. ANDSSs

Kronos: A Secure and Generic Sharding Blockchain Consensus
with Optimized Overhead

Yizhong Liu!, Andi Liu!, Yuan Lu?, Zhuocheng Pan', Yinuo Li’, Jianwei Liu!,
Song Bian!, Mauro Conti*

'Beihang University, *Institute of Software, Chinese Academy of Sciences

3Xi’an Jiaotong University, ‘University of Padua

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 1

® 1 Sharding Blockchain

N

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

® 1 Sharding Blockchain

|
| BET/PoWi

lobal) :

(8
Poor Scalability y /

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

® 1 Sharding Blockchain

A K B Sll “BFT

| BFT

52 I (1ns1de shard §,) ,L>
S— /

Improved Scalability

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 4

® 2 Cross-Shard Transaction

e Intra-Shard Transaction:

Input
-1 - Output
Shard § |l tx O
==I)— W

~ -

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

® 2 Cross-Shard Transaction

e Intra-Shard Transaction:

(Input) Shard S,

Input

--1 — Output

Shard § | tx o
-— _Ik — /

//
e Cross-Shard Transaction:
(Input) Shard §4 (Output) Shard §,,
i tx —0--

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

® 2 Cross-Shard Transaction

Experiment
result

Ratio of Cross-Shard TXs
o. o, o0, 0 0
0, 9. 9. 9.
> D <y Yy
1
¢
w0
m||
&
=
O
~
v
=)
‘
[
1
1
1
1
1
1
1
—

8 16 24 32
Number of Shards

Huang H, Peng X, Zhan J, et al. Brokerchain: A cross-shard

blockchain protocol for account/balance-based state
sharding[C]//IEEE INFOCOM, 2022: 1968-1977.

In Ethereum, the value of multi-input
transactions (including high-value
crowd-funding ones and consolidated payments)
in 2024 has reached 1 billion USD'.

https://coincodex.com/ico-calendar/ethereum/

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 7

® 2 Cross-Shard Transaction

Cross-shard transaction processing dominating system security.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

® 2 Cross-Shard Transaction

UTXO Pools

(initial)

utxo,

utX03

Cross-shard transaction processing dominating system security.

Critical security property: Atomicity

UTXO Pools

tx,
Spend: To:

utxo,q S3
utxo, ' S,

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

9

® 2 Cross-Shard Transaction

Cross-shard transaction processing dominating system security.

Critical security property: Atomicity

UTXO Pools UTXO Pools
(initial) (after tx,)
e O "
s, [imor | | a s, [~ |
(o1 L . . 1201 !
: utxo; i Spend. To: : utxos :
i < utxoq S3 i — |
' S2| utxo, | ! utxo, ' S2| utxay | !
U3 e 53| utxo, | !
I\ _______________ /I I___t__/___ll
. J
Y

All involved shards commit valid requests.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

10

® 2 Cross-Shard Transaction

Cross-shard transaction processing dominating system security.

Critical security property: Atomicity

UTXO Pools UTXO Pools
(initial) (after tx,)
:' — E txa :' """ E th
'Sy | utxo; | 1§, | utxay |
utxos Spend: To: utxo; J | Spend: To:
N < utxoq S3 D ey utxos S3
52| utxo, | utxo; ' S2| wkkay | | utxo
| - !) —_ J
i 3 . i i 33 utXOa i
e ———— / . —)
- J
Y

All involved shards commit valid requests.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

UTXO Pools
(after txp)

~———

N

11

N o e e e e e e e e, ——————

® 2 Cross-Shard Transaction

Cross-shard transaction processing dominating system security.

Critical security property: Atomicity

N o e e e e e e e e, ——————

UTXO Pools UTXO Pools UTXO Pools

(initial) (after tx,) (after txp)
191 | UtX0q !) tEXQy |)
. Lutxos J | Spend: To: 1 _utxos ! Spend: To: 1| utxos
A < N utxoq S3 D oy utxos S, i sl
' $2| utxo, | ! utxo, ' Sa| utxoy | | utxo, | S,
R ——— L S
93 i i S3| utxo a | (the same) ! S3 utxo,
e ———— / S M —_—

g AN J
Y Y

All involved shards commit valid requests.

No shards commit an invalid requests.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

® 3 Remaining Issues of Prior Solutions

1
1
1

Qi BFT BFT |—
iwi Lock &, Spend &,
é ;@’S 2-| BFT BFT
Lock &, Spend &,
2 5 BFT |-

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

® 3 Remaining Issues of Prior Solutions

Existing solution: Two-Phase Commit (2PC)

1
1
1
|

L—5;-| BFT BFT |—
i%p: Lock Spend

a2 %55 2| BFT BFT

o Lock &, Spend &

2 3 BFT |-

e 2PC ensures atomicity by locking mechanism,
where each input shard must execute BFT 2 times.
e Directly spending available input through 1 BFT is

low-cost, but easily compromises atomicity.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 14

® 3 Remaining Issues of Prior Solutions

i&%ij’sl -1 BFT BFT |— i%%:g:Sl - BFT

iw: Lock &, Spend &, EQ@: - Lock &,

5%93 gsz BFT BFT i@‘;‘ S2 No processing
o Lock &, Spend & T

8 53 BFT |— (9) 53 Wait for S,

e 2PC ensures atomicity by locking mechanism, e 2PC cannot withstand silence attack, where

where each input shard must execute BFT 2 times. - malicious clients selectively send requests to
e Directly spending available input through 1 BFT is some shards while neglecting others.

e Timeouts is inapplicable to asynchronous ones.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
. . . . i
low-cost, but easily compromises atomicity. :
|

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 15

® 3 Remaining Issues of Prior Solutions

Existing solution: Two-Phase Commit (2PC)

Extra BFT execution — High overhead

1
1

e

L8

l—>S2

B

o s

BFT

Lock &,

BFT

BFT
Spend &,

Lock &,

BFT

Spend &,
BFT

e 2PC ensures atomicity by locking mechanism,
where each input shard must execute BFT 2 times. -

e Directly spending available input through 1 BFT is

low-cost, but easily compromises atomicity.

&—»S 14 BFT
25> Lock &,

@%S 2 No processing

8 $3 Wait for S,

2PC cannot withstand silence attack, where
malicious clients selectively send requests to
some shards while neglecting others.

Timeouts is inapplicable to asynchronous ones.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 16

® 3 Remaining Issues of Prior Solutions

Existing cross-shard certification:

leader — to — leader

Sl SZ

leader; leader,

nodes

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 17

® 3 Remaining Issues of Prior Solutions

Existing cross-shard certification:

leader — to — leader

Sl (honest) (disguised) Sz

leader,

e Disguise Attack: Malicious shard leader does not
send crucial messages (proof) to relevant shards,
or forward messages from other shards to nodes
within its shard.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

® 3 Remaining Issues of Prior Solutions

Existing cross-shard certification:

leader — to — leader

S, (honest) (disguised) §, i Messagem
> ' (for b requests) !

-———- Eb certificates, :

leader, ' signatures. .. :

e Disguise Attack: Malicious shard leader does not n: shard size, b: transaction number, A: security parameter

send crucial messages (proof) to relevant shards, emn) g
-to- xpensive communication!

or forward messages from other shards to nodes 0(n)-to-0(n) .’ . P

within its shard. ® Cross-shard communication overhead for

processing b transactions: CS-w = 0(n?bA)

. . 1 . : _
Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 19

® 3 Remaining Issues of Prior Solutions

Existing cross-shard certification:

leader — to — leader

S, (honest) (disguised) §, i Messagem
> ' (for b requests) !

-———- Eb certificates, :

leader, ' signatures. .. :

e Disguise Attack: Malicious shard leader does not ° o
. 0(n)-to-0(n) .”P Expensive communication!
send crucial messages (proof) to relevant shards, .

or forward messages from other shards to nodes ® Cross-shard communication overhead for

within its shard. processing b transactions: CS-w = 0(n*b2A)

Forever wait — Unreliable communication

Heavy message — Inefficient communication

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 20

® 3 Remaining Issues of Prior Solutions

Can we design a generic sharding blockchain consensus

achieving security and efficiency with optimized overhead?

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

21

® 4.1 Transaction Processing Pattern of Kronos

Valid transaction processing pattern

*Each shard is managed with a majority
(e.g., 2/3) of honest nodes.

R

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

22

® 4.1 Transaction Processing Pattern of Kronos

Fmm———————
|

| Step @

|

| Request delivery
|

SP: spend-transaction
spend available coins

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

23

® 4.1 Transaction Processing Pattern of Kronos

Fmm———————
|

| Step @

|

| Request delivery
|

|

|
|
I:> : Available input :
: spending |

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

24

® 4.1 Transaction Processing Pattern of Kronos

Request delivery

Valid transaction processing pattern *RCBC ensures that cross-shard
messages arrive at the output shard.
1 pe>saanane 1 .
i . | Step © |
| : . :
| I:> | Available input | |::> | Reliable cross-shard |
| : . :
| . spending | | batch certification :

|
| Step €
|
|
|

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

25

® 4.1 Transaction Processing Pattern of Kronos

Request delivery

Valid transaction processing pattern *RCBC ensures that cross-shard
__________ messages arrive at the guipll‘i shard.
]: i Step @ : :[_ Step © :
: I:> : Available input : |:> : Reliable cross-shard :
{1 spending || batch certification |

|
| Step @
|
|
|

=
A%ﬁ? % (Store &5 /&5)

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

26

® 4.1 Transaction Processing Pattern of Kronos

gt e Yy peeemmeRees 1 peesssssaaas - | i e 1

| Step @ | | Step @ | | Step © | | Step @ |
€ . . . | .

| P —> . Available input | [—> | Reliable cross-shard | [—> | Validrequest |

| Request delivery | | : | | : : | I L |

| | | spending | IL batch certification | | finalization |

FH: finish-transaction
to commit valid request

=
A% % (Store &5 /&5)

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 27

® 4.1 Transaction Processing Pattern of Kronos

pemmsaaaw y pemmmmmaas 1 PReeEEaEaw 5 pemssasaas
| Step @ | | Step @ | | Step © | | Step @
€ . . . | .
: P _ | I:> | Available input | |::> | Reliable cross-shard: |::> | Valid request
| Request delivery | | : | | . : | | o
| | | spending JI IL batch certification | | finalization

f 0
A%?% (Store &5 /&) Payee’s o~ &

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 28

® 4.1 Transaction Processing Pattern of Kronos

|
| I
| Step @ |
|
| Request delivery:
|

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 29

® 4.1 Transaction Processing Pattern of Kronos

| |

| I | |
| |

| Step @ : I:> | Step @# |

| |

| |

Request delivery Unavailable input proving
|

_Signg’s invalidit}
as proof of rejection

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

30

® 4.1 Transaction Processing Pattern of Kronos

i | | |
i Step @ i —=> i Step @# i —=> i Step @#
| | |

Request delivery | Unavailable input proving
|

s1 : Receivenfh before @ geT |:abort and rejectJIz

Happy path

O#

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 31

® 4.1 Transaction Processing Pattern of Kronos

| |

I | | | |

t I | I St #
swe L se@r S0

| Request dellvery: : Unavailable input proving | :

| |

s1 : Receivenfh before @ geT |:abort and rejectJIz

Happy path

$3 .2 Receivel, when ﬁ :abort and reject &7

O+

No BFT execution for invalid &= .

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 32

® 4.1 Transaction Processing Pattern of Kronos

i | | |
i Step @ i —=> i Step @# i —=> i Step @#
| | |

Request delivery | Unavailable input proving
|

1 . . - =
Sin : Receive :z@a ter |

—_ ' — Refund @'

Unhappy path

O#

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 33

® 4.1 Transaction Processing Pattern of Kronos

i | | |
i Step @ i —=> i Step @# i —=> i Step @#
| | |

Request delivery | Unavailable input proving
|

e J ‘- - ‘- -
e
1 |
1 . Ry =
Sin : Receive :z@atter _ BFT b— - _____.

Unhappy path
o C B B)
S 3ut= Receive:zég’: when . and reject &
O+

Only shards managing valid inputs may execute BFT for §=.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 34

® 4.2 Reliable Cross-Shard Batch Certification (RCBC)

Cross-shard requests with output shard §; Il pm e

Y
Cross-shard requests with output shard S II Sk '-- L

74

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

35

® 4.2 Reliable Cross-Shard Batch Certification (RCBC)

Method: Hybrid-tree-based RCBC (HT-RCBC) :

e Merkle tree + Erasure coding

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 36

® 4.2 Reliable Cross-Shard Batch Certification (RCBC)

Method: Hybrid-tree-based RCBC (HT-RCBC) :

e Merkle tree + Erasure coding

Input shard S;: Encode + Commit

—t =2
AR
P A
7 \
- \
- \
< \
n code blocks of \

requests output to S; N

n code blocks of
requests output to Sy,
Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 37

® 4.2 Reliable Cross-Shard Batch Certification (RCBC)

Method: Hybrid-tree-based RCBC (HT-RCBC) :

e Merkle tree + Erasure coding

Input shard S;: Encode + Commit

—t =2
G- BB
V- 1
- v _\\ Build a Merkle tree
_- \\ on all code blocks
n code blocks of \
requests output to S;

'
'

\
n code blocks of

requests output to Sy,
Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 38

® 4.2 Reliable Cross-Shard Batch Certification (RCBC)

Method: Hybrid-tree-based RCBC (HT-RCBC) :

e Merkle tree + Erasure coding

Cross-Shard
Input shard S;: Encode + Commit I Communication | S

N
o

S -

—t —2 Commit‘.
(IE_' - IZL‘(kI -
:i p— ~ - — - : l
- _\\ Build a Merkle tree
_- ‘< \ on all code blocks
n code blocks of \\
requests output to S; \ i
n code blocks of Each node P{* broadcast ome block (k) to Sy with its cert (the same rules for S;)
requests output to Sy e.g., cert[k,] = (rt, hashpath of k)

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 39

® 4.2 Reliable Cross-Shard Batch Certification (RCBC)

Method: Hybrid-tree-based RCBC (HT-RCBC) :

e Merkle tree + Erasure coding

Cross-Shard
Input shard S;: Encode + Commit I Communication | Sj |

O I S

—_—— —
i —IZ],‘(~ - Commit)
V- 1
- o _\\ Build a Merkle tree
-7 N on all code blocks
n code blocks of \
requests output to S; \ > i
n code blocks of Each node P{* broadcast ome block (k) to Sy with its cert (the same rules for S;)
requests output to S e.g., cert[k,] = (rt, hashpath of k)

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 40

Method: Hybrid-tree-based RCBC (HT-RCBC) :

f: the number of Byzantine nodes inside each shard.
At least n — f blocks can be reliably received from
the majority of honest nodes in S;

e Merkle tree + Erasure coding

l

Cross-Shard /

. o ~c 1 /S /
Input shard S;: Encode + Commit I Communication | S; 1, OutputshardS;/S;: .

1 Verify + Decode + Store//'

I
| 1 Verity +) ¢
I 11 Q:receiven— O
[] I L]
1 1l
| by
[k—ll
. .
| O 1
—— = Commit I,
(B G- K - | Q1
L p—— \5_,/ . I .
I N% I
-0(n)-to-0(n) 1O !:

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 41

Method: Hybrid-tree-based RCBC (HT-RCBC) :

f: the number of Byzantine nodes inside each shard.
At least n — f blocks can be reliably received from
the majority of honest nodes in S;

e Merkle tree + Erasure coding

/

Cross-Shard ’

. o ~c 1 /S /
Input shard S;: Encode + Commit I Communication | S; 1, OutputshardS;/S;: .

| Verify + Decode + Store//'

| [
. | -
I 11 Q:receiven—f O ¥
, 1 Verify
: ¥ f+10 (verified)
. _ - Decodel
I k1l
- oF S;/Sk
—— = Commit : ! &, managed by S;
- B - ! 1 l
oot e . N)!'- Store
! \~ ;' S,’s/Sj.s buff
- 0(n)-to-0(n) _J . & | °j S/oSbuller

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 42

Method: Hybrid-tree-based RCBC (HT-RCBC) :

e Merkle tree + Erasure coding

o (S-w=0(nél), E&=max(nlogm, nlogn, b
(<) (nlog gn, b) Cross-Shard

- —

. e |
Input shard S;: Encode + Commit ! Communication | S; 1.

—t —2 Commit
G- BB

~==

v/ Responsive
¢/ In batch: v/ Reliable

O I S

Output shard S;/S:
| Verify + Decode + Store

| QO: receiven — f O
1 Verify

f + 10 (verified)
Decodel

S;/Sk
&, managed by S;

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

43

® 5 Evaluation

e Implementation: using Speeding Dumbo!!! (asynchronous BFT) or Hotstuff!?! (partially
synchronous BFT) for intra-shard consensus

e Setting: 32 to 1000 nodes running in AWS EC2 instances
Results: Averaged over 5 experimental runs

- b=1000 . | -+ b=1000
£ 3007 5=2000 ' _ +— 1| = b=5000
E 510000 g3 ' o |+ b=10000
=4 [{ 7 i | A~ -
= 200+ . b—70000 i ‘:’ i & <+ b=50000
E- Tl -E 2 i g == : ! "
= | g — Lt
£ 100 : = 14 s e
= I ’t:::f-ff"' TT—e———¢

0 G T T T T T T

178 "'56 500 1000 32 64 128 256 500 1000
Scale (% of parties) Scale (# of parties)
(a) Peak throughput (b) Latency

Scalability: v (Throughput increases as network size N scales to 1000).

[1] B. Guo, Y. Lu, Z. Lu, et al., , “Speeding dumbo: Pushing asynchronous BFT closer to practice,” in NDSS’22. ISOC, 2022.
[2] M. Yin, D. Malkhi, M. K. Reiter et al., “Hotstuff: Bft consensus with linearity and responsiveness,” in PODC’19. ACM, 2019, pp. 347-356.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 44

® 5 Evaluation

Comparison with 2PC:

Number of shards: 16, 32, and 64, with 4 nodes per shard (optimal shard size in tests).

20
sKronos-16 [l s2PC-16 “* sKronos-16
sKronos-32 [l s2PC-32 * sKronos-32

sKronos-64 [ll s2PC-64 : :2_%%}?;64 ”’\
<+ s2PC-32 Y

[e2]
(=]
1
b
N
1

Throughput (ktx/sec)
(3%} =
g2 2
Latency (sec)
2 S
Nl
[\
5

o
<2

« $2PC-64 P .
* sKronos outperforms s2PC
' ‘ , (TPS: up to 12X, Latency: nearly 1/2).
G T T T J T ‘—l_—-' 0 T T T T T
10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Proportion of cross-shard requests Proportion of cross-shard requests
(b) sKronos v.s. s2PC (TPS) (c) sKronos v.s. s2PC (latency)

* sKronos: Kronos using Speeding Dumbo for intra-shard consensus.

* s2PC: 2PC using Speeding Dumbo for intra-shard consensus.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 45

® 5 Evaluation

Comparison with other sharding blockchains

o
o

60

3z =ASKI-;EHOS /\\ 15 5 E——" . ———
é 15' !. ByShard ’ 'g | o ik Ef ‘ ‘ .: g;‘ISLha_rd
‘i‘: 210 y — e 240 .
246 g g l |
_% 5 # sKronos z /
o - -+ ByShard () -l 4 /@‘)
—
= g 1_‘

ol 0 \ 0 r'ir | —o—

3 16 4 8 ~§ 0 20 0 =~ &
Shard Number Shard Number Throughput (ktx/sec)
(a) sKronos v.s. AHL and ByShard (TPS) (b) sKronos v.s. AHL and ByShard (latency) (c) sKronos v.s. AHL and ByShard (trade-off)

Kronos outperforms AHL[!! and ByShard!?) in all cases (TPS: 2.3x (ByShard), 2.7x (AHL), Latency: below 1/3).

[1] H. Dang, T. T. A. Dinh, D. Loghin et al., “Towards scaling blockchain systems via sharding,” in SIGMOD’19. ACM, 2019, pp. 123—-140
[2]J. Hellings and M. Sadoghi, “Byshard: sharding in a byzantine environment,” VLDB J., vol. 32, no. 6, pp. 1343—-1367, 2023.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 46

® 6 Conclusion

System Malicious Leader Malicious Client Atomicity IS-Overhead CS-Overhead Genericity
Tolerance Tolerance
Kronos-HT v v v kB 0(nél) (Partially)
Kronos-VC* O(nb)) Sync./Asynec.

= logm, nlogn, b
Kronos-HT: Kronos with HT-RCBC. ¢=max(nlogm, nlogn, b)

* Kronos-VC: A variant of Kronos-HT that uses vector commitments instead of Merkle trees to commit code blocks.

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 47

® 6 Conclusion

System Malicious Leader Malicious Client Atomicity IS-Overhead CS-Overhead Genericity
Tolerance Tolerance
Kronos-HT v v v kB 0(néA) (Partially)
Kronos-VC O(nb/) Sync./Asyne.

Atomicity under malicious leader and client and optimal intra-shard overhead

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 48

® 6 Conclusion

System Malicious Leader Malicious Client Atomicity IS-Overhead CS-Overhead Genericity
Tolerance Tolerance
Kronos-HT v v v kB 0(néA) (Partially)
Kronos-VC O(nb/) Sync./Asyne.

Atomicity under malicious leader and client and optimal intra-shard overhead

Reliable cross-shard transfer with low communication overhead

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 49

® 6 Conclusion

System Malicious Leader Malicious Client Atomicity IS-Overhead CS-Overhead Genericity
Tolerance Tolerance
Kronos-HT 0(nci) (Partially)
v v v kB
Kronos-VC O(nb/) Sync./Asyne.

Atomicity under malicious leader and client and optimal intra-shard overhead

Reliable cross-shard transfer with low communication overhead

Genericity under asynchronous network and scalability for exiting BFT protocols

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead 50

Thank you!

Questions?

Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead

51

® Comparison

Malicious Leader

Malicious Client

System o T Atomicity IS-Overhead CS-Overhead Genericity
Omniledger[1] x x 2kB O(b(logb+))) Partially Sync.
Chainspace[2] v X 2kB 0(n’b)) Partially Sync.
ByShard[3] v x 2kB 0(n’b)) Sync.
RapidChain[4] x v ¥4 kB 0(n’b)) Sync.
Sharper[5] x v - 0(n’bl) Partially Sync.
AHL[6] v x (2k+3)B 0(n°b)) Partially Sync.
Pyramid[7] v x (k+1)B 0(n’b)) Partially Sync.
Monoxide[8] X X ¥4 kB, k=2 O(nbA) Partially Sync.
KoV ‘ ‘ ‘ z oy s,

[
[
[
[
[
[
[
[

1
2
3

4
5

] E. Kokoris-Kogias, P. Jovanovic, L. Gasser et al., “Omniledger: A secure, scale-out, decentralized ledger via sharding,” in SP’18. IEEE, 2018.
] M. Al-Bassam, A. Sonnino, S. Bano et al., “Chainspace: A sharded smart contracts platform,” in NDSS’18. ISOC, 2018.

17J. Hellings and M. Sadoghi, “Byshard: sharding in a byzantine environment,” VLDB J., vol. 32, no. 6.

] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain via full sharding,” in CCS’18. ACM, 2018.
1 M. J. Amiri, D. Agrawal, and A. El Abbadi, “Sharper: Sharding permissioned blockchains over network clusters,” in SIGMOD’21. ACM,2021.
6] H. Dang, T. T. A. Dinh, D. Loghin et al., “Towards scaling blockchain systems via sharding,” in SIGMOD’19. ACM, 2019.
71 Z. Hong, S. Guo, P. Li, and W. Chen, “Pyramid: A layered sharding blockchain system,” in INFOCOM’21. IEEE, 2021.

8] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asynchronous consensus zones,” in NSDI’19, vol. 2019, 2019.

® Evaluation

0 Invalid Transaction Processing:

e (Cross-shard request proportions: 10%, 20%, and 30%.

e Invalid transaction proportion: 20%

-20% = CS-20%
{5307 1+ CS30% |

=N
S

N
=

Latency (sec)

0 10% 20%
Proportion of unhappy path

Throughput (ktx/sec)
o &
(e

0 10% 20%
Proportion of unhappy path

* Kronos rejects invalid requests with low impact on performance.

® Reliable Cross-Shard Batch Certification (RCBC)

Method 2: Vector-commitment-based RCBC (VC-RCBC) :

® Vector commitment + Erasure coding

® (S-w=0(nbi)
Cross-Shard

. . I . . =
Input shard S;: Encode + Commit ! Communication | S; Output shard S;/S),:

i Verify + Decode + Store

I O: receiven — f [

—————————————————————

T
\ vector commitment - I o
! | : I I f+ 10 (verified)
D @ C !
"""""" . . S./S
e s
ommit, . : &, managed by S;
) =
| | |
4 Commit all code ™ I I
! blocks as a vector .) 2 S;’s/S .S buffer
X -
the same as HT-RCBC' T T T -
eg. certlky] = (C,A%) N the same as HT-RCBC

C: succinct-length commitment, A?: succinct-length proof of k,

