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Singing VC
(Singing Voice Conversion)

[Nachmani et al. Intespeech 2019]

Voice Engine
(Voice Cloning with
15 sec of samples)

[Open AI Blog]

AudioLM
(Audio Generation using 

Language Modelling )
[Borsos et al. arXiv 2022]

Microsoft OpenAI Facebook/Meta Google

VALLE-X
(Text-to-speech voice generation 

using Language Modelling)
[Meng et al. arXiv 2024]

The Audio Generation Arms Race
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Features examples
Text: Structure, words, language
Audio: Tone, pitch, and pronunciation
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Target Content
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Audio Deepfake Detectors

Handcrafted Features
Inherent attributes

GNN-Based
Represent Audio as Graph

DNN-Based
Represent Audio as Encoding

Online Tools

AASIST
[Jung et al. IEEE 2022]

RawGAT-ST
[Tak et al. ArXiv 2021]

SE-Rawformer
[Liu et al. IEEE 2023]

Wav2Vec
[Tak et al. arXiv 2022]

Bi-Spectral
[AlBadawy et al. CVPR 2019]

High-Frequency
[Witkowski et al. 

Interspeech 2017]

MFCC
[Balamurali et al. IEEE 2023]

Resemble AI

PinDrop

AI or Not

AI Voice 
Detector

Deepfake 
Total

Categorization of Audio Deepfake Detectors
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Text-to-Speech Deepfake

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
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Speech-to-Speech Deepfake

Current AI detection methods:
• Accuracy is domain dependent

[Nishant et al. AAAI 2020] [Tak et al. ICASSP 2021]

• Limited adaptability and generalization
 [Bhagtani et al. ACM IHMCS 2024]

• Lacking comprehensive  audio dataset evaluation
[Chengzh et al. CVPR 2023]

Evaluation of Deepfake Detectors
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➢Affected by personal and environmental factors 
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Human interactions

➢Affected by personal and environmental factors 
dependent on individuals involved

  Machines interactions

➢Follow predefined rules and pattern recognition

➢Less dynamic than human interactions

Intuition and Hypothesis
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Approximates the 
physical models

Extracts the subtle 
micro-frequencies

Incorporates 
compositional bias

To simulate the 
audio wave 
propagation

To differentiate 
synthetic audio

To penalize mismatch 
of energies by the 

model

VoiceRadar: Motivation



Embedding ℰ Detection 
System 

(Observer)

VoiceRadar: Micro-Frequency Analysis
[Observer Frequency]

[ℯ1, ℯ2, … , ℯ𝑘]

𝑓𝑜

Physical models approximation
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➢ Wave propagation of speech in straight lines from speaker to observer.

VoiceRadar: Translational Frequency



➢ Voice projection changes while speaking causing a rotational frequency shift, like when 
turning the head.

VoiceRadar: Rotational Frequency



➢ Speech has subtle vibrational variations
➢ Stemming from individual and environmental factors, causing tremors.

VoiceRadar: Vibrational Frequency
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Dataset Records

VALL-E-X 32 000

Speech T5 32 000

Bark 32 000

Style TTS2 32 000

Jenny 32 040

Vits 32 040

XTTS 32 040

Tortoise 32 000

Total 256 120

Based on recordings from VCTK 
datasets

Used 8 most recent TTS approaches

40 Speakers
• Cover different distributions of: 

Gender, age, and regions

Generated 800 phrases for each 
speaker

Text-to-Speech (TTS) Dataset



Dataset Records

DiffHierVC 145 465

DiffVC 145 465

HierSpeech++ 145 483

SpeechT5 145 483

Total 581 896

Based on recordings from VCTK 
datasets

Used 4 most recent STS approaches

40 Speakers
• Cover different distributions of: 

Gender, age, and regions

Generated for each speaker different 
combinations of STS

Speech-to-Speech (STS) Dataset
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Comparison of Audio Deepfake Detectors



➢ Deepfakes are real threats to modern 
societies

➢ We addressed existing detectors’ 
limitations

➢We proposed VoiceRadar 
➢Agnostic of Text-to-Speech or Voice-

Conversion

Conclusion
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