

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu, Xinjian Luo, Yuncheng Wu, Yangfan Jiang, Xiaokui Xiao, Beng Chin Ooi

• Split learning (SL)

- Privacy vulnerabilities of split learning
- Existing attacks on SL and their limitations
- SDAR: <u>Simulator</u> <u>Decoding</u> with <u>A</u>dversarial <u>R</u>egularization
- Results and discussions
- Countermeasures and future work

- Split learning (SL)
- Privacy vulnerabilities of split learning
- Existing attacks on SL and their limitations
- SDAR: <u>Simulator</u> <u>Decoding</u> with <u>Adversarial</u> <u>Regularization</u>
- Results and discussions
- Countermeasures and future work

- Split learning (SL)
- Privacy vulnerabilities of split learning
- Existing attacks on SL and their limitations
- SDAR: <u>Simulator</u> <u>Decoding</u> with <u>Adversarial</u> <u>Regularization</u>
- Results and discussions
- Countermeasures and future work

- Split learning (SL)
- Privacy vulnerabilities of split learning
- Existing attacks on SL and their limitations
- SDAR: <u>Simulator</u> <u>Decoding</u> with <u>A</u>dversarial <u>R</u>egularization
- Results and discussions
- Countermeasures and future work

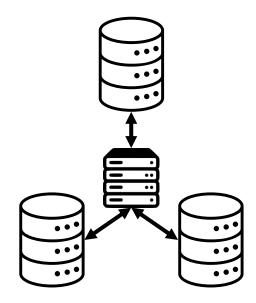
- Split learning (SL)
- Privacy vulnerabilities of split learning
- Existing attacks on SL and their limitations
- SDAR: <u>Simulator</u> <u>Decoding</u> with <u>A</u>dversarial <u>R</u>egularization
- Results and discussions
- Countermeasures and future work

- Split learning (SL)
- Privacy vulnerabilities of split learning
- Existing attacks on SL and their limitations
- SDAR: <u>Simulator</u> <u>Decoding</u> with <u>A</u>dversarial <u>R</u>egularization
- Results and discussions
- Countermeasures and future work

Limited, biased and distributed data

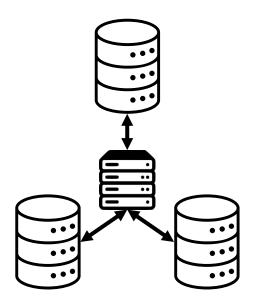
Background

Limited, biased and distributed data



Federated Learning

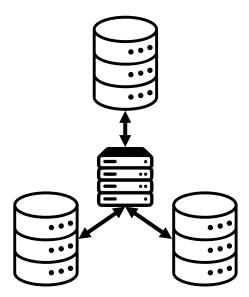
Limited, biased and distributed data



Federated Learning

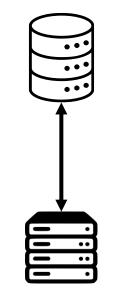
Limited computational resources

Limited, biased and distributed data

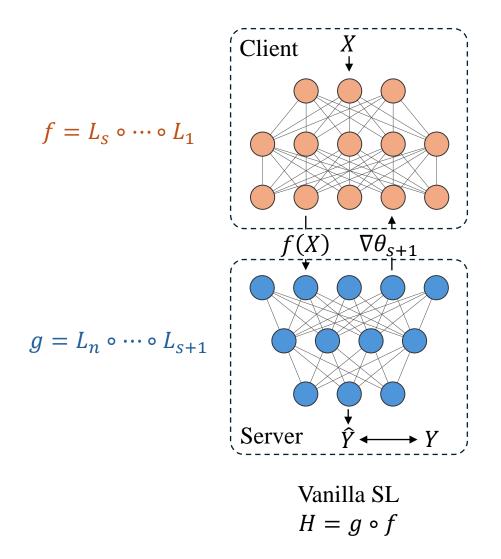


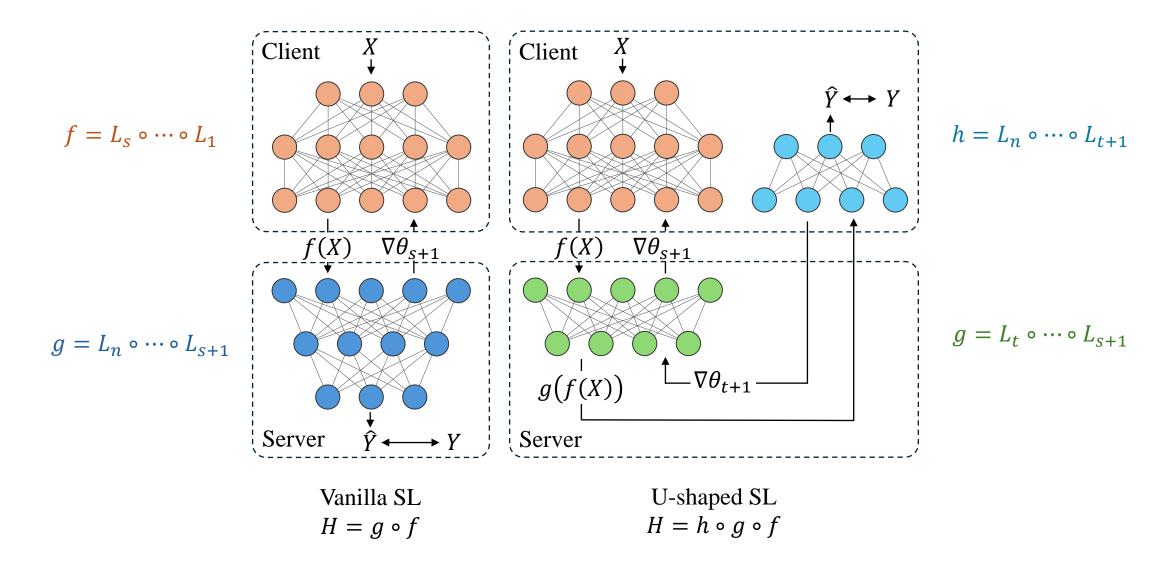
Federated Learning

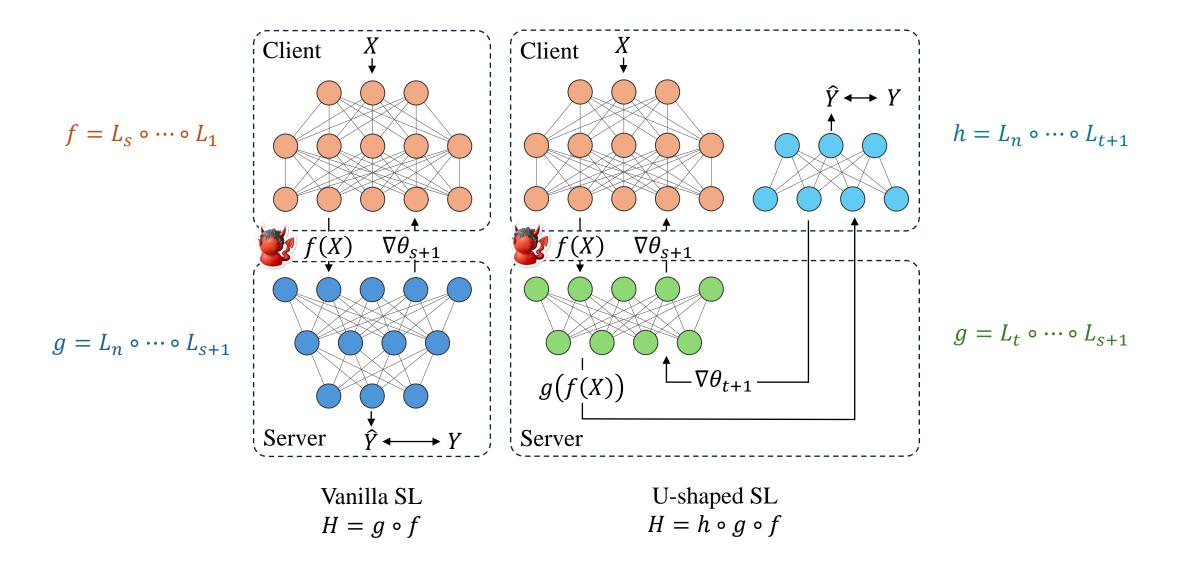
Limited computational resources

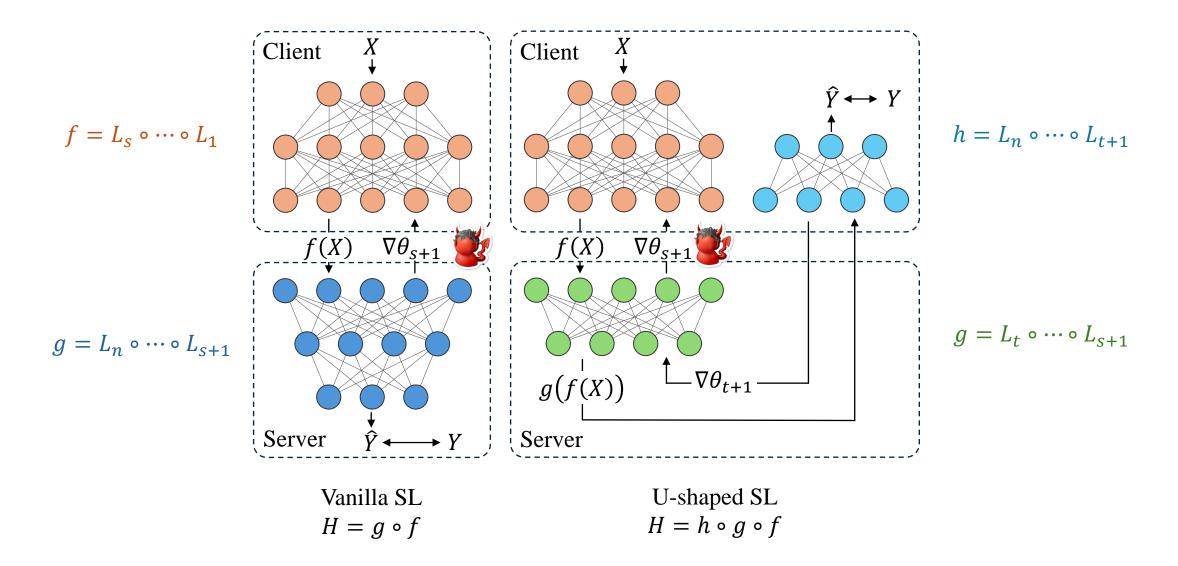


ML as a Service









Our contributions

Attack	Passive?	Attack features?	Attack labels?	Assume in-domain auxiliary data?	Assume knowledge of client's model?	Reconstruction quality
FSHA (CCS '21)	×		X	Features	Not necessary	High
EXACT	\checkmark	\checkmark	\checkmark	None	Architecture & weights	High
UnSplit				None	Architecture	Low
PCAT (USENIX Sec '23)	\checkmark	\checkmark	\checkmark	Features & labels	Not necessary	Medium

Our contributions

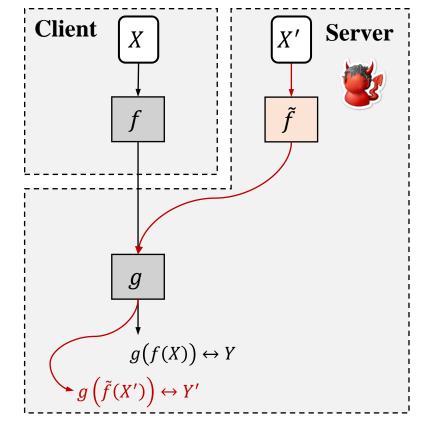
Attack	Passive?	Attack features?	Attack labels?	Assume in-domain auxiliary data?	Assume knowledge of client's model?	Reconstruction quality
FSHA (CCS '21)	×		X	Features	Not necessary	High
EXACT	\checkmark	\checkmark		None	Architecture & weights	High
UnSplit				None	Architecture	Low
PCAT (USENIX Sec '23)	\checkmark	\checkmark		Features & labels	Not necessary	Medium
SDAR (Ours)				Features & labels	Not necessary	High

Our attack is passive (honest-but-curious server), requires no access to the client's model (white-box or black-box), and can attack both the client's features and labels with superior performance under challenging settings, with a labeled auxiliary dataset in the same domain

The attacker (server) has labeled auxiliary data

• With extra data (X', Y'), server can train a simulator \tilde{f} such that $g \circ \tilde{f}$ can classify X', i.e., minimize

$$\mathcal{L}_{\tilde{f}} = \text{CrossEntropy}\left(g\left(\tilde{f}(X')\right), Y'\right)$$



The attacker (server) has labeled auxiliary data

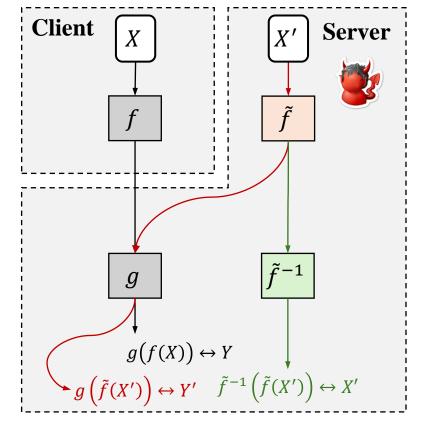
• With extra data (X', Y'), server can train a simulator \tilde{f} such that $g \circ \tilde{f}$ can classify X', i.e., minimize

$$\mathcal{L}_{\tilde{f}} = \operatorname{CrossEntropy}\left(g\left(\tilde{f}(X')\right), Y'\right)$$

• With extra data (X', Y'), server can also train a decoder \tilde{f}^{-1} , such that \tilde{f}^{-1} can decode $\tilde{f}(X')$, i.e., minimize

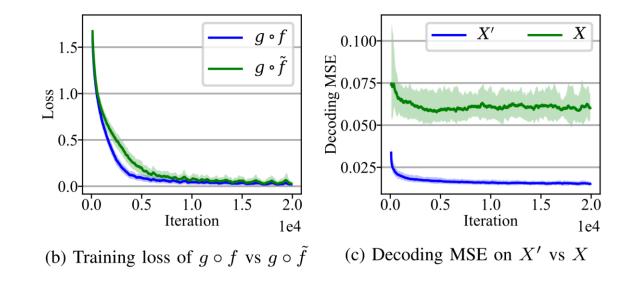
 $\mathcal{L}_{\tilde{f}^{-1}} = \mathrm{MSE}\left(\tilde{f}^{-1}\left(\tilde{f}(X')\right), X'\right)$

Hopefully, \tilde{f} behaves similarly to f and \tilde{f}^{-1} can decode f as well.

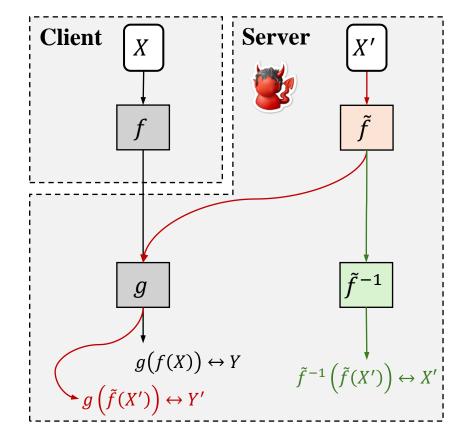


• Reconstruction results are bad

- Reconstruction results are bad
- Issue 1: The simulator \tilde{f} can classify X' together with g doesn't mean it learns the same representations as client's model f.
- Issue 2: The decoder can decode $\tilde{f}(X')$ doesn't mean it can decode f(X).



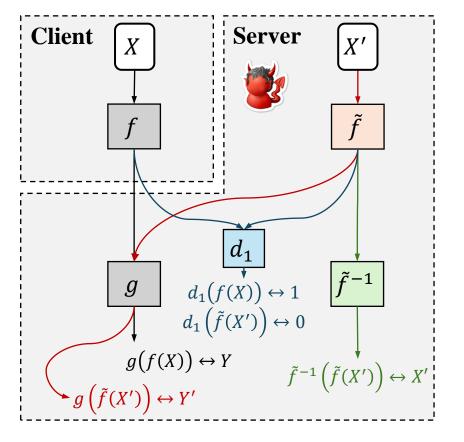
Issue 1: The simulator \tilde{f} can classify X' doesn't mean it learns the same representations as client's model.



Issue 1: The simulator \tilde{f} can classify X' doesn't mean it learns the same representations as client's model.

- Introduce a discriminator d_1 to distinguish f(X) and $\tilde{f}(X')$
- Add GAN generation loss as a regularization term to \tilde{f} 's loss so it is optimized to produce representations like f:

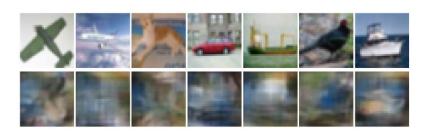
CrossEntropy $\left(g\left(\tilde{f}(X')\right), Y'\right) + \lambda_1 \text{CrossEntropy}\left(d_1\left(\tilde{f}(X')\right), 1\right)$

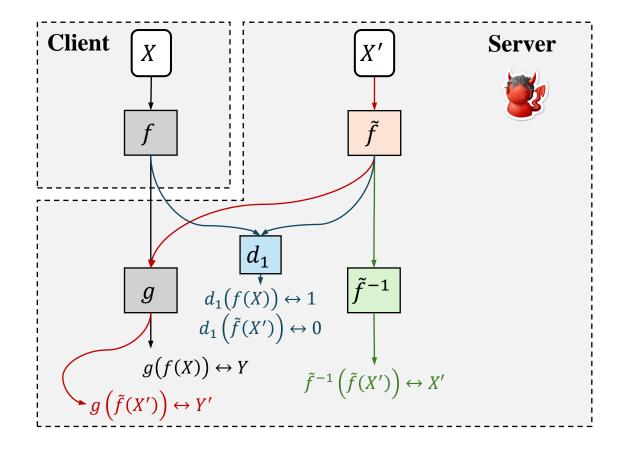


Issue 2: The decoder can decode $\tilde{f}(X')$ doesn't mean it can decode f(X).

Original images

Reconstruction by naïve SDA

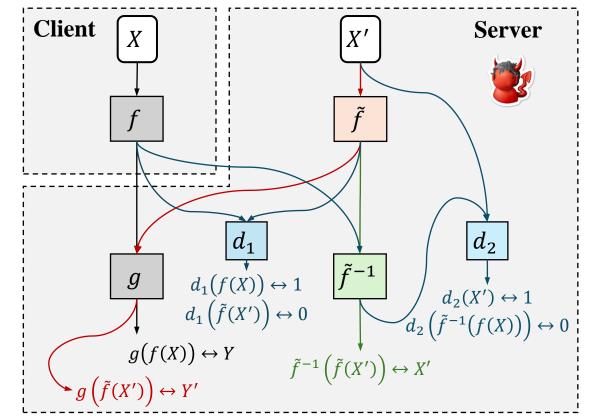


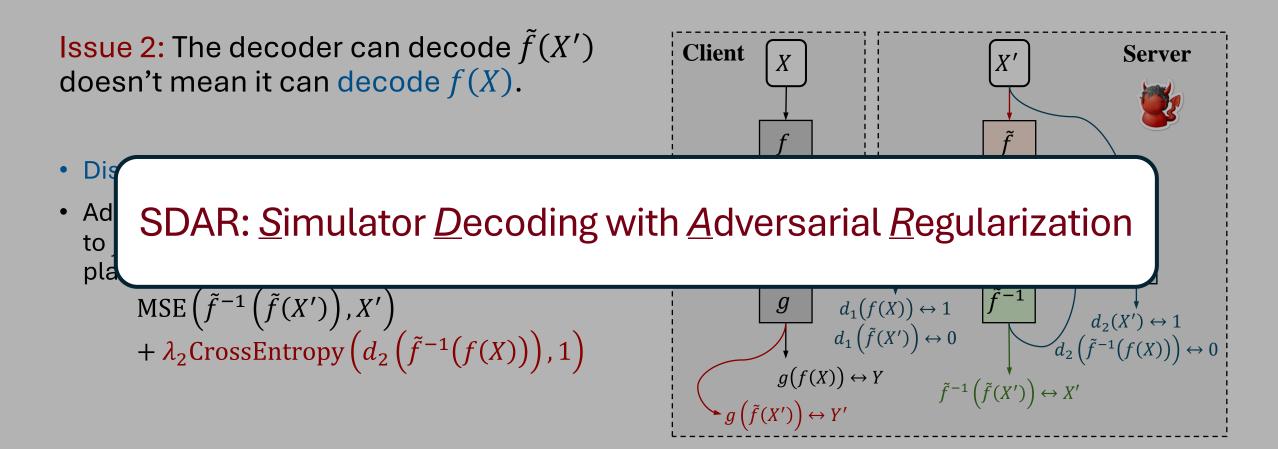


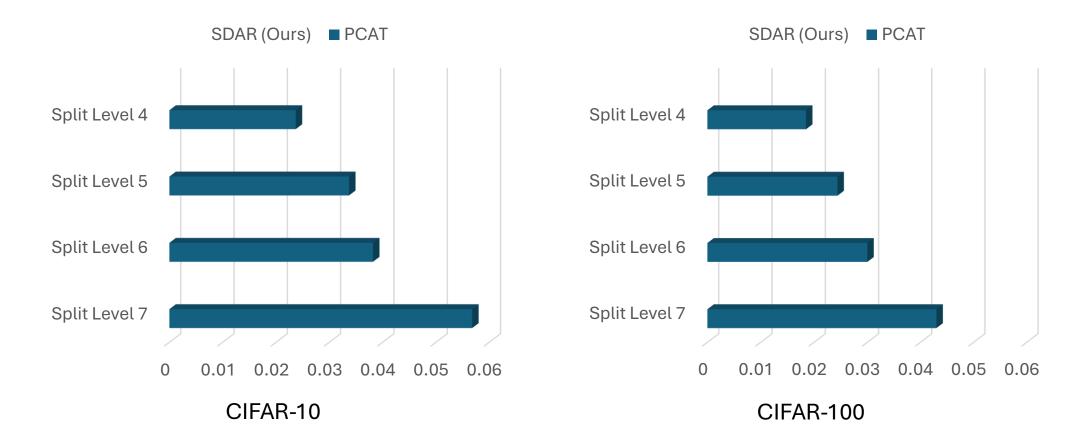
Issue 2: The decoder can decode $\tilde{f}(X')$ doesn't mean it can decode f(X).

- Discriminator d_2 to distinguish X' and $\tilde{f}^{-1}(f(X))$
- Add GAN generation loss as a regularization term to \tilde{f}^{-1} 's loss, such that it is optimized to produce plausible images on private data:

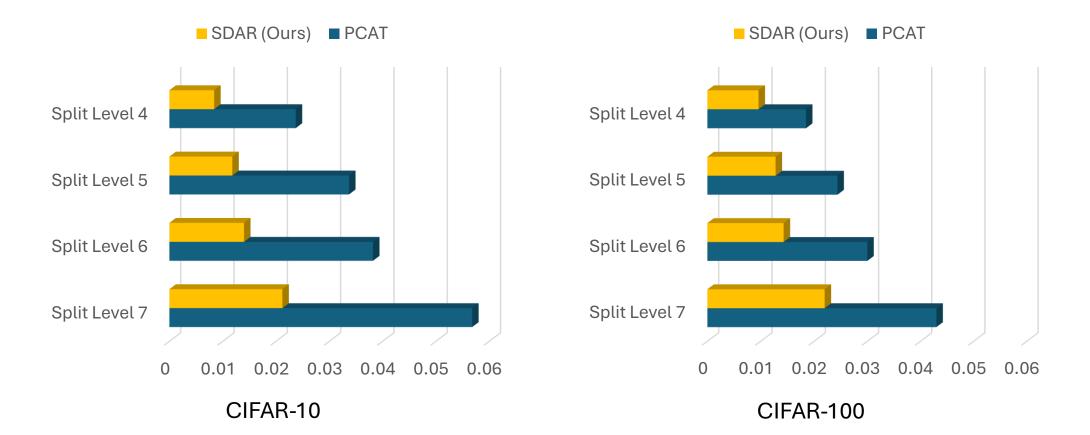
 $MSE\left(\tilde{f}^{-1}\left(\tilde{f}(X')\right), X'\right) + \lambda_2 CrossEntropy\left(d_2\left(\tilde{f}^{-1}(f(X))\right), 1\right)$







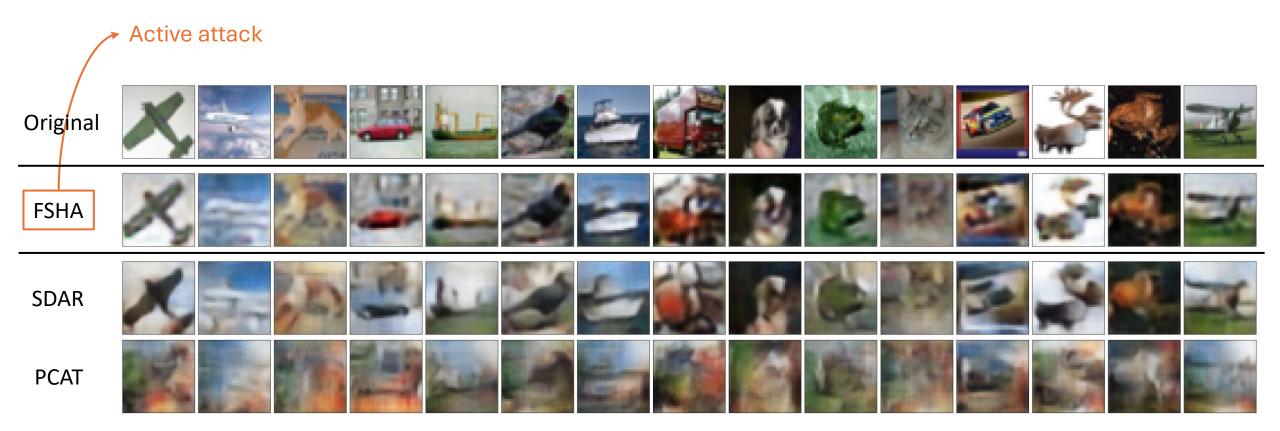
Feature inference attack mean squared error (MSE) on vanilla SL with ResNet-20 (lower is better)



Feature inference attack mean squared error (MSE) on vanilla SL with ResNet-20 (lower is better)

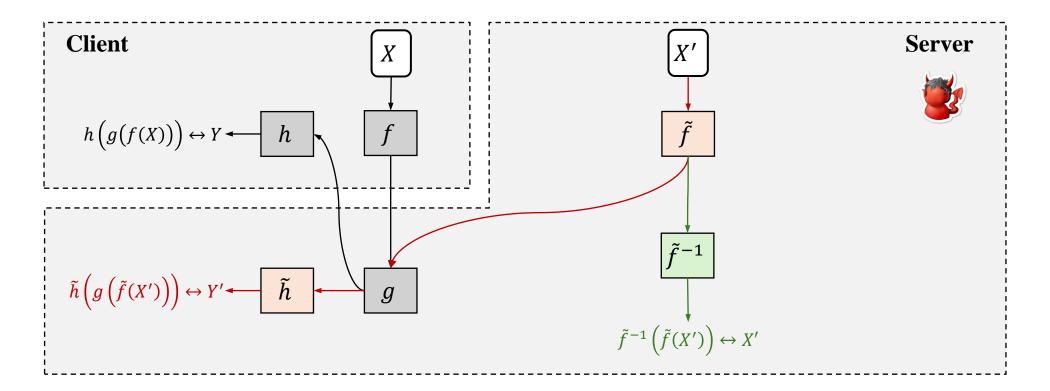
SDAR (Ours)

PCAT

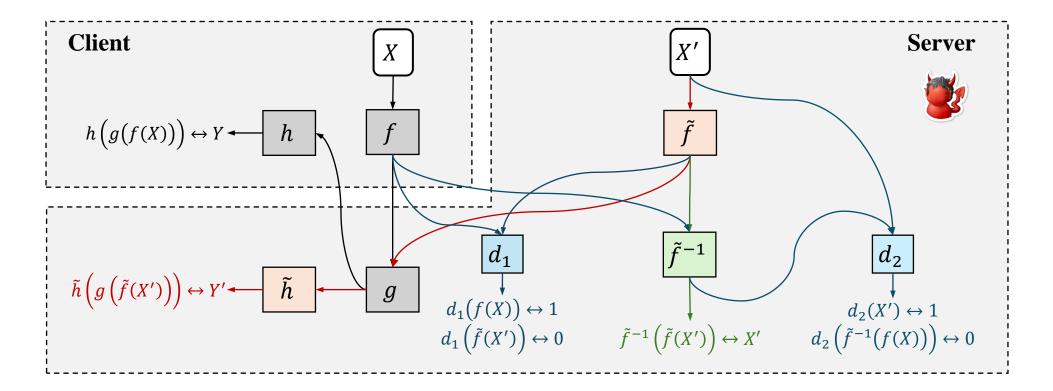




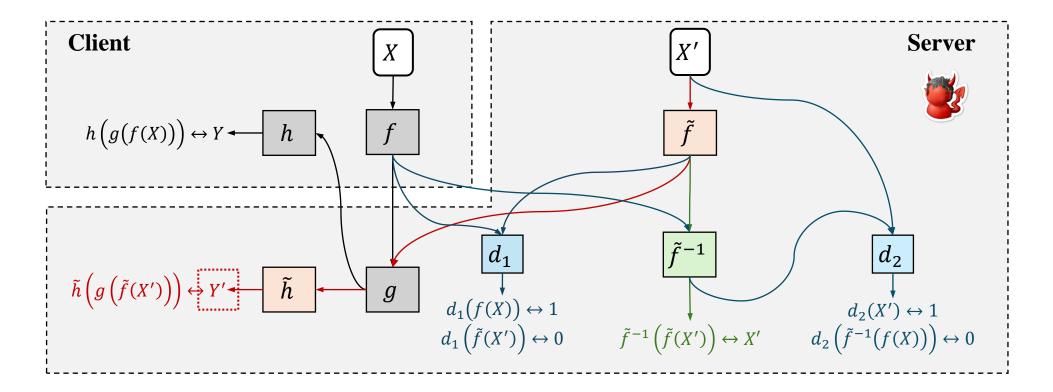
The server no longer has client's training examples' labels or the final layers.



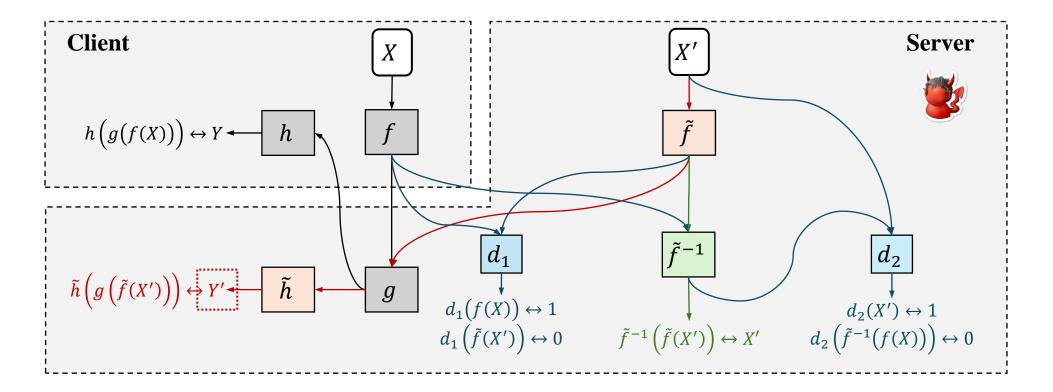
Like previous attacks, we have simulator \tilde{f} and decoder \tilde{f}^{-1} . Additional simulator \tilde{h} : server trains $\tilde{h} \circ g \circ \tilde{f}$ on (X', Y').



Like previous attacks, we have discriminators d_1 , d_2 .

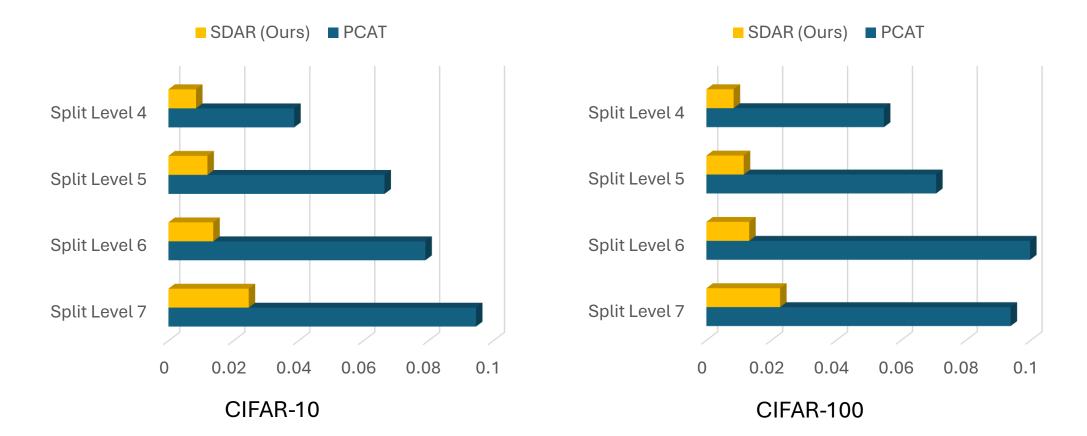


Prevent \tilde{h} from overfitting to (X', Y'): random label flipping.



Label inference attack: feed g(f(X)) to \tilde{h} .

Feature inference results on U-shaped SL



Feature inference attack mean squared error (MSE) on U-shaped SL with ResNet-20 (lower is better)

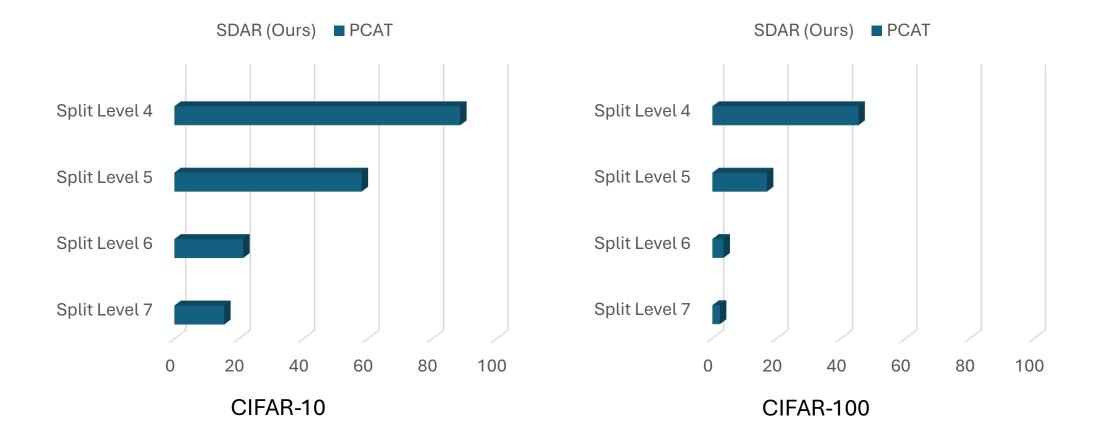
Feature inference results on U-shaped SL

Original images Split Level 4 Split Level 5 Split Level 6 Split Level 7

SDAR (Ours)

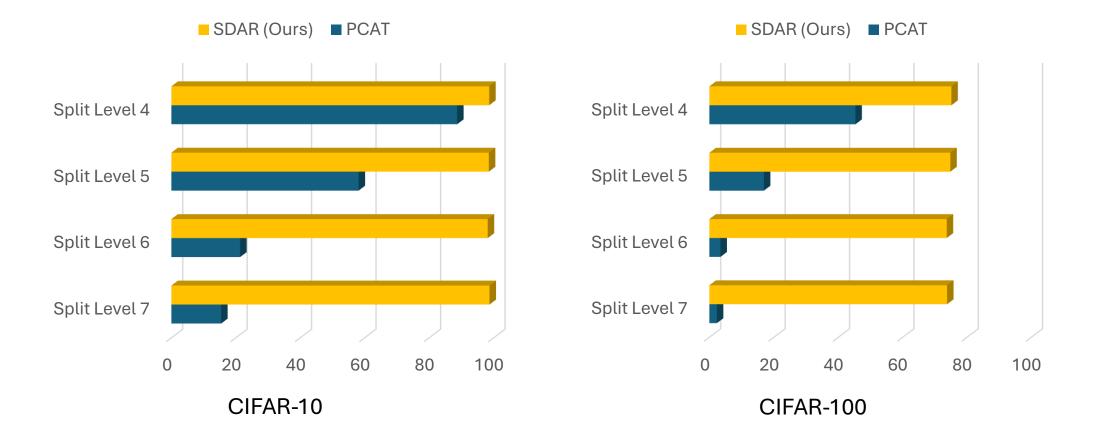
PCAT

Label inference results on U-shaped SL



Label inference accuracy (%) on U-shaped SL with ResNet-20 (higher is better)

Label inference results on U-shaped SL



Label inference accuracy (%) on U-shaped SL with ResNet-20 (higher is better)

• Effects of auxiliary data distribution

- SDAR is still effective when auxiliary dataset is much smaller than target dataset (5%)
- SDAR is still effective when auxiliary dataset is o.o.d. of the target dataset
- Effects of target model architecture
 - ResNet is more prone to attacks than PlainNet
 - A shallower and wider client's model is more prone to inference attacks
- Effects of the server's knowledge of the client's model architecture
 - It helps if the server knows the client's model architecture, but SDAR remains effective when it does not
- Ablation studies

• Effects of auxiliary data distribution

- SDAR is still effective when auxiliary dataset is much smaller than target dataset (5%)
- SDAR is still effective when auxiliary dataset is o.o.d. of the target dataset
- Effects of target model architecture
 - ResNet is more prone to attacks than PlainNet
 - A shallower and wider client's model is more prone to inference attacks
- Effects of the server's knowledge of the client's model architecture
 - It helps if the server knows the client's model architecture, but SDAR remains effective when it does not
- Ablation studies

- Effects of auxiliary data distribution
 - SDAR is still effective when auxiliary dataset is much smaller than target dataset (5%)
 - SDAR is still effective when auxiliary dataset is o.o.d. of the target dataset
- Effects of target model architecture
 - ResNet is more prone to attacks than PlainNet
 - A shallower and wider client's model is more prone to inference attacks
- Effects of the server's knowledge of the client's model architecture
 - It helps if the server knows the client's model architecture, but SDAR remains effective when it does not
- Ablation studies

- Effects of auxiliary data distribution
 - SDAR is still effective when auxiliary dataset is much smaller than target dataset (5%)
 - SDAR is still effective when auxiliary dataset is o.o.d. of the target dataset
- Effects of target model architecture
 - ResNet is more prone to attacks than PlainNet
 - A shallower and wider client's model is more prone to inference attacks
- Effects of the server's knowledge of the client's model architecture
 - It helps if the server knows the client's model architecture, but SDAR remains effective when it does not
- Ablation studies

Potential countermeasures

- Deeper split levels or narrower models
- Regularization (dropout, l1, l2)
- Decorrelation

Potential countermeasures

- Deeper split levels or narrower models
- Regularization (dropout, l1, l2)
- Decorrelation
- Homomorphic encryption
- Multi-party computation
- Differential privacy

Thank you!