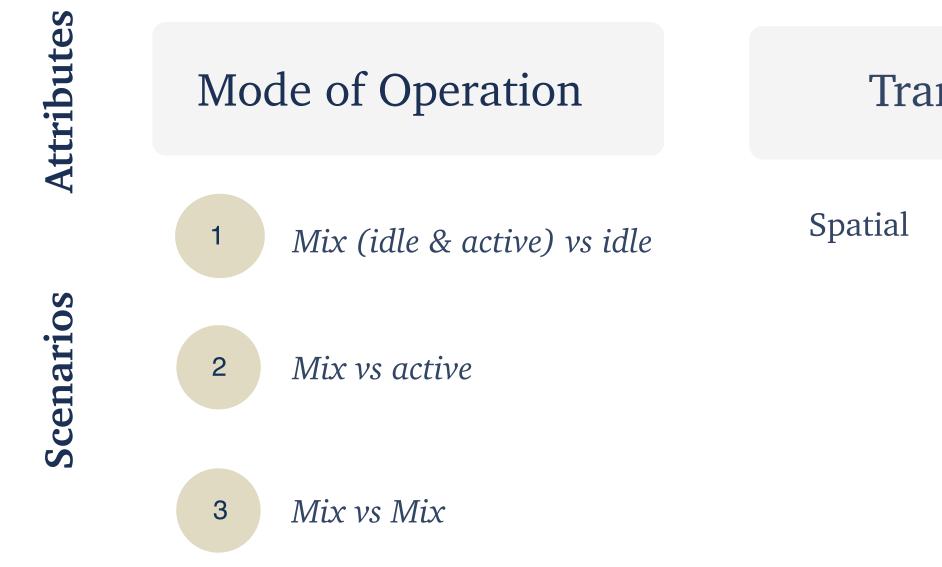
Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

For each of 10 papers, we have a baseline, and perform the following experimental scenarios:

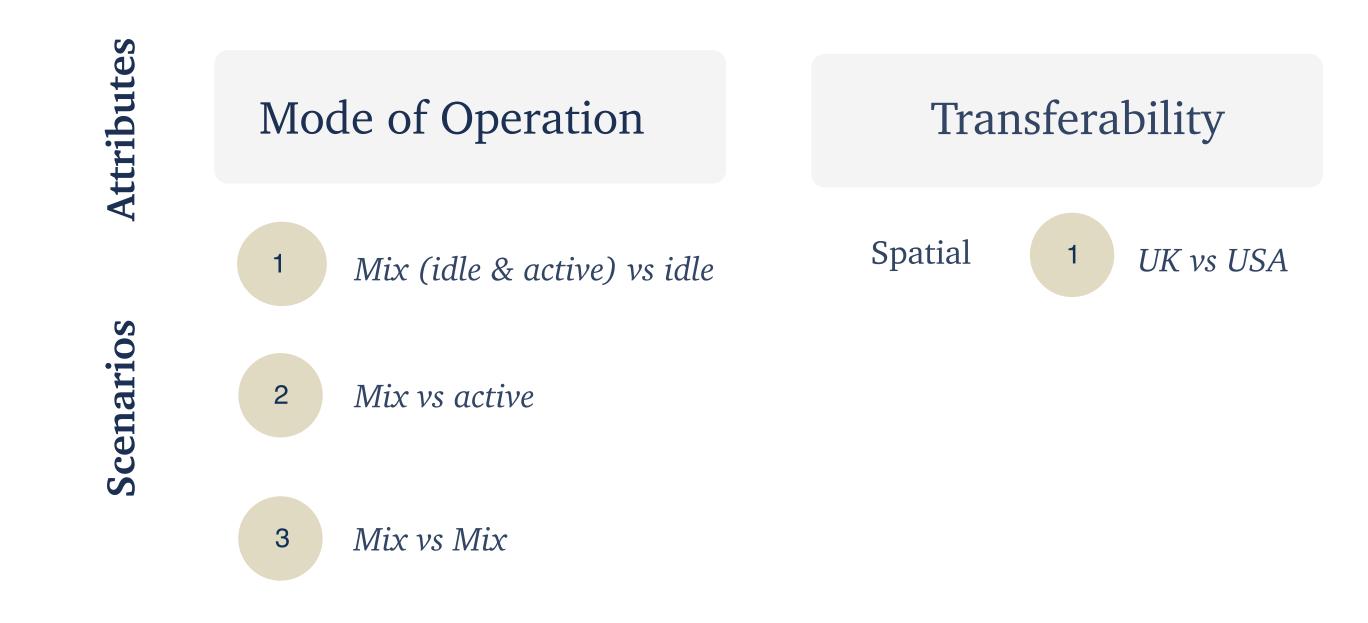
Transferability



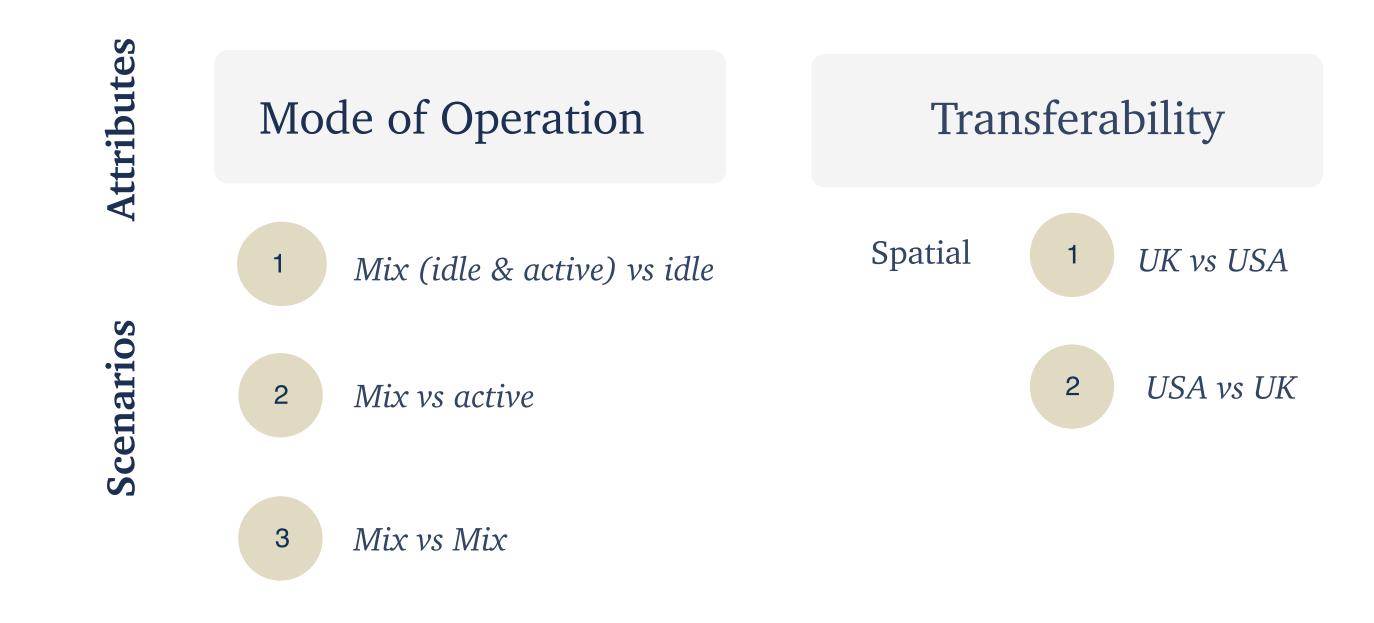
Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

For each of 10 papers, we have a baseline, and perform the following experimental scenarios:

Transferability

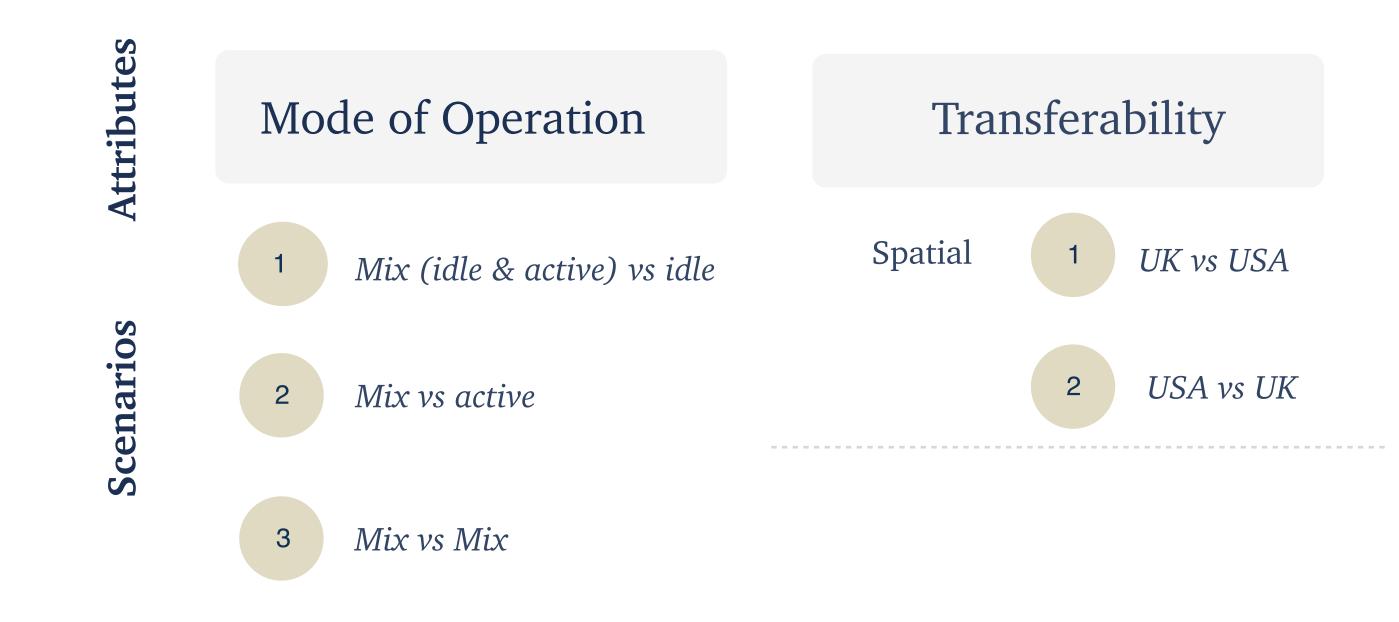


Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

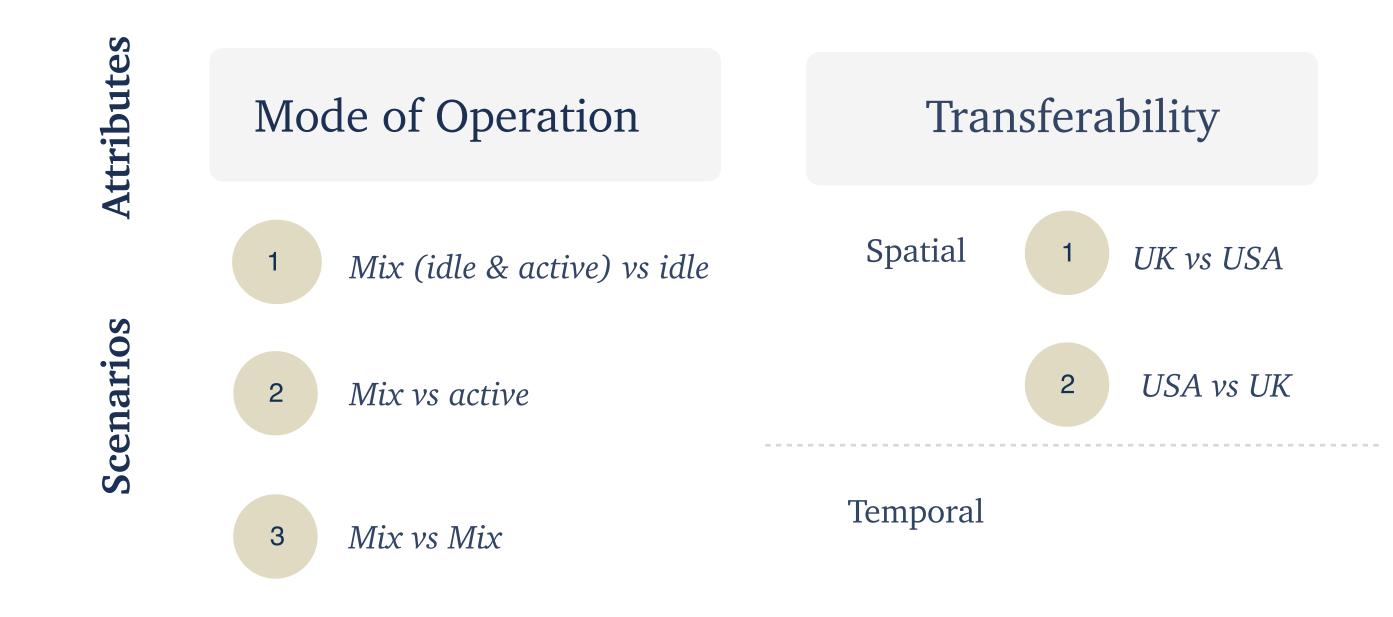


Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

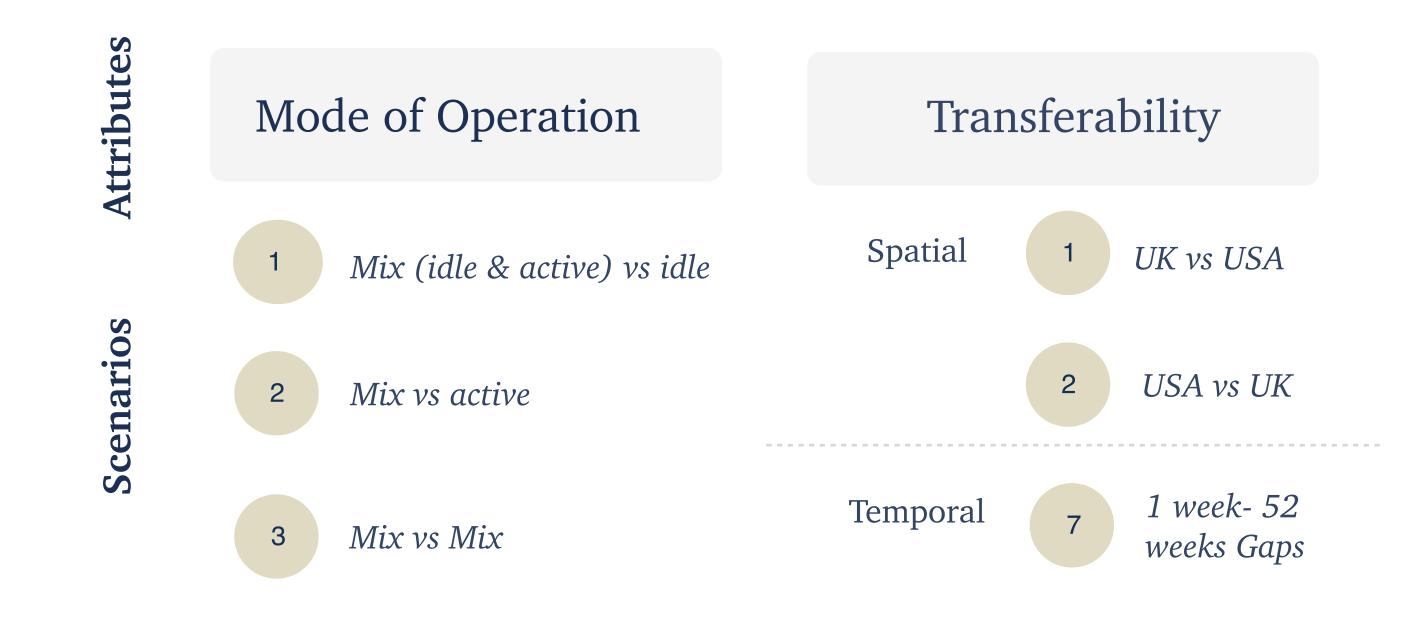
#### For each of 10 papers, we have a baseline, and perform the following experimental scenarios:

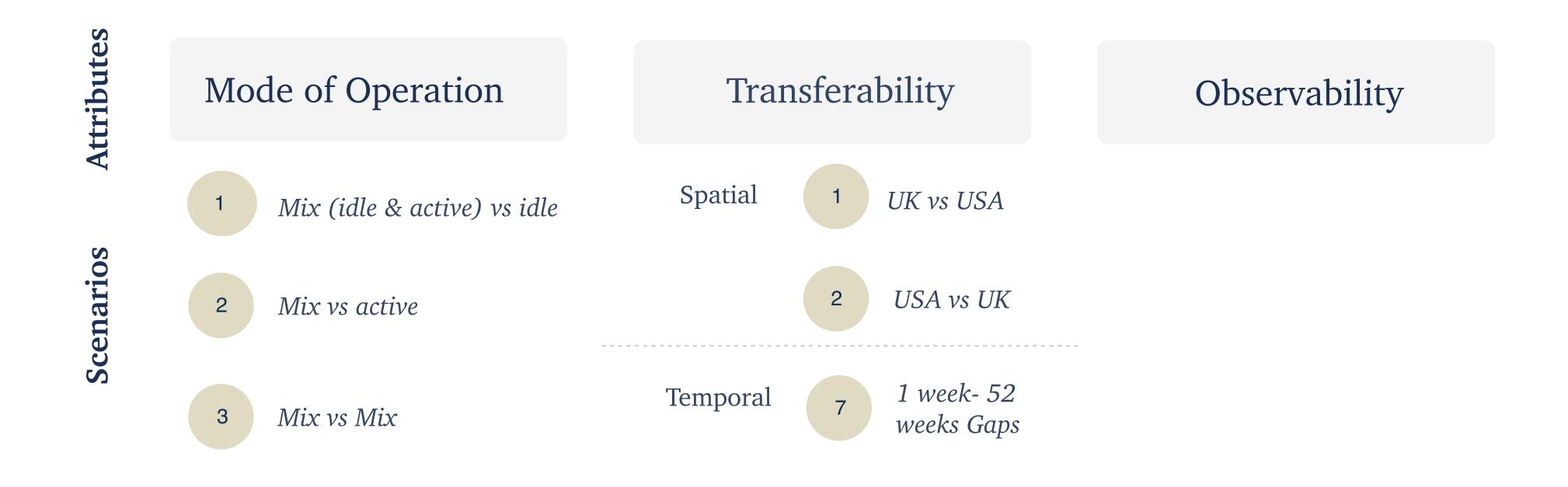


#### For each of 10 papers, we have a baseline, and perform the following experimental scenarios:



#### For each of 10 papers, we have a baseline, and perform the following experimental scenarios:



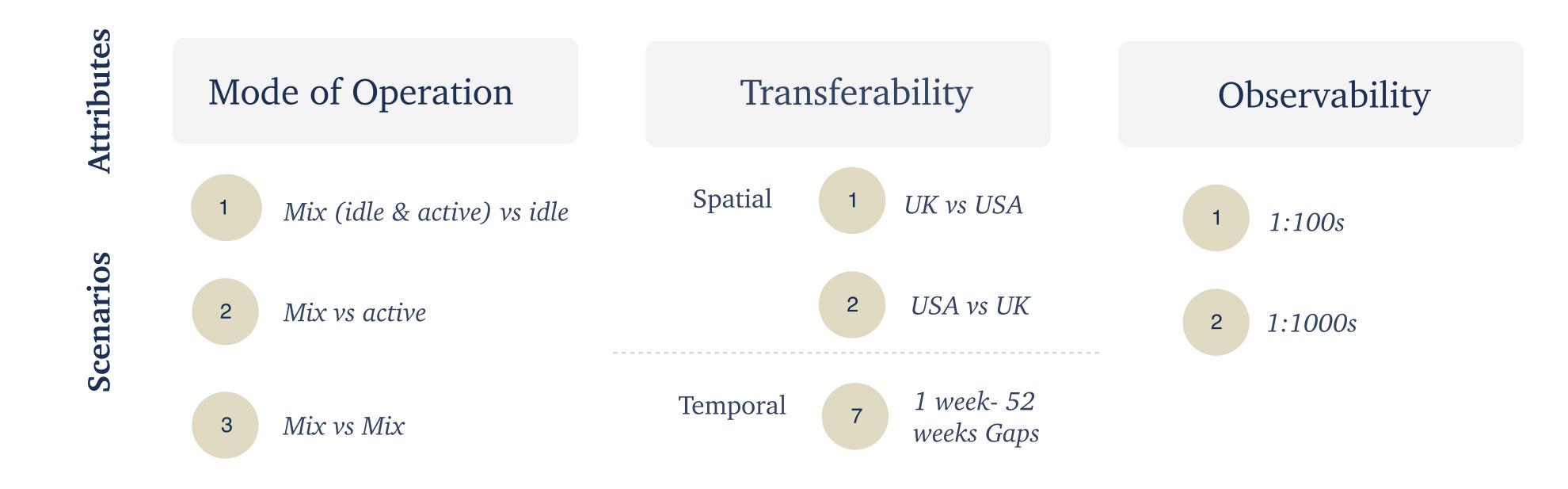


Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications

#### For each of 10 papers, we have a baseline, and perform the following experimental scenarios:

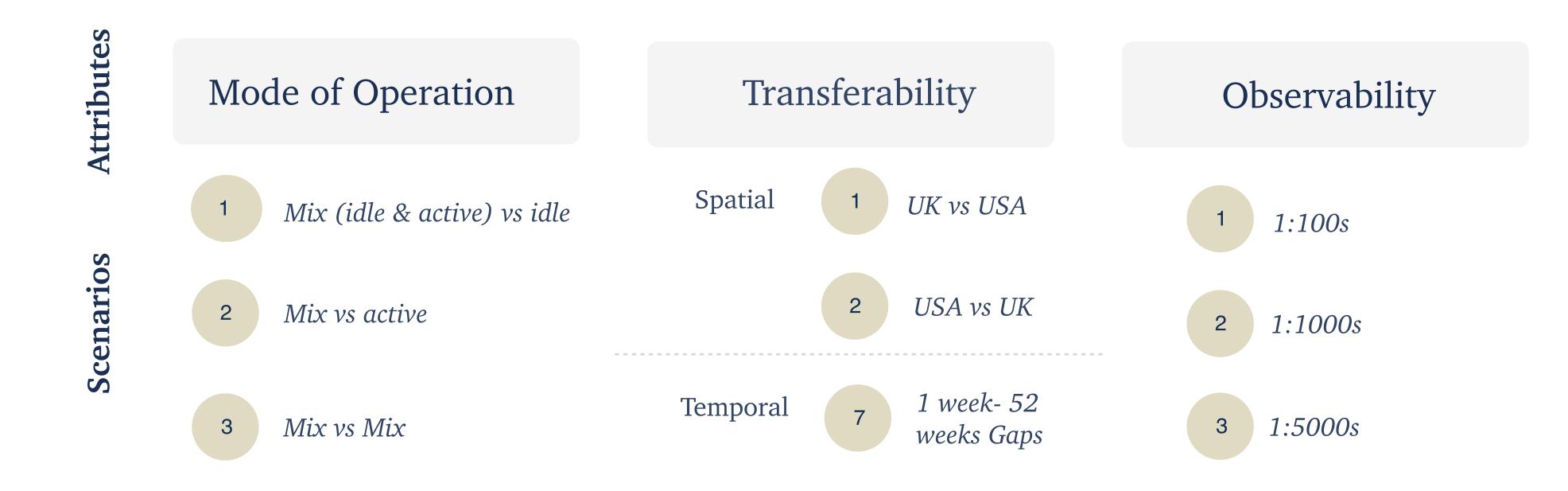


#### For each of 10 papers, we have a baseline, and perform the following experimental scenarios:



## What is the experimental setup for practicality evaluation and attributes?

#### For each of 10 papers, we have a baseline, and perform the following experimental scenarios:



### What is the experimental setup for practicality evaluation and attributes?

#### For each of 10 papers, we have a baseline, and perform the following experimental scenarios:



In total, we performed 140 practicality evaluation across three attributes.

Attributes

Attributes

## What are the key findings of the practicality evaluation?

Attributes

**Key Findings** 

## What are the key findings of the practicality evaluation?

Attributes

Mode of Operation

**Key Findings** 

## What are the key findings of the practicality evaluation?

Attributes

Mode of Operation

**Key Findings** 

### What are the key findings of the practicality evaluation?

Attributes

Mode of Operation

#### **Key Findings**

Idle and active modes introduce behavioural shifts that reduce performance.

### What are the key findings of the practicality evaluation?

Attributes

Mode of Operation

Transferability

#### **Key Findings**

Idle and active modes introduce behavioural shifts that reduce performance.

### What are the key findings of the practicality evaluation?

Attributes

Mode of Operation

Transferability

#### **Key Findings**

Idle and active modes introduce behavioural shifts that reduce performance.

#### What are the key findings of the practicality evaluation?

Attributes

Mode of Operation

Transferability

#### **Key Findings**

Idle and active modes introduce behavioural shifts that reduce performance.

- Spatial degradation drop of 7.5%–74%.

- Temporal degradation begins after 1 week (19.32%) and worsens to 85.90% after a year.

#### What are the key findings of the practicality evaluation?

Attributes

Mode of Operation

Transferability

Observability

#### **Key Findings**

Idle and active modes introduce behavioural shifts that reduce performance.

- Spatial degradation drop of 7.5%–74%.

- Temporal degradation begins after 1 week (19.32%) and worsens to 85.90% after a year.

#### What are the key findings of the practicality evaluation?

Attributes

Mode of Operation

Transferability

Observability

#### **Key Findings**

Idle and active modes introduce behavioural shifts that reduce performance.

- Spatial degradation drop of 7.5%–74%.

- Temporal degradation begins after 1 week (19.32%) and worsens to 85.90% after a year.

#### What are the key findings of the practicality evaluation?

Attributes

Mode of Operation

Transferability

Observability

#### **Key Findings**

Idle and active modes introduce behavioural shifts that reduce performance.

- Spatial degradation drop of 7.5%–74%.

- Temporal degradation begins after 1 week (19.32%) and worsens to 85.90% after a year.

Sampled traffic (e.g., sFlow) reduces performance by an average of 70.09%.

Mode of Operation. Idle and active modes introduce behavioural shifts that reduce performance.

Mode of Operation. Idle and active modes introduce behavioural shifts that reduce performance.

Paper

Meid20\*

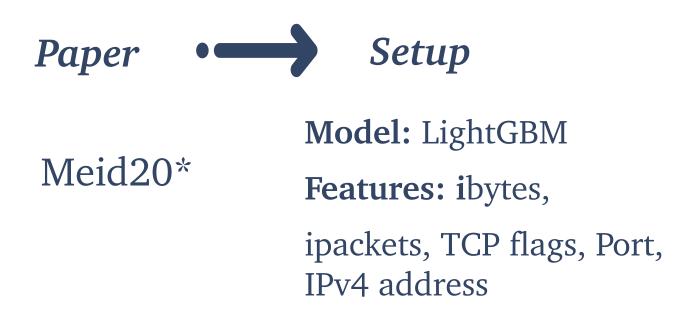
\*Y. Meidan, V. Sachidananda, H. Peng, R. Sagron, Y. Elovici, and A. Shabtai, "A novel approach for detecting vulnerable IoT devices connected behind a home NAT," Computers & Security, 2020.

**Mode of Operation.** Idle and active modes introduce behavioural shifts that reduce performance.

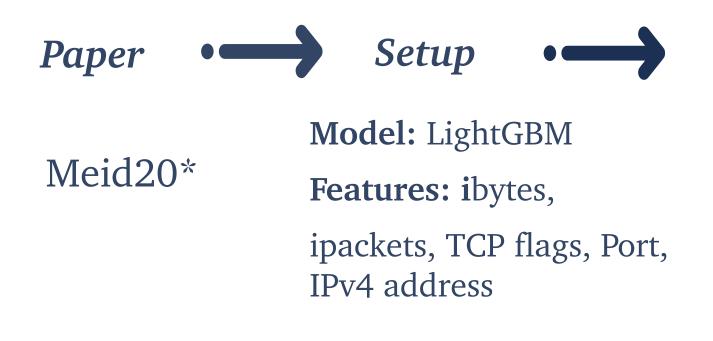


Meid20\*

Mode of Operation. Idle and active modes introduce behavioural shifts that reduce performance.



Mode of Operation. Idle and active modes introduce behavioural shifts that reduce performance.



**Mode of Operation.** Idle and active modes introduce behavioural shifts that reduce performance.



**Mode of Operation.** Idle and active modes introduce behavioural shifts that reduce performance.





**Mode of Operation.** Idle and active modes introduce behavioural shifts that reduce performance.



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications



#### Testing

Scenario1: Mix vs idle, Scenario2: Mix vs active Scenario3: Mix vs Mix

**Mode of Operation.** Idle and active modes introduce behavioural shifts that reduce performance.



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications







Scenario1: Mix vs idle, Scenario2: Mix vs active Scenario3: Mix vs Mix

**Mode of Operation.** Idle and active modes introduce behavioural shifts that reduce performance.



Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications







Results (AUCPR)

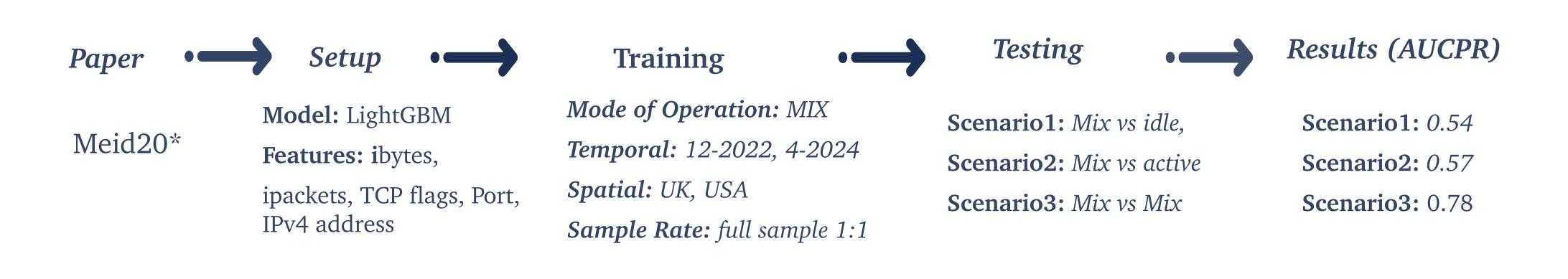
Scenario1: Mix vs idle, Scenario2: *Mix vs active* Scenario3: Mix vs Mix

**Scenario1:** 0.54 **Scenario2:** 0.57 **Scenario3:** 0.78

Mode of Operation. Idle and active modes introduce behavioural shifts that reduce performance.



Mode of Operation. Idle and active modes introduce behavioural shifts that reduce performance.



#### Empirical **Observation**

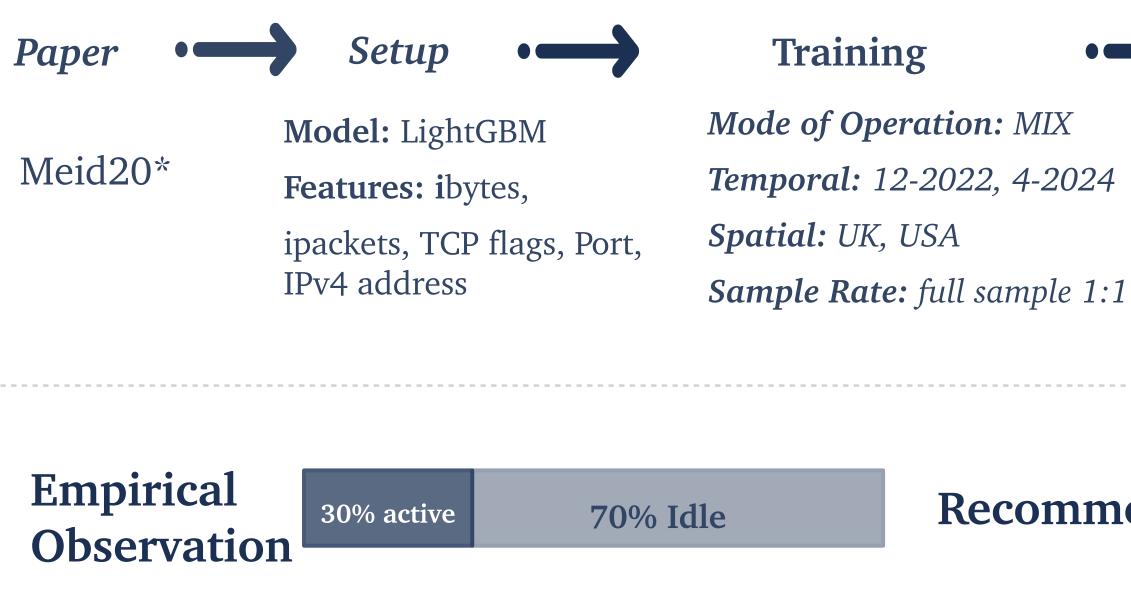
\*Y. Meidan, V. Sachidananda, H. Peng, R. Sagron, Y. Elovici, and A. Shabtai, "A novel approach for detecting vulnerable IoT devices connected behind a home NAT," Computers & Security, 2020.

Mode of Operation. Idle and active modes introduce behavioural shifts that reduce performance.



\*Y. Meidan, V. Sachidananda, H. Peng, R. Sagron, Y. Elovici, and A. Shabtai, "A novel approach for detecting vulnerable IoT devices connected behind a home NAT," Computers & Security, 2020.

Mode of Operation. Idle and active modes introduce behavioural shifts that reduce performance.



\*Y. Meidan, V. Sachidananda, H. Peng, R. Sagron, Y. Elovici, and A. Shabtai, "A novel approach for detecting vulnerable IoT devices connected behind a home NAT," Computers & Security, 2020.

Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications







Results (AUCPR)

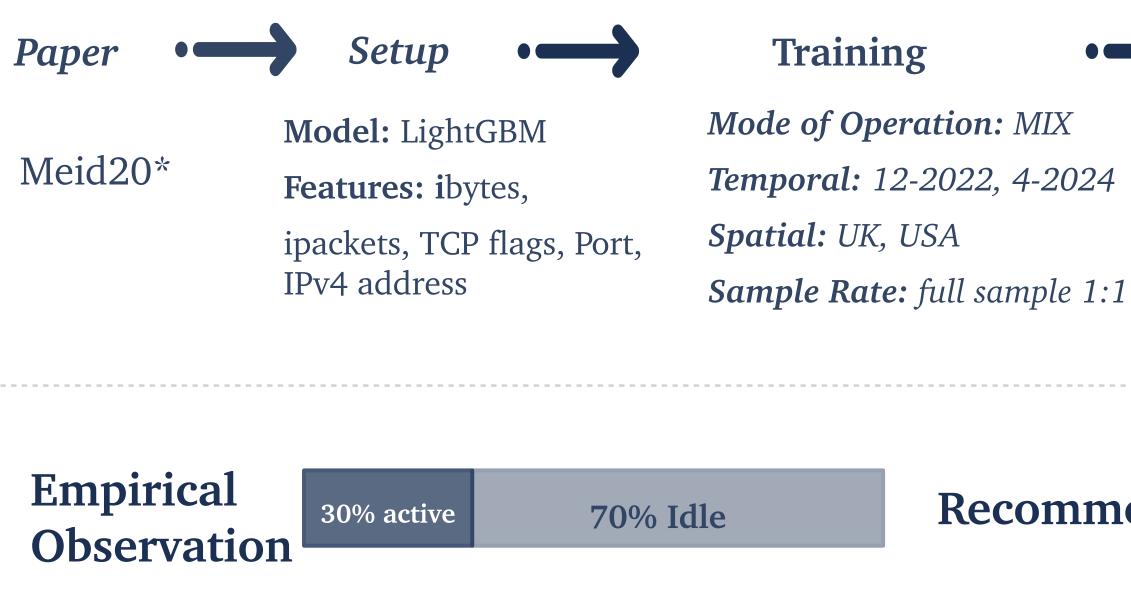
Scenario1: Mix vs idle, Scenario2: *Mix vs active* Scenario3: Mix vs Mix

**Scenario1:** 0.54 Scenario2: 0.57 **Scenario3:** 0.78

#### Recommendation



Mode of Operation. Idle and active modes introduce behavioural shifts that reduce performance.



\*Y. Meidan, V. Sachidananda, H. Peng, R. Sagron, Y. Elovici, and A. Shabtai, "A novel approach for detecting vulnerable IoT devices connected behind a home NAT," Computers & Security, 2020.

Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications







Results (AUCPR)

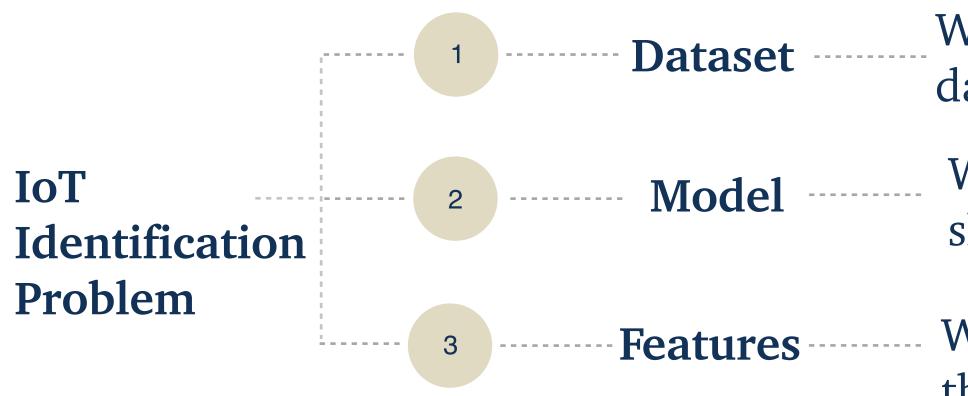
Scenario1: Mix vs idle, Scenario2: *Mix vs active* Scenario3: Mix vs Mix

**Scenario1:** 0.54 Scenario2: 0.57 **Scenario3:** 0.78

Training the model in idle mode **Recommendation** and then conducting predictions for different periods.



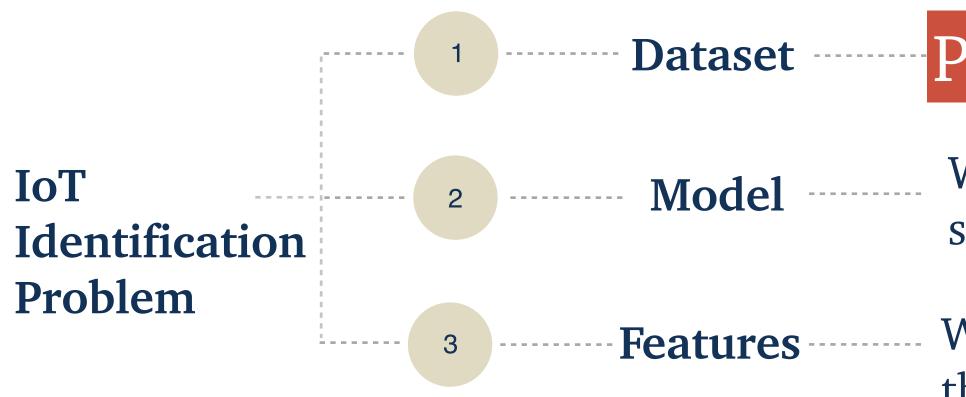
### **Components of ML-based Model**



- What data should be collected, and how should the dataset be gathered for evaluation?
- Which model should be used, and how complex should it be?
- **Features** What features should be extracted, and how should they be represented?

# How can the practicality of ML-based IoT device identification be improved?

#### **Components of ML-based Model**



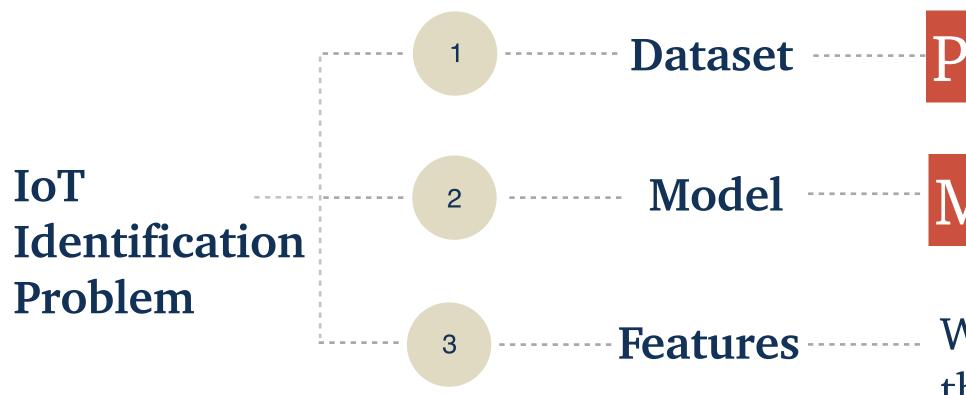
# **Dataset** Privacy and real-world challenges

Which model should be used, and how complex should it be?

**Features** What features should be extracted, and how should they be represented?

# How can the practicality of ML-based IoT device identification be improved?

#### **Components of ML-based Model**



# **Dataset** Privacy and real-world challenges

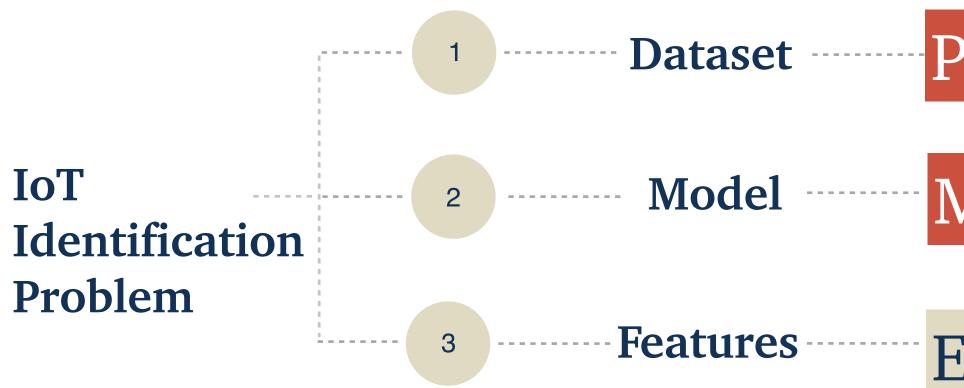
Mode complexities

and how complex

What features should be extracted, and how should they be represented?

# How can the practicality of ML-based IoT device identification be improved?

#### **Components of ML-based Model**



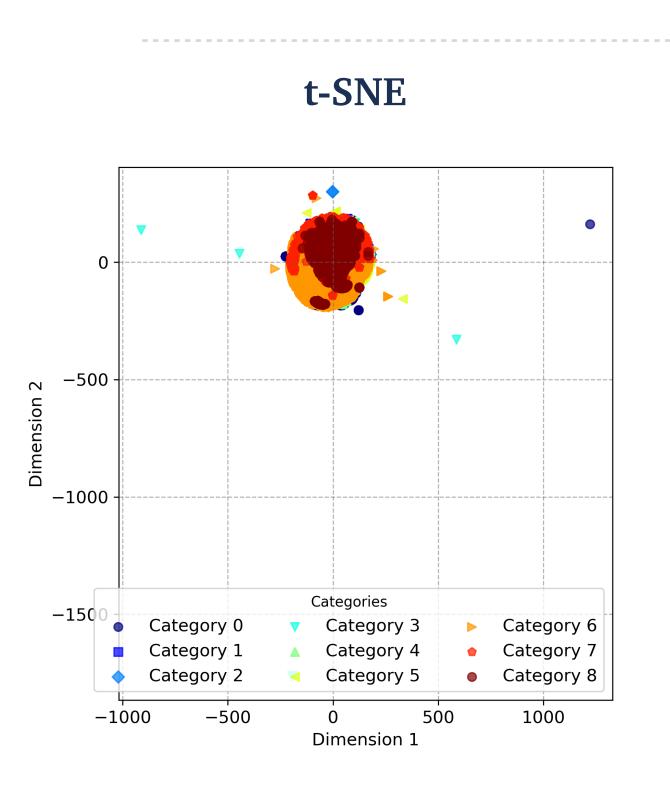
# **Dataset** Privacy and real-world challenges

Mode complexities

and how complex

# Explainable AI and feature importance

**Figure.1:** Meid20, LightGBM, incoming bytes, incoming packets, TCP flags, Port, IPv4 add , idle



**Figure.1:** Meid20, LightGBM, incoming bytes, incoming packets, TCP flags, Port, IPv4 add , idle

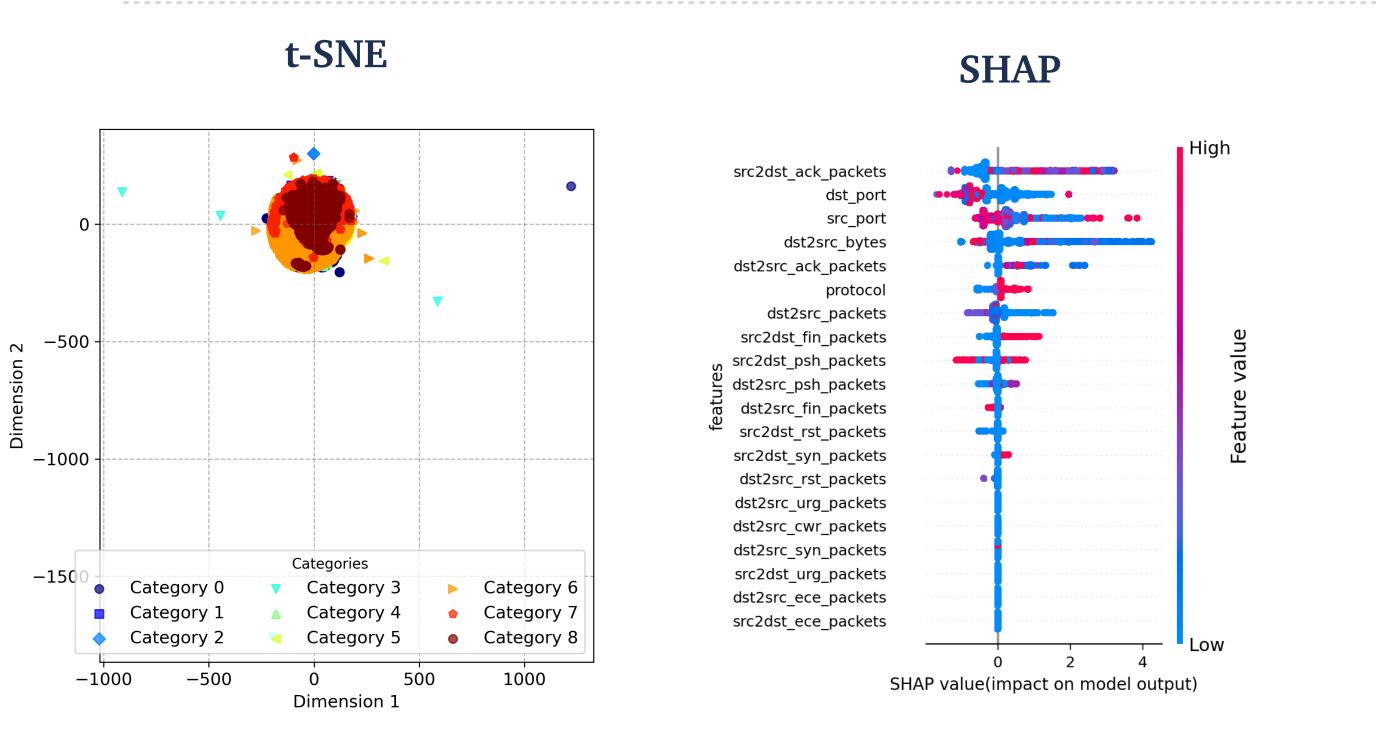


Figure.1: Meid20, LightGBM, incoming bytes, incoming packets, TCP flags, Port, IPv4 add , idle

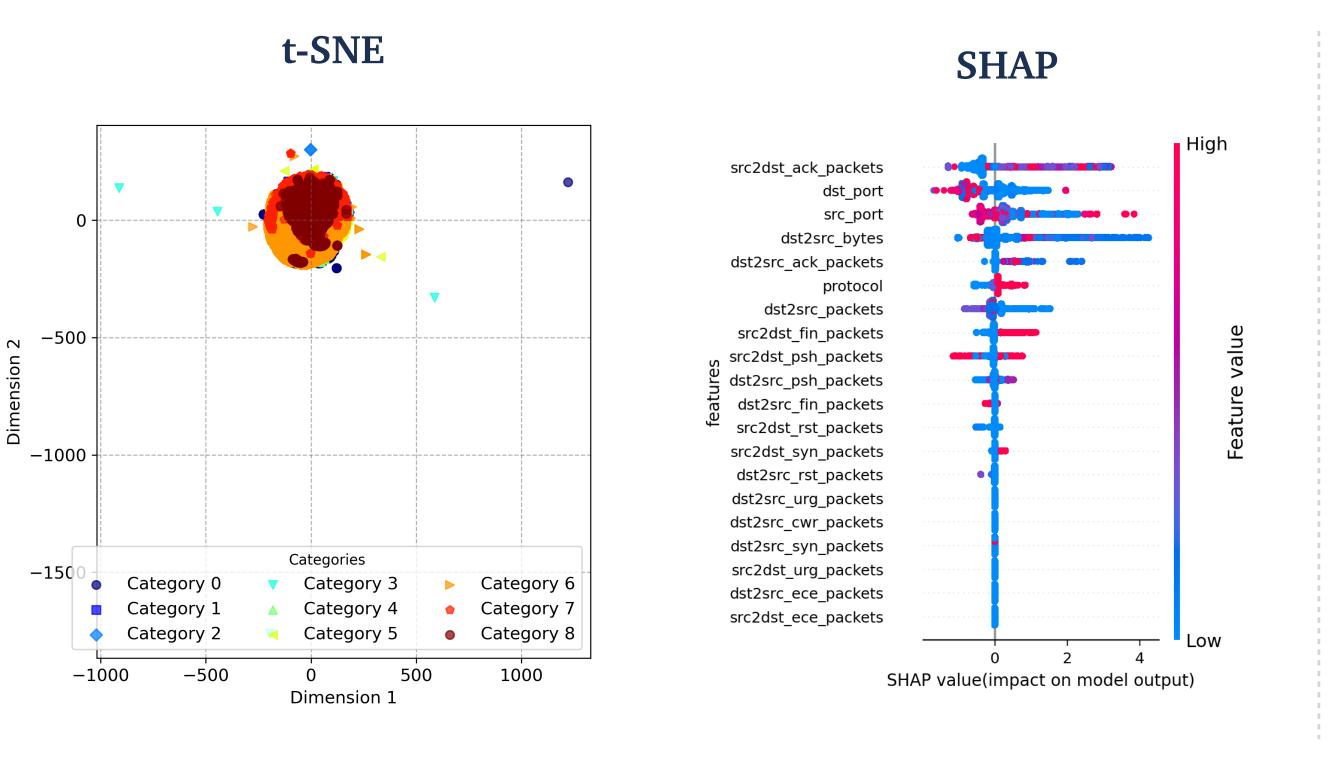
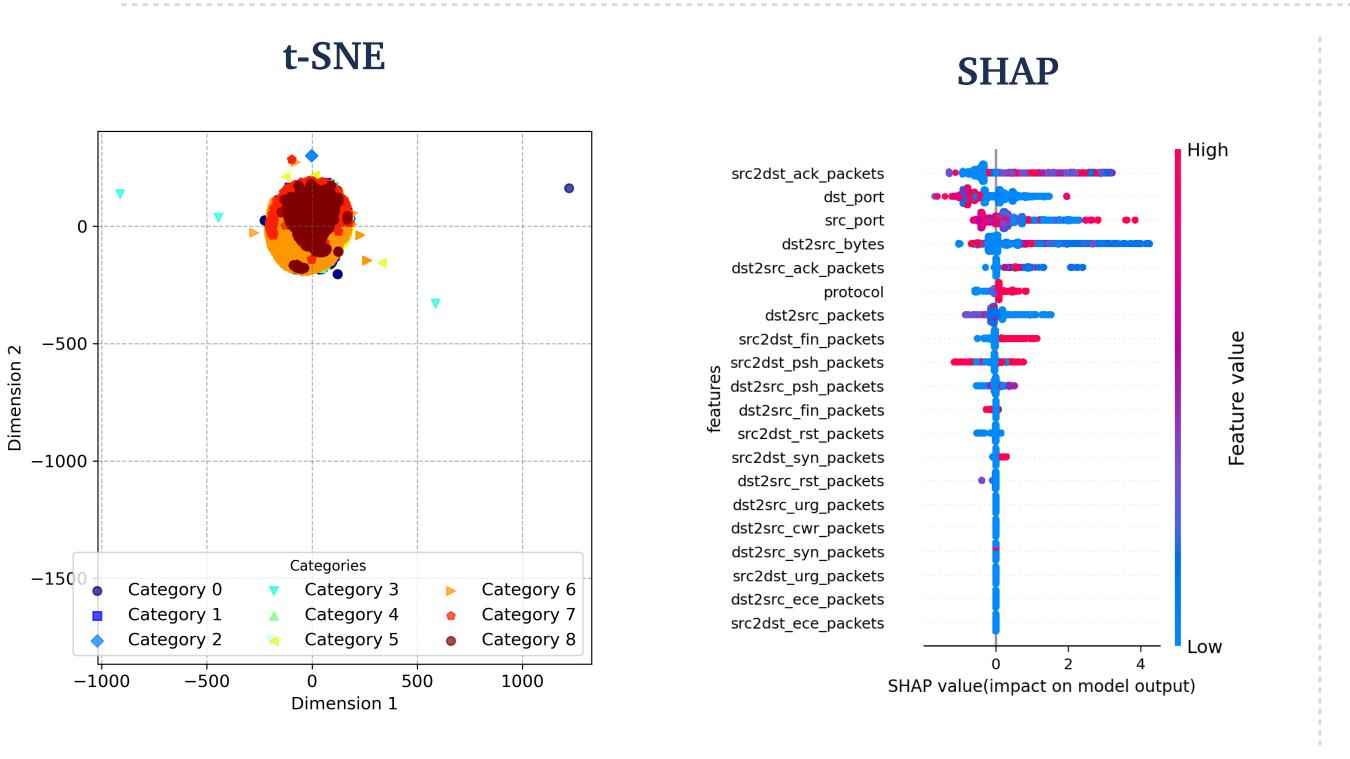
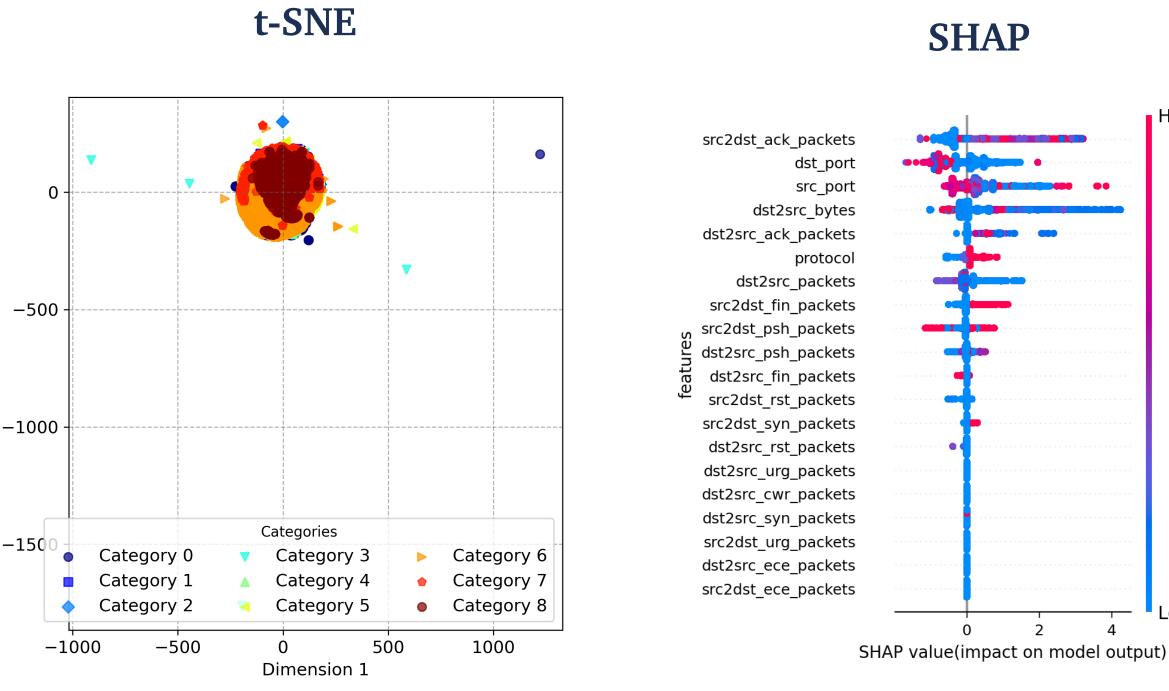


Figure.1: Meid20, LightGBM, incoming bytes, incoming packets, TCP flags, Port, IPv4 add , idle



**Figure.1:** Meid20, LightGBM, incoming bytes, incoming packets, TCP flags, Port, IPv4 add, idle

**Key Findings:** Simple features used in the training datasets (e.g., mean, variance) fail to capture distributional characteristics effectively.



Dimension 2

Figure.1: Meid20, LightGBM, incoming bytes, incoming packets, TCP flags, Port, IPv4 add , idle

High Feature value Low

**Key Findings:** Simple features used in the training datasets (e.g., mean, variance) fail to capture distributional characteristics effectively.

**Recommendation:** Avoid simple first-order statistical features (eg., mean, variance), and instead, features such as entropy are more suitable.



# Thank You!



- Evaluating Machine Learning-Based IoT Device Identification Models for Security Applications
  - Eman Maali, Omar Alrawi, Julie McCann e.maali19@imperial.ac.uk



<code>