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Vertical Federated Learning (VFL)
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Privacy leakage in VFL: Data reconstruction attack
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Two types of data reconstruction attacks

1. Honest but curious (HBC) adversaries
HBC adversaries stealthily extract private features while adhering 
to the training protocol.

2. Malicious adversaries
Malicious adversaries actively manipulate or violate the protocol
to steal private features.



Threat Model
•Adversary’s capability and knowledge:

(1) Active client;
(2) Violate the VFL protocol;
(3) An auxiliary dataset



What is the challenge to launch this attack?

1. Distributed features and limited model access
• Black-box target clients’ models
• Distinct feature spaces

2. Powerful detection strategies.
• SplitGuard (SG)
• Gradient Scrutinizer (GS)
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URVFL and URVFL_sync



1. Pretraining

• Train an encoder-decoder structure to recover the target data on 
the auxiliary dataset.



2. Malicious gradient generation 
• Transfer the embedding distribution from 

the encoder to the target model.

• Our method: Discriminator with Auxiliary 
Classifier (DAC)



3. Data reconstruction

The adversary can 
reconstruct the target 
data feature from the 
received embeddings.



Why DAC?
Intuitive method: Use a discriminator.
• The discriminator helps minimize the JS distance of two distributions

• Shortcomings:
• (1) Ignore label information
• (2) Easy to be detect.

DAC minimizes the distance of the joint distribution.



Why DAC?
Result:



Result
• Embedding transfer metrics: 

(1) Embedding MSE distance
(2) Embedding cosine distance

• Reconstruction metrics:

(1) MSE
(2) PSNR (Image dataset)
(3) SSIM (Image dataset)



Results on Tabular dataset



Results on Image dataset



Results on Image dataset



Result under detection



Visualization of the reconstruction



Conclusion

• Malicious attack in VFL cause more privacy Leakage.
• URVFL can circumvent current detection strategies.

Future work:
• How to defend this kind of malicious attacks?
• Malicious attacks in other ML models.
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