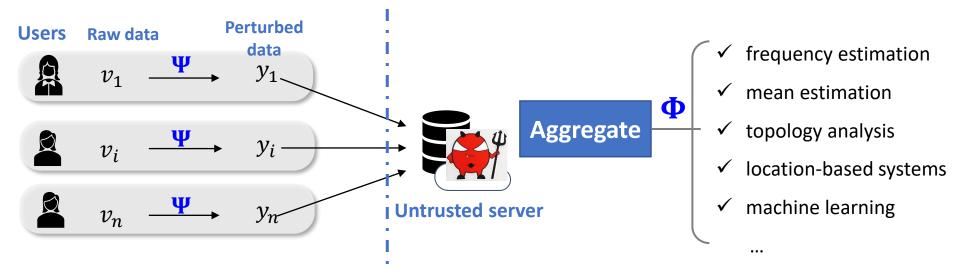
Revisiting EM-based Locally Differentially Private Protocols

Yutong Ye, Tianhao Wang, Min Zhang, Dengguo Feng

Local Differential Privacy [Duchi et al, FOCS'13]

• Local Differential Privacy (LDP) is a typical locally private data collection model



• A mining task under LDP can be formalized as an LDP protocol consisting of a pair of algorithms $\langle \Psi, \Phi \rangle$, where Ψ is a perturbation algorithm and Φ is an aggregation algorithm to extract useful knowledge.

Definition 1: A randomized algorithm Ψ satisfies ε -local differential privacy, iff for any two inputs v and v' and for any output y of Ψ ,

$$\Pr[\Psi(\boldsymbol{v}) = \boldsymbol{y}] \le e^{\varepsilon} \cdot \Pr[\Psi(\boldsymbol{v}') = \boldsymbol{y}]$$

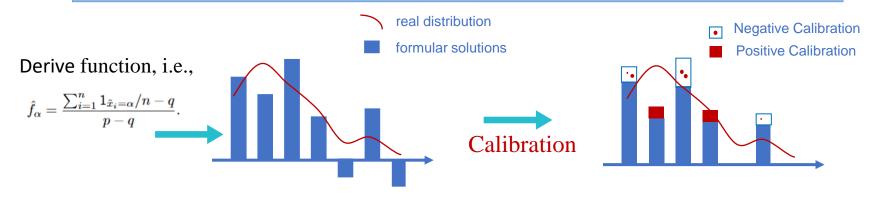
Local Differential Privacy

- Fundamental Tasks
 - Category data: Frequency estimation, Heavy hitters mining OLH, GRR [Usenix security' 17] RAPPOR [CCS' 14]
 - Numerical data: Mean estimation, Density estimation SW [Sigmod'20] PM [ICDE'19]
- Local Differential Privacy is deployed in
 - Apple iOS/macOS, to collect typing statistics, types of photos at frequently visited locations
 - Google Chrome/Android, to collect browsing statistics
 - Amazon Echo, to collect frequency of voice command statistics
 - Microsoft Windows, to collect telemetry data

Aggregation methods (Φ)

Unbiased estimation + post-processing.

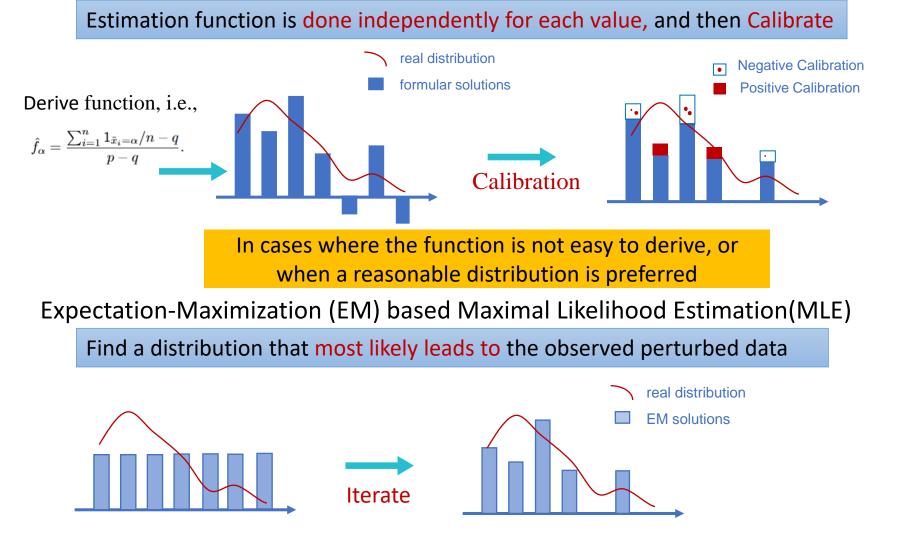
Estimation function is done independently for each value, and then Calibrate



Consistency-based calibration Wang et al. [NDSS' 20] Prior-knowledge-based calibration Jia et al. [INFOCOM' 19] Fang et al. [S&P' 23]

Aggregation methods (Φ)

Unbiased estimation + post-processing.



Consistency-based calibration Wang et al. [NDSS' 20] Prior-knowledge-based calibration Jia et al. [INFOCOM' 19] Fang et al. [S&P' 23]

EM-based MLE

Tu et al. [Pets' 19] Li et al. [SIGMOD' 20]

Problems and Intuitions

Observation 1 (Fig 1) Pursuing a max likelihood value during EM process may lead to worse final error.

Observation 2 (Fig 2) More value need to estimate during EM \rightarrow larger overall error.

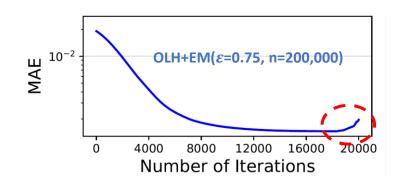


Fig 1. trace the MAE of EM iteration process

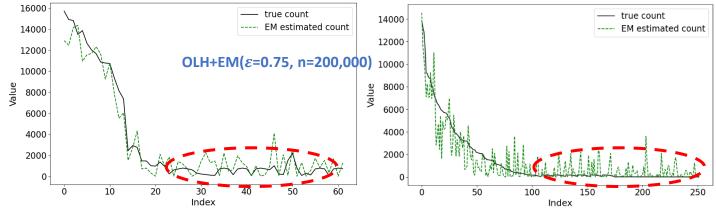


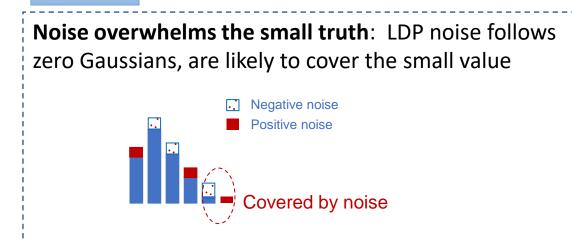
Fig 2. Compare the error between different distribution

Problems EM-based MLE is easy to overfit to the noise data, especially when there is much noise.

Problems and Intuitions

How can we overcome the overfitting issue of EM-based MLE to reduce the overall error?

Intuition



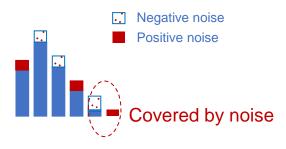
Many values \rightarrow complexity fitting model \rightarrow easily overfitting: In machine learning, regularization is a well-studied technique for overfitting issue, which penalizes small values in the model

Problems and Intuitions

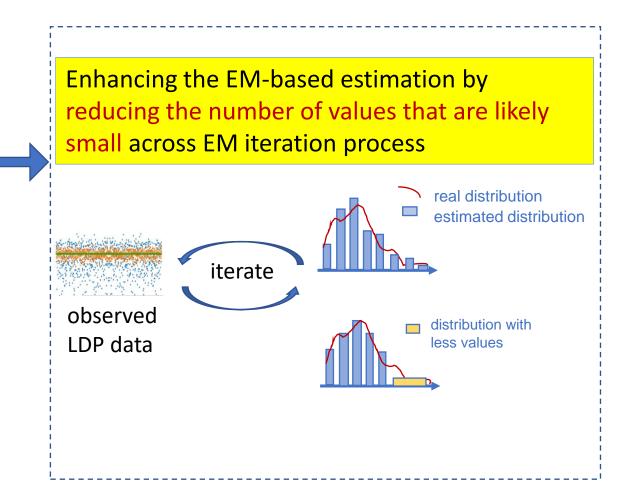
How can we overcome the overfitting issue of EM-based MLE to reduce the overall error?

Intuition

Noise overwhelms the small truth: LDP noise follows zero Gaussians, are likely to cover the small value



Many values \rightarrow complexity fitting model \rightarrow easily overfitting: In machine learning, regularization is a well-studied technique for overfitting issue, which penalizes small values in the model



Our Approach

Review of the EM Algorithm

 ✓ Iterative optimization technique used for parameter estimation, i.e., Gaussian Mixture model (GMM)

Goal:
$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \left(\sum_{i}^{n} p(\widetilde{x} | \mathbf{w}) \right)$$

E-step:

Calculate the likelihood given $\widehat{\mathbf{W}}^{(t)}$

M-step:

Update $\widehat{\mathbf{W}}^{(t+1)}$ that maximize the likelihood function \mathcal{L} (by taking the derivative of \mathcal{L})

Repeat EM step until converge

Our Approach

Review of the EM Algorithm

 ✓ Iterative optimization technique used for parameter estimation, i.e., Gaussian Mixture model (GMM)

Goal:
$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \left(\sum_{i}^{n} p(\widetilde{x} | \mathbf{w}) \right)$$

E-step:

Calculate the likelihood given $\widehat{\mathbf{W}}^{(t)}$

M-step:

Update $\widehat{\mathbf{W}}^{(t+1)}$ that maximize the likelihood function \mathcal{L} (by taking the derivative of \mathcal{L})

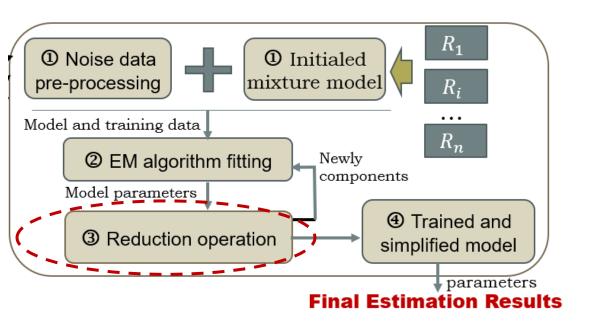
Repeat EM step until converge

Generalize EM under different LDP Ψ

Build a LDP mixture model for generalization

$$\begin{aligned}
& \phi(\tilde{x}; \mathbf{w}, \alpha) = \sum_{k=1}^{K} \omega_k \Pr\left[\Psi_{\varepsilon}(\alpha_k) = \tilde{x}\right] \\
& \quad \Pr\left[\Psi_{\varepsilon}(\alpha_k) = \tilde{x}\right] : \text{PMF, also the transfer function of } \Psi \\
& \quad \omega_k : \text{ proportions or weights for each components.}} \\
& \quad K : \text{ the number of values.} \\
& \quad Goal: \arg \max_{\hat{\mathbf{w}}} \mathcal{L}(\hat{\mathbf{w}}) \quad \text{ s.t. } \sum \hat{w}_i = 1, \ \hat{w}_i \ge 0 \\
& \quad \text{E-step:} \\
& \quad \gamma_{ik} \leftarrow \frac{\hat{w}_k \Pr\left[\Psi_{\varepsilon}(\alpha_k) = \tilde{x}_i\right]}{\sum_{j=1}^{K} \hat{w}_j \Pr\left[\Psi_{\varepsilon}(\alpha_j) = \tilde{x}_i\right]} \\
& \quad \text{M-step:} \\
& \quad \hat{w}_k \leftarrow \frac{1}{n} \sum_{i=1}^{n} \gamma_{ik}
\end{aligned}$$

Our Approach (Mixture Reduction)



③ Reduction operation

merging step: $(w_{12}, \Psi_{\varepsilon}(\alpha_{12})) \leftarrow \{(w_1, \Psi_{\varepsilon}(\alpha_1)), (w_2, \Psi_{\varepsilon}(\alpha_2))\}$

$$w_{12} = w_1 + w_2$$

$$\Pr\left[\Psi_{\varepsilon}(\alpha_{12}) = \tilde{x}\right] = \sum_{i=1}^{2} \frac{w_i}{w_{12}} \Pr\left[\Psi_{\varepsilon}(\alpha_i) = \tilde{x}\right]$$

④ Judge the model and stop BIC : Trade-off between model fit and complexity $BIC = -2\log(\mathcal{L}) + K'\log(n)$

Our Approach (Mixture Reduction)

Generalization: we demonstrate the application of our approach in various LDP tasks

Methods	Description	Pre-process	Probability mass or density function	Time complexity
GRR	FO in small K scenario	-	Equation (2)	$O(K^2 \log(K)I)$
OLH	FO in large K scenario	hash matching	$\frac{e^{\varepsilon}}{e^{\varepsilon}+K^*-1}$ if hash matches	$O(nK\log(K)I)$
PM & SW	numerical FO and mean estimator	binning	Equation (7) and (14)	$O(K^2 \log(K)I)$
Laplace	numerical perturbation	binning	the pdf of Laplace distribution	$O(nK\log(K)I)$
Gaussian	(ε, δ) -LDP for high-dimensional data	binning	the pdf of Gaussian distribution	$O(nK\log(K)I)$
PCKV-PM	key-value data analysis	binning	joint pmf from the combination of PM and FOs	$O(Kd^2\log(d)I)$

TABLE I Summary of Methods in EM-based MLE

Our Approach (Mixture Reduction)

Generalization: we demonstrate the application of our approach in various LDP tasks

Methods	Description	Pre-process	Probability mass or density function	Time complexity
GRR	FO in small K scenario	-	Equation (2)	$O(K^2 \log(K)I)$
OLH	FO in large K scenario	hash matching	$\frac{e^{\varepsilon}}{e^{\varepsilon}+K^{*}-1}$ if hash matches	$O(nK\log(K)I)$
PM & SW	numerical FO and mean estimator	binning	Equation (7) and (14)	$O(K^2 \log(K)I)$
Laplace	numerical perturbation	binning	the pdf of Laplace distribution	$O(nK\log(K)I)$
Gaussian	(ε, δ) -LDP for high-dimensional data	binning	the pdf of Gaussian distribution	$O(nK\log(K)I)$
PCKV-PM	key-value data analysis	binning	joint pmf from the combination of PM and FOs	$O(Kd^2\log(d)I)$

TABLE I SUMMARY OF METHODS IN EM-BASED MLE

Accuracy analysis (Informal)

The MSE of our approach consists of two components: (1)the estimation error from the EM algorithm applied to the remaining values, and (2)the error introduced by the reduction process:

$$\mathsf{MSE}_{\mathsf{Ours}} = \frac{K'}{K}\mathsf{MSE}_{\mathsf{EM}} + \frac{1}{K}\sum_{i=1}^t h_i\sigma_i^2.$$

- K, K': Initial number of value and remaining number of value
- h_i, σ_i : The number of value and their variance in the *i*-th merging operation

$MSE_{Ours} < MSE_{EM}$, especially when ε or n is insufficient

Evaluation

Datasets

S-MN(n=2000 & n=50000), SFC(n=43,386) Income (n=300,000)

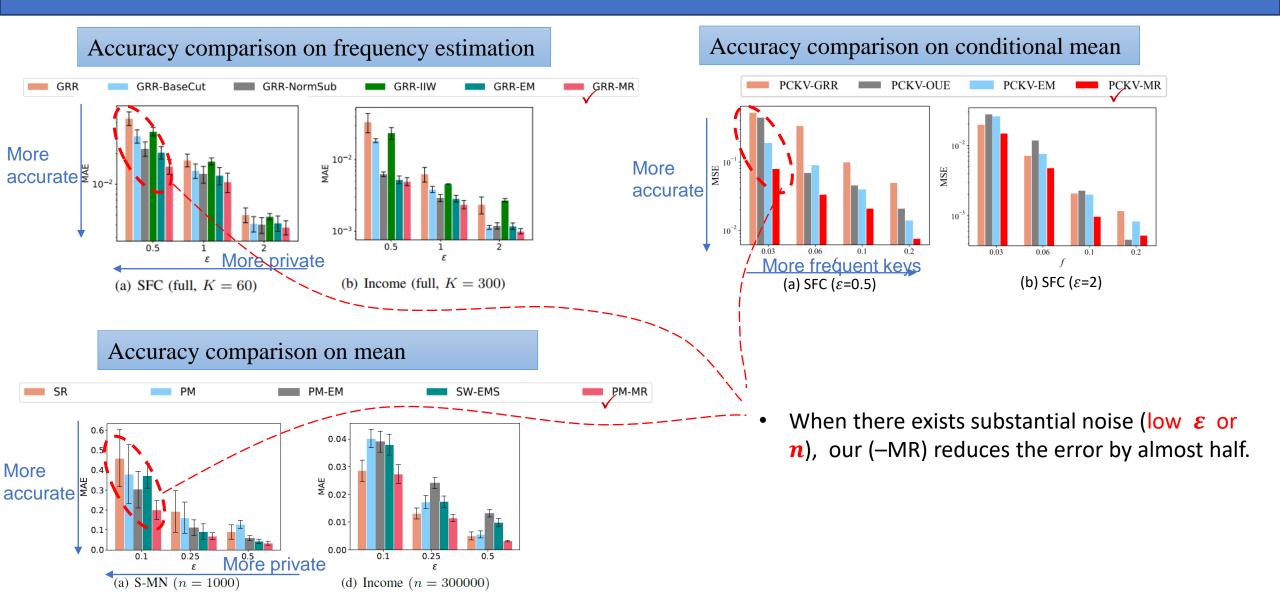
Tasks

Categorical data:	Distribution
Numerical data:	Mean & Density
Key-Value data:	Conditional mean & density

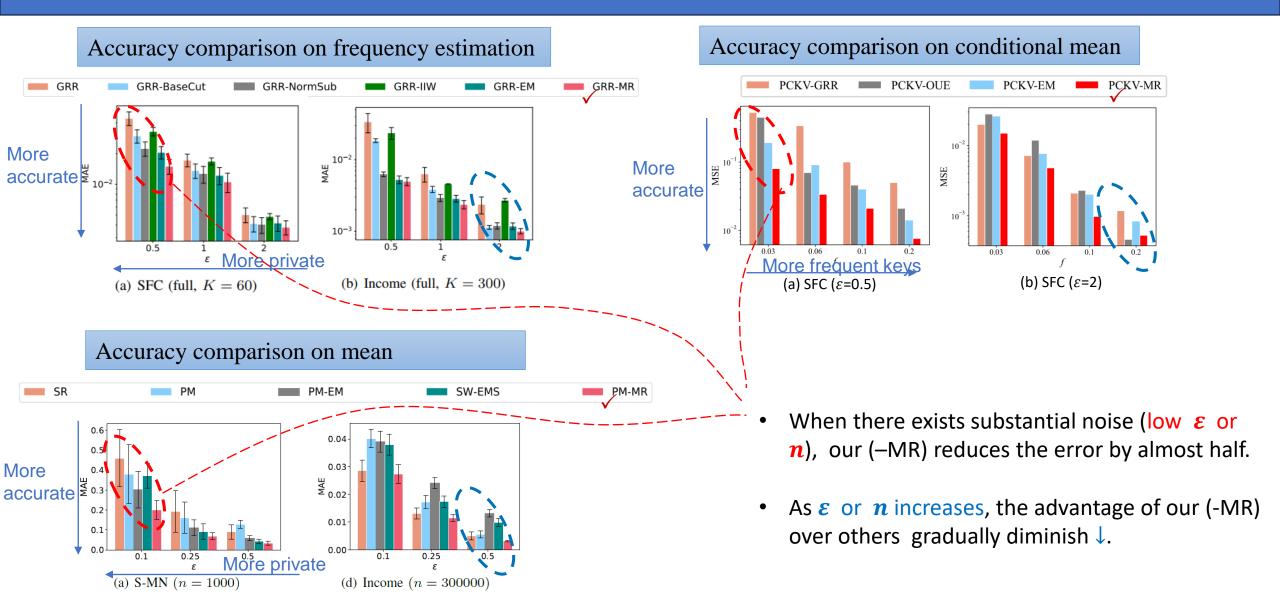
Evaluation metrics

Mean Absolute Error Mean Squared Error Wasserstein Distance Quantile

Evaluation

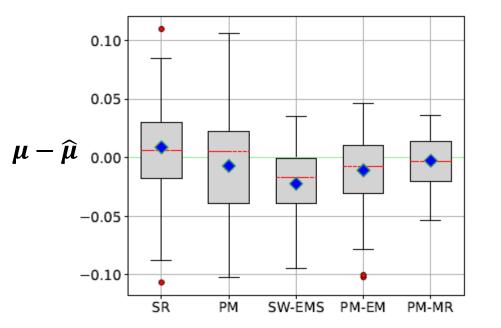


Evaluation



The reason behind our MR's high performance

Bias vs Variance



Repeat 100 times, plot the error in boxplot.

EM overfitting \rightarrow too much bias

Efficiency

Convergence speed on distribution estimation

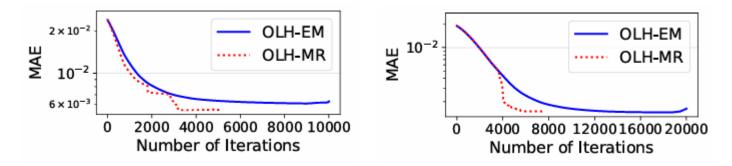


TABLE II Runtime table (seconds) of -EM and -MR on different datasets, varying ε .

	method	ε				
	method	0.75	1	2	3	
SFC	GRR-EM	19	12	9	6	
	GRR-MR	10	5	4	4	
SFC	OLH-EM	765	502	115	58	
	OLH-MR	311	204	83	37	
	Laplace-EM	2317	931	416	125	
	Laplace-MR	1156	665	306	90	
	GRR-EM	23	17	12	7	
Income	GRR-MR	11	8	5	4	
Income	OLH-EM	15684	6482	1126	154	
	OLH-MR	2837	1697	279	67	
	Laplace-EM	12317	8152	2516	823	
	Laplace-MR	5457	3003	1026	412	

Efficiency

Convergence speed on distribution estimation

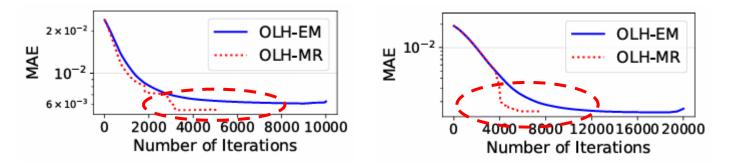


TABLE II RUNTIME TABLE (SECONDS) OF -EM and -MR on different datasets, VARYING ε .

	method	ε			
	method	0.75	1	2	3
	GRR-EM	19	12	9	6
SFC	GRR-MR	10	5	4	4
SFC	OLH-EM	765	502	115	58
	OLH-MR	311	204	83	37
	Laplace-EM	2317	931	416	125
	Laplace-MR	1156	665	306	90
	GRR-EM	23	17	12	7
Incomo	GRR-MR	_11	8	5	4
Income	OLH-EM	15684	6482	1126	154
Ç	OLH-MR	2837	1697	279	67
	Laplace-EM	12317	8152	2516	823
	Laplace-MR	5457	3003	1026	412

Ours converged faster

When to use our MR?

MR $\,vs\,$ Unbiased estimation & EM $\,$

- 1. MR can replace the traditional EM.
- 2. When many values need to be estimated.
- 3. When there exists substantial noise (low ε or n).

Source code is available at https://github.com/yyt20080808/LDP-EM-MR

For additional information contact us: yutong2017@iscas.ac.cn