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● What are the privacy vulnerabilities in federated RS?
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What is Interaction-based FL (IFL)?
● Generalization of federated RS/learning-to-rank systems

● Typical FL settings:
○ FL servers don’t have any influence on users’ private data

● In IFL:
○ FL servers present “items” to users for them to interact with
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Honest-but-curious IFL server
● Reconstruct user data with gradient inversion:

○ Given original model weights W and updated weights W*
○ Initialize some random interactions I’
○ Simulate the local training with W and I’ => W’
○ Calculate loss between W’ and W*
○ Optimize w.r.t I’
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● Reconstruct user data with gradient inversion:

○ Given original model weights W and updated weights W*
○ Initialize some random interactions I’
○ Simulate the local training with W and I’ => W’
○ Calculate loss between W’ and W*
○ Optimize w.r.t I’

● Defenses:
○ Apply differential privacy (i.e. add noise to W*)
○ Secure aggregation (i.e. break links between users and W*)
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Vanilla Gradient Inversion Evaluation
● Dataset: MovieLens-100K, Steam-200K

● Algorithm: Federated Neural Collaborative Filtering

● Baseline: Interaction Membership Inference Attack (WWW 2023)

● Metrics: F1. Label distribution: Pos : Neg = 1 : 4

Method IMIA Defense MovieLens-100K Steam-200K

IMIA No 0.593 0.671

Grad Inv No 0.983 0.923

IMIA Yes 0.215 0.206

Grad Inv Yes 0.382 0.316
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Risks of malicious IFL server
● Question: What can a malicious server do?

● Exploit control of the model weights?
○ Already researched in traditional FL

● Exploit control of the presented items?
○ Unique to IFL
○ This had not been explored
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Item x1 x2 x3

Item 1 0.123 0 0

Item 2 0 0.456 0

Item 3 0 0 0.789
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Attack Idea: Adversarial Data Manipulation
● “Uniquify” the contribution of each item to the gradients

● One approach: Strategically zero out features for each item
○ Intuition: Each item influences a unique parameter
○ Drawbacks:

■ A bit too obvious
■ What if there are more items than parameters (N > D)?

● Another approach: Replace feature values with random noise
○ Not as obvious
○ Can (somewhat) overcome the N > D scenario
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Indirect Adversarial Data Manipulation
● What if the server cannot directly control the training features?

● Example scenario: Ranking with images:
○ Server sends images to users
○ Users use a pre-trained model to extract features

● How to modify the images?
○ Can we make the extracted features resemble noise?
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Evaluation
● Dataset: ImageNet 2012 (Validation set)

● Feature extractor: ResNet, RegNet, DenseNet, MNasNet

● Metrics: AUC. Baseline: Vanilla gradient inversion, FGSM
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Other defenses
● Check for data manipulation:

○ Cryptography: checksum
○ Heuristics: examine feature values

● Minimize shared information:
○ Don’t share entire model updates

● Decentralized FL:
○ Peer-to-peer gossip
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Conclusion
● RAIFLE: Proposes data manipulation – novel attack vector in 

interaction-based FL
○ Strong performance compared to existing baselines

● Potential improvements:
○ Stealth
○ Other domains: Text
○ Combine with model manipulation

● Code available at: https://github.com/dzungvpham/raifle

https://github.com/dzungvpham/raifle

