
EAGLEYE: Exposing Hidden Web Interfaces in IoT
Devices via Routing Analysis

Corresponding authors:ganshuitao@gmail.com, jzy@nudt.edu.cn.

IoT Devices Security

 The exponential ly increase of IoT devices comes with growing threats.
 Billions of IoT devices seamlessly connect humans, machines, and objects through network.
 The vulnerabilities and attacks against IoT devices has grown significantly in recent years.

Hidden Interface
 The hidden interface issue is often overlooked due to its hidden nature.
 It leaves undisclosed access channels to attackers and is very l ikely to cause

serious incidents.

What are hidden interfaces?

Definition

 Interface
It refers to the gateway for clients to access specific functionalities or services of a
device, which establishes the rules for client-device interaction, effectively serving as a
mutual agreement on how to request particular functionalities or services.

 Public Interface
Interfaces documented in the device manual are public interfaces. They are typically
accessible through the entry portal.

 Hidden Interface
Interfaces not documented but sti l l accessible to clients are termed hidden interfaces.
They are not l isted in the entry portal, preventing navigation to them.

Routing Mechanism
 Routing token is one special

value in the request, which
indicates the specific interface
accessed and designates which
handler should be called.

 Routing table reflects the mapping
relationship between a routing token
and the corresponding handler.

How to find hidden interfaces ?

How about Traditional Solutions?
 There is no obvious pattern of

hidden interfaces, making it hard to
statically search such interfaces
(e.g., taint).

 There are no obvious consequences
or feedback when the hidden
interfaces are triggered, making it
hard to dynamically test them (e.g.,
via fuzzing).

Data flow along the interface is hard to trace, due to some open
problems like indirect calls and incomplete data recovery.

Observation
 Pay attention to code slices (firmware

code) related to the routing token.

 Routing tokens share a similar
pattern in terms of code semantics or
formatting.

 Hidden interfaces function similarly to
public counterparts and can be
accessed with prior knowledge.

Intuition
 First, we identify routing tokens from public requests.

 Then we extract contexts among public routing tokens in programs,
learning and deducing their common pattern. Next, with the learned
pattern, we try to extract more similar ones from firmware and obtain
the maximum approximate set of the routing table.

 Finally, with the help of the routing table as a dictionary, we perform
a directed black-box fuzzing to mutate the field of the routing token.

Our Solution: EAGLEYE

Overall Workflow

Locating Routing Tokens

 Algorithm idea:
 The routing token varies with the

interface change, thus it can be
identified by comparing requests of
multiple interfaces.

 Exclude tokens that cause
interference, including session
tokens, timestamp tokens, and
normal tokens.

 Recover the hierarchy among
interfaces according to routing
tokens’locations.

Extracting Routing Table

LLM Learning Demonstration

Self-Correction Demonstration

Black-box Fuzzing

 Algorithm idea:
 Utilize public requests as templates

and the routing table as a fuzzing
dictionary.

 Mutate the seed (i.e., request) by
substituting the routing token from
fuzzing dictionary.

 Iteratively supplement necessary
parameters from responses within the
fuzzing campaign.

 Catch hidden interfaces according to
the validity of the response.

Evaluation for EAGLEYE

 Testing Set

 Overall Findings

 #HINT=the number of hidden interfaces, #B-Authen=the number of hidden interfaces bypassing
authentication, #A_x0002_Authen=the number of hidden interfaces after authentication.

 Comparison with IoTScope

EAGLEYE outperforms IoTScope, exposing 25X more hidden interfaces.

 Routing Analysis Effectiveness

 #VTF=the num_x0002_ber of variable token fields, #FTF=the number of filtered token fields, #LoC is where
the routing token is located, #Hier=the max level of hierarchy for multi-level routing tokens, #Table=the size of
the routing table, layout of routing table:DIS=Distributed, AGG=Aggregated.

Routing Analysis Effectiveness

Accuracy of the pattern learned by LLM varies with the number of corrections. Within limited adjustments, the LLM can learn
the correct features among the routing table.

Black-box Fuzzing Effectiveness

Compared with IoTScope, EAGLEYE can not only obtain more parameters but also the parameters are more accurate. To a certain extent,
this trend reflects the continuous improvement of EAGLEYE’s mutation quality with the continuous supplement of parameters from responses.

Vulnerabilities

#VUL=the number of vulnerabilities, #CVE=the number of assigned CVEs, #ID=detailed CVE ID obtained.

 Cases Study

Three typical vulnerabilities in discovered hidden interfaces. (A) A backdoor bypassing authentication: opens the telnet and gains a shell with the highest
privilege. (B) A command injection escalating privilege: allows attackers with normal credentials to execute OS commands with the highest privilege. (C) An
XSS attacking victim’s clients: injects malicious code into one parameter saved in the web, and then the users who visit the victim pages will be infected.

 Causes

 Legacy Code: Certain interfaces serving for development are left behind in the
f inal product as hidden interfaces due to the incomplete separation of the
development and production environment.

 Permission Management Flaws: Flaws in the permission management mechanism
either fai l to cor_x0002_rectly restrict access to privi leged interfaces or
inadvertently bring internal interfaces to l ight.

 Security and Privacy Concerns: Some vendors may choose not to detail the
description of services unrelated to the user in the manual for security and privacy
reasons, to prevent potential misuse.

 Hidden Default Configurations: The device is designed to work with default
settings in most use cases, so vendors may not provide additional configuration
options in the manual.

 Summary

 We explain the significant problem of hidden web interfaces in IoT devices and give a series of
clear definitions.

 We propose a novel solution EAGLEYE, which models the problem of exposing hidden
interfaces as a searching process.

 We propose a noval approach, routing analysis, to intell igently learn the routing pattern among
interfaces and direct the black-box fuzzing.

 We evaluated Eagleye on 13 commercial IoT devices, and successfully exposed 79 hidden
interfaces, on which 29 unknown vulnerabil ities including backdoor, command injection, XSS,
and information leakage were found, and 7 have been assigned CVEs.

Thanks!

