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Secure Two-party Computation (2PC)

• Two parties with private inputs x and y

• Compute a joint function of their inputs while preserving

• Privacy

• Correctness

• Using Correlated Randomness

• (ra, rb, rc) => rc = ra * rb or rc = ra ∧ rb
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Variants: Distributing Correlated Randomness
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Trusted Third-party Trusted First-party



Related Work
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Secret 
Sharing Variant Underlying 

2PC lib Transformers Fine tune?

MPCFormer 
(ICRL23)

Additive TFP CrypTen BERT 
(manually constructed) 
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Observations & Objectives
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O1: Tremendous Communication
• ViT: 260 GB per image [1]
• Bert-base: 80 GB per 128tok
O2: $Computation < $Communication
• 0.09 cent per GB
• 0.025 cent per vCPU 
Minimize the Communication
• Not considering the offline/online 

split 
• Without increasing the computation 

by too much

[1] Wang et al. Characterization of MPC-based Private Inference for Transformer-based Models. (From the CrypTen team)

One private inference on BERT-base with 128 inputs



Difficulties
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• Evaluating nonlinear activations (e.g., GeLU and Softmax) in 2PC.

• Many attempts turns to 2PC friendly alternatives.  Accuracy.

• Fancy numerical methods such as ordinary differential 
equations (ODE).  Communication costs.

• ML-Crypto Co-engineering.

• MLer writes 2PC codes vs. Cryptographer writes ML codes.

• Large-scale matrix multiplication in 2PC. 



• Lessons for evaluating nonlinear function in 2PC.

• End-2-end code baes for private transformer inference.

• 100% reusing JAX codes from HuggingFaces, no model finetuning. 

• Efficient point-wise mul (aka OLE) and Matmul in ℤ2𝑘  from HE

• For example: 128x768 matrix in 0.6s and 5MB (10% of the prev)

• A concurrent work by Jiaxing He et al. in CCS24 (Rhombus)

11https://github.com/AntCPLab/OpenBumbleBee

Contributions



Three lessons for the private 
transformers inference
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• Large transformer models could be “hard”  to write from scratch. 
• Iron, MPCFormer, BOLT only run on one model by hand crafting
• Handling the existing model weight files is also tedious 

• A better way, plugin a 2PC backend to the current ML codes (eg PyTorch, 
TensorFlow)
• CrypTen (SHAFT): Python-level overriding the PyTorch API

• EzPC (SIGMA): Uses SeeDot [1] to compile TensorFlow/ONNX to a C++ backend
• SecretFlow (BumbleBee): Multi-level IR (MLIR). Compile JAX/PyTorch to a C++ 

backend 
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Lesson 1: Reuse the ML codes via 2PC compilers 

[1] https://github.com/mpc-msri/EzPC/tree/master/Athos#compiling-a-tensorflow-model

Or: Let the MLers write the ML codes
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Lesson 1: Reuse the ML codes via 2PC compilers 

[1] https://github.com/mpc-msri/EzPC/tree/master/Athos#compiling-a-tensorflow-model

Or: Let the MLers write the ML codes

Prefer a middle-level IR 
than the eager execution



JAX’s snippet for Softmax

SHAFT’s snippet for Softmax
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Why Preferring Lower-level IR by the Softmax Example 

[1] https://github.com/jax-ml/jax/blob/ed952c8e651bf8318687e95ac545358a884b7bf3/jax/_src/nn/functions.py#L601 
[2] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee1e77f6da6d346e7e08831/crypten/common/functions/approximations.py#L604
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Why Preferring Lower-level IR by the Softmax Example 

[1] https://github.com/jax-ml/jax/blob/ed952c8e651bf8318687e95ac545358a884b7bf3/jax/_src/nn/functions.py#L601 
[2] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee1e77f6da6d346e7e08831/crypten/common/functions/approximations.py#L604

• “keepdims=True” aims to align the 
operands shape

• However, it increases the costs of 
division by 10x – 100x times! 
• x.div(y.broadcast(x.shape)):             

O(n) div and O(n) mul 
• x.mul(y.recip.broadcast(x.shape)): 

O(1) recip and O(n) mul ☺



JAX’s snippet for Softmax

SHAFT’s snippet for Softmax
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Why Preferring Lower-level IR by the Softmax Example 

[1] https://github.com/secretflow/spu/blob/main/src/libspu/dialect/pphlo/transforms/optimize_denominator_with_broadcast.cc

• “keepdims=True” aims to align the 
operands shape

• However, it increases the costs of 
division by 10x – 100x times! 
• x.div(y.broadcast(x.shape)):             

O(n) div and O(n) mul 
• x.mul(y.recip.broadcast(x.shape)): 

O(1) recip and O(n) mul ☺
÷

bc
x

y

×

bc
x

y

1/y
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A sad story …

[1] Wang et al. Characterization of MPC-based Private Inference for Transformer-based Models
[2] Li et al. MPCFORMER: FAST, PERFORMANT AND PRIVATE TRANSFORMER INFERENCE WITH MPC
[3] Andes Y. L. Kei et al. SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

MPCFormer [2]Wang et al [1] SHAFT [3]

Apply a numerical 
method to avoid 
the division which 
can be handled 
more easily actually.

In BumbleBee, the division (reciprocal) in softmax takes less than 1% of the total costs.



Lesson 2: Piecewise rather 
than numerical methods
All about is the numerical stability
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Lesson 2 by the Gelu function

[1] Gupta et al. SIGMA: Secure GPT Inference with Function Secret Sharing
[2] Pang et al. BOLT: Privacy-Preserving, Accurate and Efficient Inference for Transformers
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Attempt 2 Attempt 3Attempt 1

• Need clipping on [-3, 3]
• Heavy division 

[LHZWH] Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree

Lesson 2 by the Gelu function
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Attempt 2 Attempt 3Attempt 1

• Need clipping on [-3, 3]
• Heavy division 

• 8 degree Fourier series 
approximation

• Need clipping on [-4, -4]
• 18 MULs 

• 8 degree Fourier series 
approximation

• Need clipping on [-4, -4]
• 14 MULs + max(0, x)
• > 1450bytes per Gelu

[LHZWH] Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree

Lesson 2 by the Gelu function
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• Need clipping on [-3, 3]
• Heavy division 

• 8 degree Fourier series 
approximation

• Need clipping on [-4, -4]
• 18 MULs 

• 8 degree Fourier series 
approximation

• Need clipping on [-4, -4]
• 14 MULs + max(0, x)
• > 1450bytes per Gelu

[LHZWH] Squirrel: A Scalable Secure Two-Party Computation Framework for Training Gradient Boosting Decision Tree

Lesson 2 by the Gelu function

Attempt 2 Attempt 3Attempt 1

• Need clipping on [-3, 3]
• Heavy division 

It’s time to rethink the simple 
piecewise approximation! 
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2. Smoothness1. One-vs-Many Comparisons

• The one-vs-many comparisons has a smaller 
amortized costs in 2PC.

• 3 comparisons is same as Attempt 3
• Low-degree polys share terms. 6 MULs vs 14 

MULs

Lesson 2 by the Gelu function
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2. Smoothness1. One-vs-Many Comparisons

• Smoothness allows an error-tune 
comparison (eg. ignoring some low-end bits)

• 718 bytes per gelu (50% off to Attempt 3)

Lesson 2 by the Gelu function



Lesson 3: Simplicity is good
All about is the numerical stability again
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Lesson 3 by the Softmax function

• Exp(x) on negative inputs are bounded. 
• Good enough approximation by low-degree Taylor 

with one clipping
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Lesson 3 by the Softmax function

• Exp(x) on negative inputs are bounded. 
• Good enough approximation by low-degree Taylor 

with one clipping
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“The reviewer” C:
Lesson 3 by the Softmax function
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Lesson 3 by the Softmax function

Pros:
• Division-free
• Maximum-free
Cons:
• #Iteration grows linear with the 

approximation range (which could be 
huge in LLM)

“The reviewer” C:
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Lesson 3 by the Softmax function

What if applying range clipping [1] ?
• O(2n) comparisons
• However,  the maximum only needs 

O(n) comparisons 

[1] https://github.com/andeskyl/SHAFT/blob/8ade8e3858611983dee1e77f6da6d346e7e08831/crypten/common/functions/approximations.py#L611

“The reviewer” C:
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Thanks!

• 1678.pdf (iacr.org)
• AntCPLab/OpenBumbleBee (github.com)

https://eprint.iacr.org/2023/1678.pdf
https://github.com/AntCPLab/OpenBumbleBee


Anecdote: Why Naming BumbleBee
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2022
USENIX
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Cheetah + Transfomer => Cheetor ("Maximize!")

The very first computer-aid 3D animation in 1996.

Anecdote: Why Naming BumbleBee
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Team Leader: Cheetor is so unknown! Let be Bumblebee.

Anecdote: Why Naming BumbleBee
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