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Local Differential Privacy  [Duchi et al, FOCS’13]
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Definition 1: A randomized algorithm 𝚿 satisfies 𝛆-local differential privacy, iff for any two inputs 𝒗 and 𝒗′
and for any output 𝒚 of 𝚿, 

Pr 𝚿 𝒗 = 𝒚 ≤ 𝑒𝜀 ∙ Pr 𝚿 𝒗′ = 𝒚

✓ frequency estimation

✓ mean estimation 

✓ topology analysis 

✓ location-based systems 

✓ machine learning

…

● Local Differential Privacy (LDP) is a typical locally private data collection model

ε ↓，private ↑，utility ↓

◆ A mining task under LDP can be formalized as an LDP protocol consisting of a pair of algorithms <𝚿,𝚽>, 
where 𝚿 is a perturbation algorithm and 𝚽 is an aggregation algorithm to extract useful knowledge.
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Local Differential Privacy

• Fundamental Tasks

• Category data: Frequency estimation,  Heavy hitters mining

OLH, GRR [Usenix security’ 17]  RAPPOR [CCS’ 14]

• Numerical data: Mean estimation,  Density estimation 

SW [Sigmod’20]  PM [ICDE’19]

• Local Differential Privacy is deployed in
• Apple  iOS/macOS,  to collect typing statistics, types of photos at frequently visited locations

• Google Chrome/Android, to collect browsing statistics

• Amazon Echo, to collect frequency of voice command statistics

• Microsoft Windows, to collect telemetry data



Aggregation methods (𝚽) 

Unbiased estimation + post-processing.

Estimation function is done independently for each value, and then Calibrate 

Derive function, i.e.,

real distribution

formular solutions 

Negative Calibration

Positive Calibration

Calibration

Consistency-based calibration
Wang et al.  [NDSS’ 20]

Prior-knowledge-based calibration
Jia et al. [INFOCOM’ 19]
Fang et al. [S&P’ 23]   



Aggregation methods (𝚽) 

Unbiased estimation + post-processing.

Expectation-Maximization (EM) based Maximal Likelihood Estimation(MLE)

Find a distribution that most likely leads to the observed perturbed data

Derive function, i.e.,

real distribution

formular solutions 

Negative Calibration

Positive Calibration

Calibration

Consistency-based calibration
Wang et al.  [NDSS’ 20]

Prior-knowledge-based calibration
Jia et al. [INFOCOM’ 19]
Fang et al. [S&P’ 23]   

Iterate

real distribution

EM solutions

EM-based MLE
Tu et al.  [Pets’ 19]
Li et al. [SIGMOD’ 20]

In cases where the function is not easy to derive, or 
when a reasonable distribution is preferred

Estimation function is done independently for each value, and then Calibrate 



Problems and Intuitions

OLH+EM(𝜺=0.75, n=200,000) 

Observation 1 (Fig 1)

More value need to estimate during EM → larger overall error.Observation 2 (Fig 2)

Pursuing a max likelihood value during EM process may lead to worse final error.

Fig 2. Compare the error between different distributionFig 1. trace the MAE of EM iteration process

EM-based MLE is easy to overfit to the noise data, especially when there is much noise.  Problems

OLH+EM(𝜺=0.75, n=200,000) 



Problems and Intuitions

Intuition

How can we overcome the overfitting issue of EM-based MLE to reduce the overall error? 

Noise overwhelms the small truth:  LDP noise follows 
zero Gaussians, are likely to cover the small value

Many values → complexity fitting model → easily 
overfitting: In machine learning, regularization is a 
well-studied technique for overfitting issue,  which 
penalizes small values in the model

Negative noise

Positive noise

Covered by noise



Problems and Intuitions

Intuition

How can we overcome the overfitting issue of EM-based MLE to reduce the overall error? 

Noise overwhelms the small truth:  LDP noise follows 
zero Gaussians, are likely to cover the small value

Many values → complexity fitting model → easily 
overfitting: In machine learning, regularization is a 
well-studied technique for overfitting issue,  which 
penalizes small values in the model

Enhancing the EM-based estimation by 
reducing the number of values that are likely 
small across EM iteration process

Negative noise

Positive noise

Covered by noise

observed 
LDP data

iterate

real distribution

estimated distribution 

distribution with 
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Our Approach

Goal: ෝ𝐰 = argmax
𝐰
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𝑛

𝑝( 𝑥|𝐰)

E-step:   

Calculate the likelihood given 𝐖(𝑡)

M-step:   

Update 𝐖(𝑡+1) that maximize the 
likelihood function ℒ

(by taking the derivative of ℒ)

Repeat EM step until converge

Review of the EM Algorithm
✓ Iterative optimization technique used for parameter 

estimation, i.e., Gaussian Mixture model (GMM) 



Our Approach

Review of the EM Algorithm
✓ Iterative optimization technique used for parameter 

estimation, i.e., Gaussian Mixture model (GMM) 

Goal: ෝ𝐰 = argmax
𝐰



𝑖

𝑛

𝑝( 𝑥|𝐰)

E-step:   

Calculate the likelihood given 𝐖(𝑡)

M-step:   

Update 𝐖(𝑡+1) that maximize the 
likelihood function ℒ

(by taking the derivative of ℒ)

Generalize EM under different LDP 𝚿

Build a LDP mixture model for generalization

E-step:   

• : PMF,  also the transfer function of 𝚿
• 𝜔𝑘 :  proportions or weights for each components.
• 𝐾 : the number of values. 

M-step:   

Goal:

Repeat EM step until converge



Our Approach (Mixture Reduction)

 Reduction operation 

 Judge the model and stop 
BIC : Trade-off between model fit and complexity 

merging step:



Our Approach (Mixture Reduction)

Generalization: we demonstrate the application of our approach in various LDP tasks



Our Approach (Mixture Reduction)

Generalization: we demonstrate the application of our approach in various LDP tasks

Accuracy analysis (Informal)

MSEOurs< MSEEM , especially when 𝜺 𝐨𝐫 𝒏 is  insufficient 

• 𝐾, 𝐾′ : Initial number of value and remaining number of value
• ℎ𝑖 , 𝜎𝑖 :  The number of value and their variance in the 𝑖-th merging operation

The MSE of our approach consists of two components: (1)the estimation error from the EM algorithm 
applied to the remaining values, and (2)the error introduced by the reduction process:



Evaluation

Datasets

S-MN(n=2000 & n=50000), SFC(n=43,386) Income (n=300,000)

Tasks

Evaluation metrics

Categorical data: Distribution
Numerical data:    Mean & Density
Key-Value   data: Conditional mean & density

Mean Absolute Error
Mean Squared Error
Wasserstein Distance 
Quantile



Evaluation

Accuracy comparison on frequency estimation

Accuracy comparison on mean 

Accuracy comparison on conditional mean




• When there exists substantial noise (low  𝜺 or  

𝒏),  our (–MR) reduces the error by almost half.
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(a) SFC (𝜀=0.5) (b) SFC (𝜀=2)
More frequent keys



Evaluation

Accuracy comparison on frequency estimation

Accuracy comparison on mean 

Accuracy comparison on conditional mean




• When there exists substantial noise (low  𝜺 or  

𝒏),  our (–MR) reduces the error by almost half.

• As 𝜺 or  𝒏 increases, the advantage of our (-MR) 
over others  gradually diminish ↓.
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(a) SFC (𝜀=0.5) (b) SFC (𝜀=2)
More frequent keys



The reason behind our MR’s high performance

Bias vs Variance

Repeat 100 times, plot the error in boxplot.

EM overfitting → too much bias



Efficiency

Convergence speed on distribution estimation



Efficiency

Convergence speed on distribution estimation

Ours converged faster



When to use our MR?

MR  vs Unbiased estimation & EM 

1. MR can replace the traditional EM. 

2. When many values need to be estimated.

3. When there exists substantial noise (low  𝜺 or  𝒏).

For additional information contact us:       

yutong2017@iscas.ac.cn

Source code is available at      https://github.com/yyt20080808/LDP-EM-MR


