URVFL: Undetectable Data Reconstruction Attack on Vertical Federated Learning

Duanyi Yao, Songze Li, Xueluan Gong, Sizai Hou, Gaoning Pan

Vertical Federated Learning (VFL)

Multiple Passive Clients: Partial data features

1 Active Client: Labels and Partial data Features

Privacy-preserving embeddings Sharing

Privacy leakage in VFL: Data reconstruction attack

Two types of data reconstruction attacks

1. Honest but curious (HBC) adversaries

HBC adversaries stealthily extract private features while **adhering** to the training protocol.

2. Malicious adversaries

Malicious adversaries actively **manipulate or violate** the protocol to steal private features.

Threat Model

Adversary's capability and knowledge:

(1) Active client;(2) Violate the VFL protocol;(3) An auxiliary dataset

What is the challenge to launch this attack?

1. Distributed features and limited model access

- Black-box target clients' models
- Distinct feature spaces

2. Powerful detection strategies.

- SplitGuard (SG)
- Gradient Scrutinizer (GS)

URVFL and URVFL_sync

Step1: Pretraining

Step2: Malicious gradient generation

Step3: Data reconstruction

1. Pretraining

• Train an encoder-decoder structure to recover the target data on the auxiliary dataset.

$$\mathcal{L}_R = \frac{1}{|\mathcal{B}_{aux}|} \sum_{i \in \mathcal{B}_{aux}} MSE(\tilde{x}_{i,t}, x_{i,t}).$$

2. Malicious gradient generation

- Transfer the embedding distribution from the encoder to the target model.
- Our method: Discriminator with Auxiliary Classifier (DAC)

$$\min_{D} \mathbb{E}_{h, y \sim P_{H_{aux}, Y}} CE(y^+, D(h)) + \mathbb{E}_{h, y \sim P_{H_{train}, Y}} CE(y^-, D(h))$$

Step 2: Malicious gradient generation

3. Data reconstruction

The adversary can reconstruct the target data feature from the received embeddings.

Step 3: Data reconstruction

Why DAC?

Intuitive method: Use a discriminator.

- The discriminator helps minimize the JS distance of two distributions $JS(P_{H_{aux}} || P_{H_{train}})$
- Shortcomings:
- (1) Ignore label information
- (2) Easy to be detect.

DAC minimizes the distance of the joint distribution.

$$\mathrm{KL}(P_{H_{aux},Y} \| P_{H_{train},Y})$$

Why DAC?

Result:

Fig. 4: t-SNE visualization on Credit dataset with 2 classes.

Fig. 5: t-SNE visualization on MNIST dataset with 10 classes.

Result

- Embedding transfer metrics:
- (1) Embedding MSE distance
- (2) Embedding cosine distance
- Reconstruction metrics:
- (1) MSE
- (2) PSNR (Image dataset)
- (3) SSIM (Image dataset)

Results on Tabular dataset

Method		Credit		RT_IOT2022		
	Recon MSE	Emb MSE	Emb Cos	Recon MSE	Emb MSE	Emb Cos
GRNA	1.1822 ± 0.0541	-	-	2.2542 ± 0.0325	-	-
GIA	0.9056 ± 0.0002	$\textbf{0.2738} \pm 0.0008$	0.4681 ± 0.0215	1.8535 ± 0.0012	1.7276 ± 0.2356	0.4491 ± 0.0371
AGN	0.9656 ± 0.1196	-	-	2.2311 ± 0.1256	-	-
AGN-SG	1.4155 ± 0.1734	-	-	2.3967 ± 0.2628	-	-
AGN-GS	-	-	-	2.5670 ± 0.2909	-	-
PCAT	0.8612 ± 0.0984	0.5282 ± 0.0467	0.5486 ± 0.0197	2.2963 ± 0.4388	1.5646 ± 0.2488	0.3742 ± 0.0195
SDAR	0.5327 ± 0.0374	0.5451 ± 0.1645	0.3103 ± 0.0931	1.6084 ± 0.1604	2.9362 ± 1.3356	0.2281 ± 0.1689
FSHA	0.5032 ± 0.0382	0.3906 ± 0.0622	0.2234 ± 0.0564	1.5773 ± 0.0507	2.2990 ± 0.6506	0.4859 ± 0.0984
FSHA-SG	0.7884 ± 0.1139	0.6056 ± 0.0704	0.5640 ± 0.0369	1.6895 ± 0.0419	2.7922 ± 1.0491	0.5909 ± 0.0745
FSHA-GS	-	-	-	1.7442 ± 0.0784	2.5768 ± 0.2169	0.5534 ± 0.1453
URVFL (SG/GS)	0.4191 ±0.0541	0.3078 ± 0.0778	0.1658 ±0.0551	1.3821 ± 0.0244	1.7894 ± 0.7435	0.0549 ±0.0113
URVFL_sync (SG/GS)	0.4722 ± 0.0228	0.3720 ± 0.0462	0.2277 ± 0.0441	1.3277 ± 0.0665	2.3372 ± 0.5489	0.0938 ± 0.0340

Results on Image dataset

Method	MNIST			CIFAR-10			Tiny imagenet		
	Recon MSE	Emb MSE	Emb Cos	Recon MSE	Emb MSE	Emb Cos	Recon MSE	Emb MSE	Emb Cos
GRNA	0.5533 ± 0.0919	-	-	0.3287 ± 0.0061	-	-	0.3869 ± 0.0103	-	-
GIA	0.9125 ± 0.0056	0.0179 ± 0.0018	0.2772 ± 0.0431	0.2550 ± 0.0004	1.4011 ± 0.1849	0.3957 ± 0.0535	0.3234 ± 0.0009	1.8109 ± 0.1039	0.3936 ± 0.0068
AGN	0.4801 ± 0.0027	-	-	0.4413 ± 0.0385	-	-	0.3786 ± 0.0190	-	-
AGN-SG	0.5131 ± 0.0014	-	-	0.5154 ± 0.0776	-	-	1.2398 ± 0.0102	-	-
AGN-GS	0.7073 ± 0.0813	-	-	0.5901 ± 0.0620	-	-	1.9577 ± 0.2531	-	-
PCAT	0.2446 ± 0.1312	0.0282 ± 0.0016	0.3484 ± 0.0299	0.3843 ± 0.0123	2.4672 ± 0.3024	0.5544 ± 0.0023	0.3063 ± 0.0249	2.7853 ± 0.0521	0.5526 ± 0.0025
SDAR	0.0839 ± 0.0751	0.1638 ± 0.1850	0.3142 ± 0.1699	0.3067 ± 0.0618	0.5230 ± 0.6965	1.2196 ± 0.4831	0.1363 ± 0.0293	2.1344 ± 0.1174	0.4692 ± 0.0281
FSHA	0.0536 ± 0.0118	0.0168 ± 0.0100	0.0909 ± 0.0157	0.0317 ± 0.0065	0.4657 ± 0.1286	0.1610 ± 0.0285	0.1025 ± 0.0084	1.4897 ± 0.2210	0.3056 ± 0.0203
FSHA-SG	0.5158 ± 0.2511	0.0621 ± 0.0095	0.2956 ± 0.0691	0.1765 ± 0.0390	2.1634 ± 0.1310	0.4282 ± 0.0480	0.3110 ± 0.1202	2.8927 ± 0.3759	0.4904 ± 0.0519
FSHA-GS	0.2829 ± 0.1374	0.1446 ± 0.0260	0.3077 ± 0.0402	$\underline{0.1312 \pm 0.0150}$	1.5940 ± 0.0684	$\underline{0.3133 \pm 0.0230}$	$\underline{0.4797 \pm 0.2383}$	3.0416 ± 0.4313	0.5200 ± 0.0423
URVFL (SG/GS)	0.0132 ± 0.0027	0.0045 ± 0.0009	0.0287 ± 0.0029	0.0302 ± 0.0011	0.5679 ± 0.0834	0.1303 ± 0.0131	0.0699 ± 0.0055	1.4316 ± 0.6673	0.2139 ±0.0195
URVFL_sync (<u>SG/GS)</u>	0.0127 ±0.0011	0.0040 ± 0.0006	0.0341 ± 0.0022	0.0176 ±0.0139	0.2793 ±0.1868	0.0675 ±0.0549	0.0704 ± 0.0011	1.1441 ± 0.0058	0.2434 ± 0.0077

Results on Image dataset

Method	MN	IST	CIFA	R-10	Tiny imagenet	
	PSNR ↑	SSIM ↑	PSNR ↑	SSIM↑	PSNR ↑	SSIM ↑
GRNA	8.8317±0.0005	0.1467±0.0001	11.3939±0.0074	0.0019±0.0001	7.3986±0.5618	0.0045±0.0001
GIA	6.4411±0.0006	0.0029 ± 0.0001	11.9625±0.0001	0.0018 ± 0.0001	10.9342±0.0002	0.0010 ± 0.0000
AGN	9.2787±0.2651	0.1400 ± 0.0033	10.4527±0.1293	0.0150 ± 0.0001	10.2442±0.0487	0.0150 ± 0.0001
AGN-SG	8.9643±0.1067	0.0499 ± 0.0015	9.0854±1.0272	0.0156 ± 0.0001	3.4810±0.0000	0.0006 ± 0.0256
AGN-GS	7.8738±0.6595	0.0746 ± 0.0027	7.7755±0.9967	0.0142 ± 0.0001	3.7093±0.4056	0.0034 ± 0.0001
PCAT	14.0504±0.4956	0.4506 ± 0.0177	11.9012±1.6192	0.0727 ± 0.0053	11.3199±0.1573	0.0160±0.0001
SDAR	17.8807±0.6992	0.7093±0.0017	14.9388±2.3774	0.2525 ± 0.0121	14.7862±0.9083	0.1318±0.0017
FSHA	22.7711±2.2248	0.8901±0.0006	19.7955±2.2895	0.5312±0.0298	15.9321±0.1248	0.2205 ± 0.0003
FSHA-SG	10.4247±1.6129	0.1928±0.0176	13.2670±0.5318	0.1294 ± 0.0006	12.6357±0.7394	0.0395 ± 0.0002
_FSHA-GS	<u>11.1577±4.5247</u>	0.2151±0.0137	<u>15.1751±0.5590</u>	0.3083±0.0053	12.4729±1.9752	0.0577±0.0001
URVFL(GS/SG)	25.1349±1.2354	0.9385±0.0002	21.0666±0.0165	0.5927±0.0002	17.6107 ±0.0992	0.3023±0.0001
URVFL_sync(GS/SG)	25.2919± 0.1369	0.9324±0.0002	26.2360 ±0.0030	0.8125±0.0001	17.5381±0.0029	0.3053±0.0001

Result under detection

Visualization of the reconstruction

	Original	Recon MSE
	AGN	0.3896
Without detection SplitGuard	FSHA	0.1131
	URVFL	0.0660
	AGN	1.0493
With detection SplitGuard	FSHA	0.2501
	URVFL	0.0660

Conclusion

- Malicious attack in VFL cause more privacy Leakage.
- URVFL can circumvent current detection strategies.

Future work:

- How to defend this kind of malicious attacks?
- Malicious attacks in other ML models.