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Blockchain Throughput
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Bottleneck 1: Overlapping Tasks
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» Every miner replicates the entire ledger

» Highly overlapping computation,
communication, and storage

» Throughput doesn’t scale with the

number of miners




b Bottleneck 2: Stragglers

» Fast miners need to wait for stragglers
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» Stragglers: limited bandwidth resources
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Blockchain Sharding

» Different shards maintain different ledgers
» Total throughput scales with the number of miners
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b SOTA Sharding Protocols Overlook Stragglers

Qﬁgﬁgﬁg » Uniform shard formation (USF)

» Each shard contains stragglers




Bandwidth-Clustered Shard Formation (BCSF)
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Mining rate = 1 block/min
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Mining rate = 10 block/min
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Mining rate = 1 block/min

Mining rate = 1 block/min




Bandwidth-Clustered Shard Formation (BCSF)
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Mining rate = 10 block/min
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Mining rate = 1 block/min

Naive?

Mining rate = 1 block/min




Bandwidth-Clustered Shard Formation (BCSF)
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Slow miner | Mining rate = 1 block/min Mining rate = 1 block/min

Naive? Hard to achieve!
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New Challenge: Adversarial Concentration

» Corrupted miners pretend to

have closed bandwidths

» Adversarial ratio >= 50%
» No consensus protocol works

under adversarial majority!




High-level Insight

We propose sharing mining to
ensure security as long as each
shard has one honest miner

> Honest miners share blocks
across shards to diffuse their

hashing power to other shards
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Bitcoin Block
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Block Structure

Consensus Block
(Block Header)

Transaction Block

(Block Body)

» Exclusive block extends
chains in one shard

» Inclusive block extends all
chains across all shards




Sharing Mining
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Sharing Mining
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b Sharing Mining
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Before sharing mining

After sharing mining
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Genesis block

Honest exclusive block

O Honest inclusive block
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Light clients

Light Client (SPV)
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Shard | miner

Shard 2 miner

Hashing Power Splitting Attack




Shard | miner

Invalid tx

Merkle proof

Shard 2 miner

Transaction Validity Verification

Invalid block




Data Availability Verification

Shard | miner

Unavailable block
(hidden)

Shard 2 miner




Coded Merkle Tree
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Miners only need to sample O(log B) bytes

[I1 Yu, M, Sahraei, S,, Li, S., Avestimehr, S., Kannan, S., & Viswanath, P. (2020, February). Coded
merkle tree: Solving data availability attacks in blockchains. In International Conference on
Financial Cryptography and Data Security (pp. | 14-134). Cham: Springer International Publishing.

[1]




Predictive Mining
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Predictive Mining
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Predictive Mining
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Fork Pruning

Verication
failure
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Theoretical Analysis
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Security Analysis

| Theorem 1 (informal) |

If there is one honest miner in each shard, Manifoldchain holds
Common Prefix, Chain Growth, and Chain Quality within each
shard, regardless of the adversary’'s attack strategy, as long as
p > 1/2 except with a negligible probability.

Manifoldchain is secure as long as the majority of miners are honest.




Throughput Analysis

Theorem 2 (informal)

In a scenario where Bitcoin achieves a throughput of T,
Manifoldchain attains a throughput of > " TAA,-%’ while
maintaining the same level of security as Bitcoin.

The total throughput is scalable with bandwidth (in fast shards where A;< A,

throughput scale from T to %T), and at worst case (where A;= A),

Manifoldchain achieves the same throughput as Bitcoin within each shard.
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Implementation

‘ » A complete prototype (over

15,000 lines of Rust code)
~[ Validator >—><Mempool> » With higher throughput than the
Y SOTA sharding protocol (under
v same testbed)
Multichai > » Evaluated on real-world scenario
ultichain
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Number of Confirmed TXs

Scalability on Amazon EC2

> Bandwidth configuration: {5, 10, 20, 40, 60} x 10
» Shard formation: Monoxide adopts USF, Manifoldchain adopts BCSF
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Horizontal Scalability

With each increment in m,add 5 miners with the
bandwidth of {5, 10, 20, 40, 60} Mbps
» Manifoldchain: 20 tx/sec for each increment

> Monoxide: 7 tx/sec for each increment

As the number of miners increases, Manifoldchain

achieves greater throughput increments.
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Vertical Scalability

20 normal miners and 5 stragglers
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Stragglers follow NV (10, 2)
Normal miners follow N (u, 7)
Manifoldchain: |.25tx/sec for each increment

Monoxide: constant

With same bandwidth resources, Manifoldchain

achieves higher throughput.
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THANKS

Do you have any questions?
cche861@connect.hkust-gz.edu.cn
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