BumbleBee: Secure Two-party Inference
Framework for Large Transformers

Wen-jie Lu

(’: ANT
RESEARCH

Background

Risk of privacy leak during the Al services

Confiential codes, rA

‘ Senstive info et al. !:0

ﬂ) Al Services

Responses

Samsung Bans ChatGPT After Engineers
Event 1 Use it to Fix Proprietary Code

Employees who continue to use ChatGPT will face 'disciplinary action up to and including
termination of employment,’ according to a staff memo.

Yep, human workers are listening to

recordings from Google Assistant, too

Background

Risk of privacy leak during the Al services

Confiential c

Senstive How to privately
evaluate the function

without leaking the input ?

Respom

Samsung Bans ChatGPT After Engineers
Event 1 Use it to Fix Proprietary Code

Employees who continue to use ChatGPT will face 'disciplinary action up to and including
termination of employment,’ according to a staff memo.

Yep, human workers are listening to

recordings from Google Assistant, too

Secure Two-party Computation (2PC)

* Two parties with private inputs xand y

* Compute a joint function of their inputs while preserving

* Privacy Computation of f(x,y)
« Correctness Alice < Bob
. Knows x Knows y
* USIﬂg Correlated Randomness Does not learn y Does not learn x

* (ra,rb,rc)=>rc=ra*rborrc=raArb

Variants: Distributing Correlated Randomness

|
E—
® _Q @

A0

Related Work

Secret . Underlying

MPCFormer Additive
(ICRL23)

SHAFT Additive
(NDSS25)

SIGMA Functional
(PoPETs24)

Iron Additive
(NeurlPS22)

BOLT Additive
(Oakland24)

BumbleBee Additive

Related Work

Secret Underlymg

MPCFormer CrypTen
(ICRL23)
SHAFT TFP CrypTen
(NDSS25)
SIGMA TTP EzPC
(PoPETs24) (Easy Secure
Multiparty
Computation)
Iron 2PC EzPC
(NeurlPS22)
BOLT 2PC EzPC
(Oakland24)

BumbleBee 2PC SecretFlow

Related Work

Secret . Underlying

MPCFormer BERT Demanded
(ICRL23) (manually constructed)
SHAFT Models written in PyTorch, Prefer
(NDSS25) e.g., BERT, GPT2, ViT
SIGMA Models written in ONNX Not
(PoPETs24) (subsets) necessary
lron BERT Prefer
(NeurlPS22) (manually constructed)
BOLT BERT Demanded
(Oakland24) (manually constructed)
BumbleBee Models written in JAX Not

necessary

Observations & Objectives

O1: Tremendous Communication One private inference on BERT-base with 128 inputs

* VIiT: 260 GB perimage [1] 80 - 76.5 GBg
 Bert-base: 80 GB per 128tok

02: $Computation < $Communication
e 0.09centperGB

* 0.025centpervCPU

Minimize the Communication

59.6 GB

[=)]
=]

v34.4 GB (GPU)
[ron (NeurlPS22)

BOLT (Oakland24)
¥ SIGMA (PoPETS24)

Comm. (GB)

N
o
1

* Not considering the offline/online % 6.4 GB * BumbleBee
split ° 2? 23 24 25
« Withoutincreasing the computation Time (min)

by too much

[11 Wang et al. Characterization of MPC-based Private Inference for Transformer-based Models. (From the CrypTen team) 9

Difficulties

* Evaluating nonlinear activations (e.g., GeLU and Softmax) in 2PC.

* Many attempts turns to 2PC friendly alternatives. ® Accuracy.

* Fancy numerical methods such as ordinary differential
equations (ODE). ® Communication costs.
* ML-Crypto Co-engineering.
 MLerwrites 2PC codes vs. Cryptographer writes ML codes.

* Large-scale matrix multiplication in 2PC.

10

Contributions

* Lessons for evaluating nonlinear function in 2PC.

* End-2-end code baes for private transformer inference.

* 100% reusing JAX codes from HuggingFaces, no model finetuning.

* Efficient point-wise mul (aka OLE) and Matmul in Z,« from HE
* Forexample: 128x768 matrixin 0.6s and 5MB (10% of the prev)

* A concurrent work by Jiaxing He et al. in CCS24 (Rhombus)

https://github.com/AntCPLab/OpenBumbleBee

11

Three lessons for the private
transformers inference

Lesson 1: Reuse the ML codes via 2PC compilers
Or: Let the MLers write the ML codes

* Large transformer models could be “hard” to write from scratch.
* lIron, MPCFormer, BOLT only run on one model by hand crafting
* Handling the existing model weight files is also tedious
* Abetter way, plugin a 2PC backend to the current ML codes (eg PyTorch,
TensorFlow)
* Cryplen (SHAFT): Python-level overriding the PyTorch API
e EzPC (SIGMA): Uses SeeDot [1] to compile TensorFlow/ONNXto a C++ backend

* SecretFlow (BumbleBee): Multi-level IR (MLIR). Compile JAX/PyTorch to a C++
backend

[1] https://github.com/mpc-msri/EzPC/tree/master/Athos#compiling-a-tensorflow-model 13

Lesson 1: Reuse the ML codes via 2PC compilers
Or: Let the MLers write the ML codes

* Large transformer models could be “hard” to write from scratch.
* Iron, MPCFormer, BOLT only run on one model by hand crafting
* Handling the existing model weight files is also tedious
* Abetter way, plugin a 2PC backend to the current ML codes (eg PyTorch,
TensorFlow)
* Cryplen (SHAFT): Python-level overriding the PyTorch API
e EzPC (SIGMA): Uses SeeDot [1] to compile TensorFlow/ONNXto a C++ backend

* SecretFlow (BumbleBee): Multi-level IR (MLIR). Compile JAX/PyTorch to a C++
backend

Prefer a middle-level IR

than the eager execution

[1] https://github.com/mpc-msri/EzPC/tree/master/Athos#compiling-a-tensorflow-model 14

Why Preferring Lower-level IR by the Softmax Example

JAX’s snippet for Softmax

| . exp(x)
1. def _softmax(x, axis = -1): softmax(x)[]] =
2. X _max = jnp.max(x, axis, Ziexp(x,-)
— keepdims=True)
3. unnormalized = jnp.exp(x - X_max)
4. sum_exp = Jjnp.sum(unnormalized, axis,
— keepdims=True)
5. result = unnormalized / sum_exp
6. return result
SHAFT’s snippet for Softmax
if method == "reciprocal":

maximum_value = self.max(dim, keepdim=True) [0]

logits = self - maximum_value

numerator = logits.exp()

with cfg.temp_override({"functions.reciprocal_all_pos": True}):
inv_denominator = numerator.sum(dim, keepdim=True).reciprocal()

return numerator *x inv_denominator

[1] https://github.com/jax-mU/jax/blob/e d952c 8e651bf8318687e95ac 545358 a884b7bf3/jax/_src/nn/functions. py#L601
[2] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee 1e7 7f6da6d346e7e08831 /crypten/common/functions/approximations.py#L604

15

Why Preferring Lower-level IR by the Softmax Example

JAX’s snippet for Softmax

| . exp(x)

1. def _softmax(x, axis = -1): softmax(x)[j] =

2. X _max = jnp.max(x, axis, Ziexp(x,-)

— keepdims=True)

3. unnormalized = jnp.exp(x - X_max) * “keepdims=True” aims to align the
4, sum_e>.<p = Jnp.sum(unnormalized, axis, operands Shape

— |keepdims=True

5. result = unnormalized / sum_exp

6. return result

SHAFT’s snippet for Softmax
if method == "reciprocal":

maximum_value = self.max(dim, keepdim=True) [0]

logits = self - maximum_value

numerator = logits.exp()

with cfg.temp_override({"functions.reciprocal_all_pos": True}):

inv_denominator = numerator.sum(dim, keepdim=True)} reciprocal()

return numerator *x inv_denominator

[1] https://github.com/jax-mU/jax/blob/e d952c 8e651bf8318687e95ac 545358 a884b7bf3/jax/_src/nn/functions. py#L601 16
[2] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee 1e7 7f6da6d346e7e08831 /crypten/common/functions/approximations.py#L604

Why Preferring Lower-level IR by the Softmax Example

JAX’s snippet for Softmax

exp(x;)

1. def _softmax(x, axis = -1): softmax(;_f)[j] =

2. X _max = jnp.max(x, axis, Ziexp(x,-)

— keepdims=True)

3. unnormalized = jnp.exp(x - X_max) “keepdims=True” aimsto align the
4. sum_e>.<p = jnp.sum(unnormalized, axis, operands shape

— |keepdims=True o

5. Tesull = unnormalized / sum_exp * However, it increases the costs of
6. return result division by 10x — 100x times!
SHAFT’s snippet for Softmax * x.div(y.broadcast(x.shape)):
if method == "reciprocal: O(n) divand O(n) mul ®

maximum_value = self.max(dim, keepdim=True) [0]

logits = self - maximum_value

numerator = logits.exp()

with cfg.temp_override({"functions.reciprocal_all_pos": True}):

inv_denominator = numerator.sum(dim, keepdim=True)} reciprocal()

return numerator *x inv_denominator

[1] https://github.com/jax-mU/jax/blob/e d952c 8e651bf8318687e95ac 545358 a884b7bf3/jax/_src/nn/functions. py#L601 17
[2] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee 1e7 7f6da6d346e7e08831 /crypten/common/functions/approximations.py#L604

Why Preferring Lower-level IR by the Softmax Example

exp(x)
Z i exp(xi)

* “keepdims=True” aimsto align the
operands shape
* However, it increases the costs of
division by 10x — 100x times!
* x.div(y.broadcast(x.shape)):
O(n) divand O(n) mul ®
* x.mul(y.recip.broadcast(x.shape)):
O(1) recip and O(n) mul ©

softmax(X)[j] =

18
[1] https://github.com/secretflow/spu/blob/main/src/libspu/dialect/pphlo/transforms/optimize_denominator_with_broadcast.cc

A sad story ...

In BumbleBee, the division (reciprocal) in softmax takes less than 1% of the total costs.

Wang etal [1]
MPC breakdown %

Embedding 20.37%
Norm 0.74%
MatMul 14.17%
RelLU 14.82%
Softmax 49.90%

Total 100%

MPCFormer [2]

Softmax

Other

MatMul

"~ GelU

[1] Wang et al. Characterization of MPC-based Private Inference for Transformer-based Models
[2] Lietal. MPCFORMER: FAST, PERFORMANT AND PRIVATE TRANSFORMER INFERENCE WITH MPC
[3]Andes Y. L. Kei et al. SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

SHAFT [3]

Apply a numerical
method to avoid

the division which
can be handled
more easily actually.

19

Lesson 2: Piecewise rather
than numerical methods

All aboutis the numerical stability

Lesson 2 by the Gelu function

Gelu(x) = 0.5x(1 + tanh(\/2/7(x + 0.044715x%)))

— gelu(x)

[1] Guptaetal. SIGMA: Secure GPT Inference with Function Secret Sharing
[2] Pang et al. BOLT: Privacy-Preserving, Accurate and Efficient Inference for Transformers

0.175 A

0.150 A

0.125 A1

0.100 A

0.075 A

0.050 A

0.025 A1

0.000 A

— relu(x) - gelu(x)

-6

-4

—2

0 2 4 6

21

Lesson 2 by the Gelu function

Gelu(x) = 0.5x(1 + tanh(y/2/7z(x + 0.044715x%)))

Attempt 1 Attempt 2 Attempt 3

tanh(z) ~ x4 2% /9 + 2° /945
T 1+422/9 + 24/63

* Need clipping on [-3, 3]
* Heavy division

[LHZWH] Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree

22

Lesson 2 by the Gelu function

Gelu(x) = 0.5x(1 + tanh(y/2/7z(x + 0.044715x%)))

Attempt 1 Attem pt 2 Attempt 3
x+x3/9 + x° /945 h(z Fy(Rel ~ Gelu(G (
tanh(x) ~ T+ 4279 1 27/63 tan Z u(x) u(Z
« Need clipping on [-3, 3] « 8degree Fourler series * 8degree Fquner series
* Heavy division approximation apprOX|ma’F|on
« Need clippingon[-4,-4] * Needclippingon|-4,-4]
e 18 MULs * 14 MULs + max(0, x)

* > 1450bytes per Gelu

23
[LHZWH] Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree

Lesson 2 by the Gelu function

Gelu(x) = 0.5x(1 + tanh(v/2/7(x + 0.044715x%)))

Attempt 1 Attempt 2 Attempt 3
7
x + 23/9 + x° /945
tanh(z) ~ o 4964/9 / ~ ! Relu(z) — Gelu(zx Z G,(

* Need clipping on
* Heavy division

 8degree Fourler series
approximation

* Need clipping on [-4, -4]

* 14 MULs + max(0, x)

* > 1450bytes per Gelu

24

It’s time to rethink the simple

piecewise approximation!

[LHZWH] Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree

Lesson 2 by the Gelu function

.

.

\

1. One-vs-Many Comparisons

P(z)=Yi"0a
Qz) = Yo b

:E

’L

r < —4

4 <x<-—-1.85
18 <z <3
>3

The one-vs-many comparisons has a smaller

amortized costs in 2PC.

3 comparisonsis same as Attempt 3
Low-degree polys share terms. 6 MULs vs 14

MULs

25

Lesson 2 by the Gelu function

1. One-vs-Many Comparisons

(€ r < —4 :
i—3 i 0.000 - i !

: P(x) = Z%ﬁfg a;z' —4 <z < —1.85 .
Q(ﬂ:) = E:;O bg‘,ﬂ:z —-1.8 <z S 3 ~0.050 \I\
kx — € x> 3 ~0.075 - i
o —0.100 A i
* Smoothness allows an error-tune -01251 —— GelU i
comparison (eg. ignoring some low-end bits) -01501 ~--= P(x) i

* 718 bytes per gelu (50% off to Attempt 3) —0175{ ==-- Q(X) : N

-40 -35 -30 -25 =20 -15 -1.0 -05 0.0

26

Lesson 3: Simplicity is good

All about is the numerical stability again

Lesson 3 by the Softmax function

exp(xj) exp(xj —X)

oM O = 5 ot~ Tewm-n L = Max(Z)

* Exp(x) on negative inputs are bounded.
* Good enough approximation by low-degree Taylor
with one clipping

28

Lesson 3 by the Softmax function

exp(xj) exp(.xj —X)

Y exp(x) X exp(x; — %)

softmax(X)[j] =

* Exp(x) on negative inputs are bounded.
* Good enough approximation by low-degr:
with one clipping

1.0 A

0.8 A

0.6

0.4 1

0.2 4

0.0 A

—— Taylor (deg=3)

exp(x)

Lesson 3 by the Softmax function
“The reviewer” C:

Also, recent work at ACSAC 2023 [c] demonstrates improved secure softmax computation.
Integrating recent developments could provide a better review of related work and may also
improve the practicality and efficiency of the proposed protocol.

30

Lesson 3 by the Softmax function
“The reviewer” C:

Also, recent work at ACSAC 2023 [c] demonstrates improved secure softmax computation.
Integrating recent developments could provide a better review of related work and may also
improve the practicality and efficiency of the proposed protocol.

self \in [-iter_num, iter_num]
def ACSAC_softmax(self, iter_num):
dim = self.shape[-1]
X = self / iter_num
g = np.ones(self.shape) / dim
for _ in range(iter_num):
Z =X % (¢
g=9g+ (z - sum(z) * g)
return g

31

Lesson 3 by the Softmax function
“The reviewer” C:

Also, recent work at ACSAC 2023 [c] demonstrates improved secure softmax computation.
Integrating recent developments could provide a better review of related work and may also

improve the practicality and efficiency of the proposed protocol.

self \in [-iter_num, iter_num] Pros:
def ACSAC_softmax(self, iter_num): .
dim = self.shape[-1]
X = self / iter_num
g = np.ones(self.shape) / dim
for _ in range(iter_num):

Division-free

* Maximum-free

Cons:

* #lteration grows linear with the

7= x % g approximation range (which could be

g=g+ (z - sum(z) * g) hugein LLM)
return g

Lesson 3 by the Softmax function
“The reviewer” C:

Also, recent work at ACSAC 2023 [c] demonstrates improved secure softmax computation.
Integrating recent developments could provide a better review of related work and may also
improve the practicality and efficiency of the proposed protocol.

self \in [-iter_num, iter_num] What if applying range clipping [1] ?
def ACSAC_softmax(self, iter_num): « O(2n) comparisons

dim = self.shape[-1] « However, the maximum only needs

x = self / iter_num o .
g = np.ones(self.shape) / dim (n) comparisons

for _ in range(iter_num):

Z =X % (¢
g=9g+ (z - sum(z) * g)
return ¢

33
[1] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee1e77f6da6d346e7e08831/crypten/common/functions/approximations.py#L611

Thanks!

e 167 f (ilacr.or
 AntCPLab/ nBumbleB ith m

https://eprint.iacr.org/2023/1678.pdf
https://github.com/AntCPLab/OpenBumbleBee

Anecdote: Why Naming BumbleBee

Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference

Zhicong Huang Wen-jie Lu Cheng Hong Jiansheng Ding
Alibaba Group Alibaba Group Alibaba Group Alibaba Group

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

oo 2022
AVAILABLE REPRODUCED USEN|X

35

Anecdote: Why Naming BumbleBee

Cheetah + Transfomer => Cheetor ("Maximize!")

The very first computer-aid 3D animation in 1996.

36

Anecdote: Why Naming BumbleBee

Team Leader: Cheetor is so unknown! Let be Bumblebee.

37

	Slide 1: BumbleBee: Secure Two-party Inference Framework for Large Transformers
	Slide 2: Background
	Slide 3
	Slide 4: Secure Two-party Computation (2PC)
	Slide 5: Variants: Distributing Correlated Randomness
	Slide 6: Related Work
	Slide 7: Related Work
	Slide 8: Related Work
	Slide 9: Observations & Objectives
	Slide 10: Difficulties
	Slide 11: Contributions
	Slide 12: Three lessons for the private transformers inference
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Lesson 2: Piecewise rather than numerical methods
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Lesson 3: Simplicity is good
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Anecdote: Why Naming BumbleBee
	Slide 36
	Slide 37

