
BumbleBee: Secure Two-party Inference
Framework for Large Transformers

Wen-jie Lu

2025

Background

2

Risk of privacy leak during the AI services

Event 1

Event 2

Confiential codes,
Senstive info et al.

Responses AI Services

3

Event 1

Event 2

Confiential codes,
Senstive info et al.

Responses AI Services

How to privately
evaluate the function

without leaking the input ?

Background
Risk of privacy leak during the AI services

Secure Two-party Computation (2PC)

• Two parties with private inputs x and y

• Compute a joint function of their inputs while preserving

• Privacy

• Correctness

• Using Correlated Randomness

• (ra, rb, rc) => rc = ra * rb or rc = ra ∧ rb

4

Variants: Distributing Correlated Randomness

5

Trusted Third-party Trusted First-party

Related Work

6

Secret
Sharing Variant Underlying

2PC lib Transformers Fine tune?

MPCFormer
(ICRL23)

Additive TFP CrypTen BERT
(manually constructed)

Demanded

SHAFT
(NDSS25)

Additive TFP CrypTen Models written in PyTorch,
e.g., BERT, GPT2, ViT

Prefer

SIGMA
(PoPETs24)

Functional TTP EzPC
(Easy Secure

Multiparty
Computation)

Models written in ONNX
(subsets)

Not
necessary

Iron
(NeurIPS22)

Additive 2PC EzPC BERT
(manually constructed)

Prefer

BOLT
(Oakland24)

Additive 2PC EzPC BERT
(manually constructed)

Demanded

BumbleBee Additive 2PC SecretFlow Models written in JAX Not
necessary

Related Work

7

Secret
Sharing Variant Underlying

2PC lib Transformers Fine tune?

MPCFormer
(ICRL23)

Additive TFP CrypTen BERT
(manually constructed)

Demanded

SHAFT
(NDSS25)

Additive TFP CrypTen Models written in PyTorch,
e.g., BERT, GPT2, ViT

Prefer

SIGMA
(PoPETs24)

Functional TTP EzPC
(Easy Secure

Multiparty
Computation)

Models written in ONNX
(subsets)

Not
necessary

Iron
(NeurIPS22)

Additive 2PC EzPC BERT
(manually constructed)

Prefer

BOLT
(Oakland24)

Additive 2PC EzPC BERT
(manually constructed)

Demanded

BumbleBee Additive 2PC SecretFlow Models written in JAX Not
necessary

Related Work

8

Secret
Sharing Variant Underlying

2PC lib Transformers Fine tune?

MPCFormer
(ICRL23)

Additive TFP CrypTen BERT
(manually constructed)

Demanded

SHAFT
(NDSS25)

Additive TFP CrypTen Models written in PyTorch,
e.g., BERT, GPT2, ViT

Prefer

SIGMA
(PoPETs24)

Functional TTP EzPC
(Easy Secure

Multiparty
Computation)

Models written in ONNX
(subsets)

Not
necessary

Iron
(NeurIPS22)

Additive 2PC EzPC BERT
(manually constructed)

Prefer

BOLT
(Oakland24)

Additive 2PC EzPC BERT
(manually constructed)

Demanded

BumbleBee Additive 2PC SecretFlow Models written in JAX Not
necessary

Observations & Objectives

9

O1: Tremendous Communication
• ViT: 260 GB per image [1]
• Bert-base: 80 GB per 128tok
O2: $Computation < $Communication
• 0.09 cent per GB
• 0.025 cent per vCPU
Minimize the Communication
• Not considering the offline/online

split
• Without increasing the computation

by too much

[1] Wang et al. Characterization of MPC-based Private Inference for Transformer-based Models. (From the CrypTen team)

One private inference on BERT-base with 128 inputs

Difficulties

10

• Evaluating nonlinear activations (e.g., GeLU and Softmax) in 2PC.

• Many attempts turns to 2PC friendly alternatives. Accuracy.

• Fancy numerical methods such as ordinary differential
equations (ODE). Communication costs.

• ML-Crypto Co-engineering.

• MLer writes 2PC codes vs. Cryptographer writes ML codes.

• Large-scale matrix multiplication in 2PC.

• Lessons for evaluating nonlinear function in 2PC.

• End-2-end code baes for private transformer inference.

• 100% reusing JAX codes from HuggingFaces, no model finetuning.

• Efficient point-wise mul (aka OLE) and Matmul in ℤ2𝑘 from HE

• For example: 128x768 matrix in 0.6s and 5MB (10% of the prev)

• A concurrent work by Jiaxing He et al. in CCS24 (Rhombus)

11https://github.com/AntCPLab/OpenBumbleBee

Contributions

Three lessons for the private
transformers inference

12

• Large transformer models could be “hard” to write from scratch.
• Iron, MPCFormer, BOLT only run on one model by hand crafting
• Handling the existing model weight files is also tedious

• A better way, plugin a 2PC backend to the current ML codes (eg PyTorch,
TensorFlow)
• CrypTen (SHAFT): Python-level overriding the PyTorch API

• EzPC (SIGMA): Uses SeeDot [1] to compile TensorFlow/ONNX to a C++ backend
• SecretFlow (BumbleBee): Multi-level IR (MLIR). Compile JAX/PyTorch to a C++

backend

13

Lesson 1: Reuse the ML codes via 2PC compilers

[1] https://github.com/mpc-msri/EzPC/tree/master/Athos#compiling-a-tensorflow-model

Or: Let the MLers write the ML codes

• Large transformer models could be “hard” to write from scratch.
• Iron, MPCFormer, BOLT only run on one model by hand crafting
• Handling the existing model weight files is also tedious

• A better way, plugin a 2PC backend to the current ML codes (eg PyTorch,
TensorFlow)
• CrypTen (SHAFT): Python-level overriding the PyTorch API

• EzPC (SIGMA): Uses SeeDot [1] to compile TensorFlow/ONNX to a C++ backend
• SecretFlow (BumbleBee): Multi-level IR (MLIR). Compile JAX/PyTorch to a C++

backend

14

Lesson 1: Reuse the ML codes via 2PC compilers

[1] https://github.com/mpc-msri/EzPC/tree/master/Athos#compiling-a-tensorflow-model

Or: Let the MLers write the ML codes

Prefer a middle-level IR
than the eager execution

JAX’s snippet for Softmax

SHAFT’s snippet for Softmax

15

Why Preferring Lower-level IR by the Softmax Example

[1] https://github.com/jax-ml/jax/blob/ed952c8e651bf8318687e95ac545358a884b7bf3/jax/_src/nn/functions.py#L601
[2] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee1e77f6da6d346e7e08831/crypten/common/functions/approximations.py#L604

JAX’s snippet for Softmax

SHAFT’s snippet for Softmax

16

Why Preferring Lower-level IR by the Softmax Example

[1] https://github.com/jax-ml/jax/blob/ed952c8e651bf8318687e95ac545358a884b7bf3/jax/_src/nn/functions.py#L601
[2] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee1e77f6da6d346e7e08831/crypten/common/functions/approximations.py#L604

• “keepdims=True” aims to align the
operands shape

• However, it increases the costs of
division by 10x – 100x times!
• x.div(y.broadcast(x.shape)):

O(n) div and O(n) mul
• x.mul(y.recip.broadcast(x.shape)):

O(1) recip and O(n) mul ☺

JAX’s snippet for Softmax

SHAFT’s snippet for Softmax

17

Why Preferring Lower-level IR by the Softmax Example

[1] https://github.com/jax-ml/jax/blob/ed952c8e651bf8318687e95ac545358a884b7bf3/jax/_src/nn/functions.py#L601
[2] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee1e77f6da6d346e7e08831/crypten/common/functions/approximations.py#L604

• “keepdims=True” aims to align the
operands shape

• However, it increases the costs of
division by 10x – 100x times!
• x.div(y.broadcast(x.shape)):

O(n) div and O(n) mul
• x.mul(y.recip.broadcast(x.shape)):

O(1) recip and O(n) mul ☺

18

Why Preferring Lower-level IR by the Softmax Example

[1] https://github.com/secretflow/spu/blob/main/src/libspu/dialect/pphlo/transforms/optimize_denominator_with_broadcast.cc

• “keepdims=True” aims to align the
operands shape

• However, it increases the costs of
division by 10x – 100x times!
• x.div(y.broadcast(x.shape)):

O(n) div and O(n) mul
• x.mul(y.recip.broadcast(x.shape)):

O(1) recip and O(n) mul ☺
÷

bc
x

y

×

bc
x

y

1/y

19

A sad story …

[1] Wang et al. Characterization of MPC-based Private Inference for Transformer-based Models
[2] Li et al. MPCFORMER: FAST, PERFORMANT AND PRIVATE TRANSFORMER INFERENCE WITH MPC
[3] Andes Y. L. Kei et al. SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

MPCFormer [2]Wang et al [1] SHAFT [3]

Apply a numerical
method to avoid
the division which
can be handled
more easily actually.

In BumbleBee, the division (reciprocal) in softmax takes less than 1% of the total costs.

Lesson 2: Piecewise rather
than numerical methods
All about is the numerical stability

20

21

Lesson 2 by the Gelu function

[1] Gupta et al. SIGMA: Secure GPT Inference with Function Secret Sharing
[2] Pang et al. BOLT: Privacy-Preserving, Accurate and Efficient Inference for Transformers

22

Attempt 2 Attempt 3Attempt 1

• Need clipping on [-3, 3]
• Heavy division

[LHZWH] Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree

Lesson 2 by the Gelu function

23

Attempt 2 Attempt 3Attempt 1

• Need clipping on [-3, 3]
• Heavy division

• 8 degree Fourier series
approximation

• Need clipping on [-4, -4]
• 18 MULs

• 8 degree Fourier series
approximation

• Need clipping on [-4, -4]
• 14 MULs + max(0, x)
• > 1450bytes per Gelu

[LHZWH] Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree

Lesson 2 by the Gelu function

24

• Need clipping on [-3, 3]
• Heavy division

• 8 degree Fourier series
approximation

• Need clipping on [-4, -4]
• 18 MULs

• 8 degree Fourier series
approximation

• Need clipping on [-4, -4]
• 14 MULs + max(0, x)
• > 1450bytes per Gelu

[LHZWH] Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree

Lesson 2 by the Gelu function

Attempt 2 Attempt 3Attempt 1

• Need clipping on [-3, 3]
• Heavy division

It’s time to rethink the simple
piecewise approximation!

25

2. Smoothness1. One-vs-Many Comparisons

• The one-vs-many comparisons has a smaller
amortized costs in 2PC.

• 3 comparisons is same as Attempt 3
• Low-degree polys share terms. 6 MULs vs 14

MULs

Lesson 2 by the Gelu function

26

2. Smoothness1. One-vs-Many Comparisons

• Smoothness allows an error-tune
comparison (eg. ignoring some low-end bits)

• 718 bytes per gelu (50% off to Attempt 3)

Lesson 2 by the Gelu function

Lesson 3: Simplicity is good
All about is the numerical stability again

27

28

Lesson 3 by the Softmax function

• Exp(x) on negative inputs are bounded.
• Good enough approximation by low-degree Taylor

with one clipping

29

Lesson 3 by the Softmax function

• Exp(x) on negative inputs are bounded.
• Good enough approximation by low-degree Taylor

with one clipping

30

“The reviewer” C:
Lesson 3 by the Softmax function

31

Lesson 3 by the Softmax function

Pros:
• Division-free
• Maximum-free
Cons:
• #Iteration grows linear with the

approximation range (which could be
huge in LLM)

“The reviewer” C:

32

Lesson 3 by the Softmax function

Pros:
• Division-free
• Maximum-free
Cons:
• #Iteration grows linear with the

approximation range (which could be
huge in LLM)

“The reviewer” C:

33

Lesson 3 by the Softmax function

What if applying range clipping [1] ?
• O(2n) comparisons
• However, the maximum only needs

O(n) comparisons

[1] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee1e77f6da6d346e7e08831/crypten/common/functions/approximations.py#L611

“The reviewer” C:

34

Thanks!

• 1678.pdf (iacr.org)
• AntCPLab/OpenBumbleBee (github.com)

https://eprint.iacr.org/2023/1678.pdf
https://github.com/AntCPLab/OpenBumbleBee

Anecdote: Why Naming BumbleBee

35
2022
USENIX

36

Cheetah + Transfomer => Cheetor ("Maximize!")

The very first computer-aid 3D animation in 1996.

Anecdote: Why Naming BumbleBee

37

Team Leader: Cheetor is so unknown! Let be Bumblebee.

Anecdote: Why Naming BumbleBee

	Slide 1: BumbleBee: Secure Two-party Inference Framework for Large Transformers
	Slide 2: Background
	Slide 3
	Slide 4: Secure Two-party Computation (2PC)
	Slide 5: Variants: Distributing Correlated Randomness
	Slide 6: Related Work
	Slide 7: Related Work
	Slide 8: Related Work
	Slide 9: Observations & Objectives
	Slide 10: Difficulties
	Slide 11: Contributions
	Slide 12: Three lessons for the private transformers inference
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Lesson 2: Piecewise rather than numerical methods
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Lesson 3: Simplicity is good
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Anecdote: Why Naming BumbleBee
	Slide 36
	Slide 37

