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CPU-based Acceleration, e.g.,
• Intel AES-NI (Gueron, 2010)

Hardware accelerator-based Acceleration, e.g.,
• MemShield (Santucci, 2020)
• FPGA cipher implementation (Kumar, 2015)

Current acceleration approaches require diverse software and hardware sets, 
complicating the design, implementation, debugging, and deployment.
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Neural networks are Turing Complete. (Siegelmann, 1992) 4/13
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Learning complex computations requires (1) a massive volume of data, (2) NN 
architecture with high non-linearity, and (3) extensive training efforts.

Linear v.s. Non-linear
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Evaluation target ciphers

• AES: 5 modes, ECB/CTR/CBC/CFB/OFB

• Chacha (Chacha20 and AES are the only 2 ciphers for encrypting large volumes of data in TLS 1.3)

• Salsa: variant of Chacha

Baselines: GPU-based Cipher Implementations

• AES (Tezcan, 2020)

• Chacha20 and Salsa20 (Santucci, 2020)
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• Repurposing neural networks to efficient cryptographic computations

• Program transformation with DSLs and model optimizations

• Advanced encryption and decryption speed with deployment on diverse software and hardware 

stacks.
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