

TensorCrypt: Repurposing Neural Networks for Efficient Cryptographic Computation

Xin Jin¹, Shiqing Ma², Zhiqiang Lin¹ ¹The Ohio State University ²University of Massachusetts Amherst

NDSS 2025

Accelerating cryptographic computation is demanding

Accelerating cryptographic computation is challenging

CPU-based Acceleration, e.g.,

• Intel AES-NI (Gueron, 2010)

Accelerating cryptographic computation is challenging

CPU-based Acceleration, e.g.,

Intel AES-NI (Gueron, 2010) ٠

- MemShield (Santucci, 2020) •
- FPGA cipher implementation (Kumar, 2015) ٠

Accelerating cryptographic computation is challenging

CPU-based Acceleration, e.g.,

• Intel AES-NI (Gueron, 2010)

Hardware accelerator-based Acceleration, e.g.,

- MemShield (Santucci, 2020)
- FPGA cipher implementation (Kumar, 2015)

Current acceleration approaches require *diverse software and hardware sets*, complicating the design, implementation, debugging, and deployment.

Neural networks are promising

3/13

Hardware Accelerators

Hardware Accelerators

Hardware Platforms

Desktop

Smartphone

IoT Device

4/13

Hardware Accelerators

Hardware Platforms

Smartphone

IoT Device

AI Frameworks

Hardware Accelerators

Hardware Platforms

Smartphone

IoT Device

AI Frameworks

AI Compilers

Stvm

O PyTorch

Hardware Accelerators

Hardware Platforms

IoT Device

AI Frameworks

OPyTorch

TensorFlow

AI Compilers

Stvm

Programming Languages of AI Libraries

Smartphone

python™

🕙 Swift

Hardware Accelerators

Hardware Platforms

Smartphone

IoT Device

AI Frameworks AI Compilers Programming Languages of AI Libraries yTorch net python **S**tvm ava Swift **OpenXLA TensorFlow**

Neural networks are *Turing Complete*. (Siegelmann, 1992)

Integer addition within 100: Y = X1 + X2

Examples in basic math

Learning complex computations requires (1) a massive volume of data, (2) NN architecture with high non-linearity, and (3) extensive training efforts.

Accelerating Computation via Computational Graphs

Key insight: neural networks are computational graphs

Accelerating Computation via Computational Graphs

Key insight: neural networks are computational graphs

Computational Graph

Accelerating Computation via Computational Graphs

Key insight: neural networks are computational graphs

Domain-specific Language (DSL)

$\langle program \rangle$ $\langle statement \rangle$	P ::= input(arg); s^* ; output(v) s ::= x := e x := y $\langle op \rangle$ z if (v) : s_1^* else : s_2^* while (x>0) : s^*	
⟨expr⟩ ⟨operator⟩ ⟨⟩ ⟨⟩	e ::= v x x[v] x[v_i:v_j] op ::= + - * / XOR v \in Value x,y,z \in Identifier;	

Cryptographic DSL

$\langle NN \rangle$ $\langle laver \rangle$	<pre>M ::= input(arg); l*; output(v) l ::= x := add(·) sub(·) mul(·)</pre>			
	bitShift(·) bitAnd(·)			
slice(·) $ $ lookup(·)				
	$ $ cond(v, l_1^* , l_2^*) loop(x>0, l^*)			
$\langle layer-add \rangle$	add (v) ::= $(+ v)^{-1}$			
⟨ <i>layer-loop</i> ⟩	loop $(x>0, 1^*)$::= $(1[0] \circ 1[1] \circ)$			
$ \langle\rangle$	arg, x, v \in Tensor;			

Neural Network DSL

Semantic Rules

Definitions: $\sigma, \phi \in Store: Variable \rightarrow Value; \sigma$ for cryptography (CRYPT) DSL, ϕ for neural network (NN) DSL.				
Evaluation context rules:				
$E_s ::= E_s; s \mid [\cdot]_s \mid x := [\cdot]_e \mid x := [[\cdot]_e] \mid x := [[\cdot]_e$	$: e] \mid x := [v : [\cdot]_e] \mid x := [\cdot]_e \langle op \rangle e$			
$ x:=v \langle op \rangle [\cdot]_e if [\cdot]_e : s_1 else$: s_2 while $[\cdot]_e$: s^* ,			
$E_l ::= E_l; l \mid [\cdot]_l \mid x := [\cdot]_e \mid x := [[\cdot]_e] \mid x := [[\cdot]_e:e]$	$x := [e:[\cdot]_e] x := l([\cdot]_e, e) x := l(v, [\cdot]_e)$			
Expression Rule: $\sigma: e \xrightarrow{e} v$ [E-CRYPT]	$\phi: e \xrightarrow{e} v$ [E-NN]			
$\sigma: v \xrightarrow{e} v$ [E-CONST-CRYPT]	$\phi: v \xrightarrow{e} v$ [E-CONST-NN]			
$\sigma: x \xrightarrow{e} \sigma(x)$ [E-VAR-CRYPT]	$\phi: x \xrightarrow{e} \phi(x)$ [E-VAR-NN]			
Statement/Layer Rule: $\sigma, s \xrightarrow{s} \sigma', s'$ [STMT-CRYPT]	$\phi, l \xrightarrow{l} \phi', l'$ [STMT-NN]			
$\sigma: \ x := y [v] \ \xrightarrow{s} \ \sigma[x \to \sigma(y[v])], \ \text{skip} \text{[LOOKUP-CRYPT]}$	$\phi: \ x := \mathbf{lookup}(y,v) \ \stackrel{l}{\rightarrow} \ \phi[x \rightarrow \phi(y[v])], \ \text{skip} \texttt{[LOOKUP-NN]}$			
$ \begin{split} \sigma: \ x &:= y \left[v_i : v_j \right] \xrightarrow{s} \sigma[x \to [\sigma(y[v_i]),, \sigma(y[v_j])]], \text{ skip [SLICE-CRYPT]} \\ \phi[x \to [\phi(y[v_i]),, \phi(y[v_j])]], \text{ skip [SLICE-NN]} \end{split} $	$\phi: \ x := \operatorname{slice}(y, [v_i:v_j]) \xrightarrow{l}$			
$\sigma: \ x := y + z \xrightarrow{s} \sigma[x \to \sigma(y) + \sigma(z)], \ \text{skip} \texttt{[OP-ADD-CRYPT]}$	$\phi: x := \operatorname{add}(y,z) \xrightarrow{l} \phi[x \to \phi(y) + \phi(z)], \ \text{skip} \text{[OP-ADD-NN]}$			
$\sigma: \ \mathbf{if}(v): s_1: \mathbf{else}: s_2 \xrightarrow{s} \sigma, \ s_1$, if $v = true$ [IF-T-CRYPT]	$\phi: \operatorname{\mathbf{cond}}(v,\ l_1,\ l_2) \xrightarrow{l} \phi,\ l_1$, if $v = true$ [IF-T-NN]			
$\sigma: \text{ while } (x>0): s_x^* \xrightarrow{s} s_x^*, \ s, \text{ if } x>0 [\texttt{LOOP-E-T-CRYPT}]$	$\phi: \mathbf{loop}(x>0,\; l_x^*) \xrightarrow{l} l_x^*, s$, if $x>0$ [LOOP-T-NN]			
$ \begin{array}{c} \hline \textbf{Global Rules:}_{e} \\ \hline \sigma: e \xrightarrow{e} v \\ \hline \sigma, E[e]_{e} \rightarrow \sigma, E[v]_{e} \end{array} \end{array} \qquad \texttt{[G-EXPR-CRYPT]} \end{array} $	$\frac{\phi: e \xrightarrow{l} v}{\phi, E[e]_e \to \phi, E[v]_e} \text{[G-EXPR-NN]}$			
$\frac{\sigma: s \xrightarrow{s} \sigma', s'}{\sigma, E[s]_s \to \sigma', E[s']_s} \qquad \text{[G-STMT-CRYPT]}$	$\frac{\phi: l \xrightarrow{l} \phi', l'}{\phi, E[l]_l \to \phi', E[l']_l} [G-STMT-NN]$			

Transformation Rules

III. TensorCry

Model Optimizations

Model Optimizations

Load-on-use Memory Management

Eager Loading for AES CTR/Chacha/Salsa

Load-on-use Memory Management

GPU Memory Usage Comparison

Eager Loading for AES CTR/Chacha/Salsa

Evaluation Setup

Evaluation target ciphers

- AES: 5 modes, ECB/CTR/CBC/CFB/OFB
- Chacha (Chacha20 and AES are the only 2 ciphers for encrypting large volumes of data in TLS 1.3)
- Salsa: variant of Chacha

Evaluation Setup

Evaluation target ciphers

- AES: 5 modes, ECB/CTR/CBC/CFB/OFB
- Chacha (Chacha20 and AES are the only 2 ciphers for encrypting large volumes of data in TLS 1.3)
- Salsa: variant of Chacha

Baselines: GPU-based Cipher Implementations

- AES (Tezcan, 2020)
- Chacha20 and Salsa20 (Santucci, 2020)

Effectiveness

TensorCrypt models are up to 5.44 times faster than baselines.

Deployment on Diverse Software and Hardware Stacks

TensorCrypt models on Google TPUs

Deployment on Diverse Software and Hardware Stacks

TensorCrypt models on Google Pixel (Smartphone) and Raspberry Pi (IoT)

I. Introduction	II. Motivations	III. TensorCrypt	IV. Evaluations	V. Conclusion
-----------------	-----------------	------------------	-----------------	---------------

TensorCrypt

- Repurposing neural networks to efficient cryptographic computations
- Program transformation with DSLs and model optimizations
- Advanced encryption and decryption speed with deployment on diverse software and hardware stacks.

I. Introduction	II. Motivations	III. TensorCrypt	IV. Evaluations	V. Conclusion
-----------------	-----------------	------------------	-----------------	---------------

References

- Gueron, Shay. "Intel advanced encryption standard (AES) new instructions set." Intel Corporation 128 (2010).
- Santucci, Pierpaolo, et al. "MemShield: GPU-assisted software memory encryption." International Conference on Applied Cryptography and Network Security. Cham: Springer International Publishing, 2020.
- Kumar, Thanikodi Manoj, et al. "A low area high speed FPGA implementation of AES architecture for cryptography application." *Electronics* 10.16 (2021): 2023.
- Siegelmann, Hava T., and Eduardo D. Sontag. "On the computational power of neural nets." Proceedings of the fifth annual workshop on Computational learning theory. 1992.
- Tezcan, Cihangir. "Optimization of advanced encryption standard on graphics processing units." IEEE Access 9 (2021): 67315-67326.

TensorCrypt: Repurposing Neural Networks for Efficient Cryptographic Computation

