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Local Differential Privacy (p,chiet al, Focs'13]

® Local Differential Privacy (LDP) is a typical locally private data collection model
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€ A mining task under LDP can be formalized as an LDP protocol consisting of a pair of algorithms <W,®>,
where W is a perturbation algorithm and ® is an aggregation algorithm to extract useful knowledge.

Definition 1: A randomized algorithm W satisfies €-local differential privacy, iff for any two inputs v and v’
and for any output y of ¥,

Pr[¥(v) = y] <e® - Pr[¥(v) = y]
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Local Differential Privacy

* Fundamental Tasks

 Category data: Frequency estimation, Heavy hitters mining
OLH, GRR [Usenix security’ 17] RAPPOR [CCS’ 14]

 Numerical data: Mean estimation, Density estimation
SW [Sigmod’20] PM [ICDE’19]

* Local Differential Privacy is deployed in

Apple i0S/macOS, to collect typing statistics, types of photos at frequently visited locations
 Google Chrome/Android, to collect browsing statistics

 Amazon Echo, to collect frequency of voice command statistics
 Microsoft Windows, to collect telemetry data
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Aggregation methods (P)

Unbiased estimation + post-processing.

Estimation function is done independently for each value, and then Calibrate

™\ real distribution [«] Negative Calibration
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Aggregation methods (P)

Unbiased estimation + post-processing.

Estimation function is done independently for each value, and then Calibrate
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In cases where the function is not easy to derive, or
when a reasonable distribution is preferred

Expectation-Maximization (EM) based Maximal Likelihood Estimation(MLE)
Find a distribution that most likely leads to the observed perturbed data

™\ real distribution

E EM solutions
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Iterate

Consistency-based calibration
Wang et al. [NDSS’ 20]
Prior-knowledge-based calibration
Jiaetal. [INFOCOM’ 19]
Fang et al. [S&P’ 23]

EM-based MLE
Tu et al. [Pets’ 19]
Li et al. [SIGMOD’ 20]



Problems and Intuitions

Observation 1 (Fig 1) | Pursuing a max likelihood value during EM process may lead to worse final error.

Observation 2 (Fig 2) More value need to estimate during EM — larger overall error.
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Fig 1. trace the MAE of EM iteration process Fig 2. Compare the error between different distribution

Problems EM-based MLE is easy to overfit to the noise data, especially when there is much noise.




Problems and Intuitions

How can we overcome the overfitting issue of EM-based MLE to reduce the overall error?

Intuition

Noise overwhelms the small truth: LDP noise follows
zero Gaussians, are likely to cover the small value

] Negative noise
B Positive noise

IiilE = Covered by noise

-

Many values — complexity fitting model — easily
overfitting: In machine learning, regularization is a
well-studied technique for overfitting issue, which
penalizes small values in the model




Problems and Intuitions

How can we overcome the overfitting issue of EM-based MLE to reduce the overall error?

Intuition

Noise overwhelms the small truth: LDP noise follows
zero Gaussians, are likely to cover the small value

Enhancing the EM-based estimation by
' reducing the number of values that are likely
' small across EM iteration process

] Negative noise
B Positive noise

IiilE = Covered by noise
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N real distribution
B estimated distribution

iterate

Many values — complexity fitting model — easily
overfitting: In machine learning, regularization is a
well-studied technique for overfitting issue, which
penalizes small values in the model
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Our Approach

Review of the EM Algorithm

v’ Iterative optimization technique used for parameter
estimation, i.e., Gaussian Mixture model (GMM)

_____________________________________________________

n

Goal: W = argmax (Z p()?|w)>
w .
l

E-step:
Calculate the likelihood given W(®

M-step:
Update WD that maximize the
likelihood function L
(by taking the derivative of £)

Repeat EM step until converge



Our Approach

Review of the EM Algorithm

v’ Iterative optimization technique used for parameter
estimation, i.e., Gaussian Mixture model (GMM)

_____________________________________________________

E-step:
Calculate the likelihood given W(®

M-step:
Update WD that maximize the
likelihood function L
(by taking the derivative of £)

Repeat EM step until converge

Generalize EM under different LDP W

Build a LDP mixture model for generalization

K
(T3 w, a) = Zwkpf['l’e(ﬁk) = 1
k=1

* Pr[¥.(oy) =] : PMF, also the transfer function of ¥
* Wy : proportions or weights for each components.
* K :the number of values.

E-step:
71k - tE:kPr [we(&';ﬁ) = 5’:‘;]
TN P (o)) = &
M-step:
Wk $— — Yik

i Goal: argmax L(w) s.t. Zi&i =1, w; >0 E

_______________________________________________________



Our Approach (Mixture Reduction)
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® Reduction operation

merging step: (wig, Y. (a12)) <+ {(wi,¥c(a1)), (wa, Vo(a2))}

w2 = Wy + W2
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@ Judge the model and stop
BIC : Trade-off between model fit and complexity

BIC = —2log(L) + K'log(n)



Our Approach (Mixture Reduction)

Generalization: we demonstrate the application of our approach in various LDP tasks

TABLE I

SUMMARY OF METHODS IN EM-BASED MLE

Methods

| Description

Pre-process

Probability mass or density function

Time complexity

GRR
OLH
PM & SW
Laplace
Gaussian

PCKV-PM

FO in small K scenario

FO in large K scenario

numerical FO and mean estimator
numerical perturbation

(£,8)-LDP for high-dimensional data
key-value data analysis

hash matching
binning
binning
binning
binning

Equation (2)
% if hash matches
Equation (7) and (14)
the pdf of Laplace distribution
the pdf of Gaussian distribution

joint pmf from the combination of PM and FOs

O(K?log(K)I)
O(nK log(K)I)
O(K?log(K)I)
O(nK log(K)I)
O(nK log(K)I)
O(Kd? log(d)!)




Our Approach (Mixture Reduction)

Generalization: we demonstrate the application of our approach in various LDP tasks

TABLE 1
SUMMARY OF METHODS IN EM-BASED MLE

Methods
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Accuracy analysis (Informal)

The MSE of our approach consists of two components: (1)the estimation error from the EM algorithm

applied to the remaining values, and (2)the error introduced by the reduction process:

K’ 1 e .
MSEours = —-MSEem + —- > hio?.
i=1

* K, K':Initial number of value and remaining number of value
* h;,0; : The number of value and their variance in the i-th merging operation

MSE,,< MSE.,, , especially when £ or nis insufficient



Datasets

S-MN(n=2000 & n=50000), SFC(n=43,386) Income (n=300,000)

Tasks

Categorical data: Distribution
Numerical data: Mean & Density
Key-Value data: Conditional mean & density

Evaluation metrics

Mean Absolute Error
Mean Squared Error
Wasserstein Distance
Quantile



Accuracy comparison on frequency estimation
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Accuracy comparison on

frequency estimation

Accuracy comparison on conditional mean
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When there exists substantial noise (low & or
n), our (—-MR) reduces the error by almost half.

* As & or nincreases, the advantage of our (-MR)

over others gradually diminish .



The reason behind our MR’s high performance

Bias vs Variance

o100 Repeat 100 times, plot the error in boxplot.
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Efficiency

Convergence speed on distribution estimation
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TABLE 11
RUNTIME TABLE (SECONDS) OF -EM AND -MR ON DIFFERENT DATASETS,
VARYING €.
=
method 075 I 5 3
GRR-EM 19 12 9 6
SFC GRR-MR 10 5 4 4
OLH-EM 765 502 115 58
OLH-MR 311 204 83 37
Laplace-EM | 2317 931 416 125
Laplace-MR | 1156 665 306 90
GRR-EM 23 17 12 7
. GRR-MR 11 8 5 4
NCOME | OLH-EM | 15684 6482 1126 154
OLH-MR | 2837 1697 279 &7
Laplace-EM | 12317 8152 2516 823
Laplace-MR | 5457 3003 1026 412




Efficiency

Convergence speed on distribution estimation
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TABLE II
RUNTIME TABLE (SECONDS) OF -EM AND -MR ON DIFFERENT DATASETS,
VARYING £.
method ey Ours converged faster
GRR-EM 19 12 9 6
SFC GRR-MR 10 5 4 4

OLH-EM 765 502 115 58
OLH-MR 311 204 83 37
Laplace-EM | 2317 931 416 125
Laplace-MR | 1156 665 306 90
GRR-EM 23 17 12 7
Income | _CRR-MR_|_1L — & — 2 _ 4
¢ =OCH-EM | 15684 6482 1126 153 =~
~OLHMR | 2837 1697 279 _ 6] = =~
Laplace-EM |"123T77 81527 5516 823
Laplace-MR | 5457 3003 1026 412




When to use our MR?

MR vs Unbiased estimation & EM

1. MR can replace the traditional EM.
2. When many values need to be estimated.

3. When there exists substantial noise (low & or n).

For additional information contact us:
yutong2017@iscas.ac.cn



