
I Know What You Asked:

Prompt Leakage via KV-Cache

Sharing in Multi-Tenant LLM Serving
Guanlong Wu1, Zheng Zhang2, Yao Zhang2, Weili Wang1, Jianyu Niu1, Ye Wu2, Yinqian
Zhang1

1Southern University of Science and Technology

2ByteDance Inc.

Large Language Model (LLM)

LLM works as a recursive process

Once upon a

Once upon

LLM

Once upon a time

Once upon a

LLM

K, V vectors:

K, V vectors:

compute

recompute

Large Language Model (LLM)

LLM works as a recursive process

Once upon aLLM

Once upon a timeLLM

trade space for time

Key, Value (KV)
Once upon

Once upon a

K, V vectors:

K, V vectors:

compute

recompute

Large Language Model (LLM)

LLM works as a recursive process

Once upon aLLM

Once upon a timeLLM

trade space for time

Key, Value (KV)
Once upon

Once upon a

K, V vectors:

K, V vectors:

compute

recompute

KV cache becomes a key component for
fast LLM serving

Once upon aLLM

Once upon a timeLLM

aOnce upon

Once upon

K, V vectors:

K, V vectors:

compute

reuse

KV Cache as a Bottleneck

Llama2-7B model weights vs one 128K token prompt under this model

Source: Hooper, Coleman, et al., 2024

KV Cache Sharing

Reusing KV cache across users significantly reduces memory consumption

KV Cache Sharing

KV cache can only be reused if all preceding tokens match

Request 1:

Imagine you are an IT

expert and tell me how

to install Windows

Request 2:

Imagine you are an IT

expert and tell me how

to install Linux

Request 1:

Imagine you are an IT

expert and tell me how

to install Windows

Request 2:

Please imagine you are

an IT expert and tell me

how to install Windows

LLM Inference Systems

End Users LLM Server Engine

Hardware (CPU/GPU)

LLM Server Engine

Hardware (CPU/GPU)

LLM Inference Systems

Queries

End Users

Query Queue

Scheduler

• Schedule incoming requests

• SGLang adopts Longest Prefix Match

LLM Server Engine

Hardware (CPU/GPU)

Batch Handler

LLM Inference Systems

Queries

End Users

Query Queue

Scheduler

(Longest Prefix Match)
• Selectively batch the requests

from Query Queue

• SGLang adopts Dynamic Batch

LLM Server Engine

Hardware (CPU/GPU)

LLM Inference Systems

Queries

End Users

Query Queue

Scheduler
Batch Handler LLM Handler

(Longest Prefix Match) (Dynamic Batch)
• Run LLM and

manage KV cache

• SGLang adopts

Radix Tree

LLM Server Engine

Hardware (CPU/GPU)

LLM Inference Systems

Queries

End Users

Query Queue

Scheduler
Batch Handler LLM Handler

(Longest Prefix Match) (Dynamic Batch)

Query Response
Query Responses

(Radix Tree)

Our Attack

Attack Overview

Attack Core: The adversary can detect if its request matches a previous one

by observing whether KV cache sharing is triggered.

Attack Overview

Attack Core: The adversary can detect if its request matches a previous one

by observing whether KV cache sharing is triggered.

Attack Overview

Attack Core: The adversary can detect if its request matches a previous one

by observing whether KV cache sharing is triggered.

Attack Overview

Attack Core: The adversary can detect if its request matches a previous one

by observing whether KV cache sharing is triggered.

Attack Overview

Attack Core: The adversary can detect if its request matches a previous one

by observing whether KV cache sharing is triggered.

Attack Overview

Attack Core: The adversary can detect if its request matches a previous one

by observing whether KV cache sharing is triggered.

Token-by-token Extraction

Assume a previously served request: “Imagine you are an IT expert”

The adversary has already extracted: “Imagine you are”

Token-by-token Extraction

Use a local LLM to predict possible tokens

Token-by-token Extraction

Also generate a dummy token for side channel effect

Token-by-token Extraction

Send three batches of requests in turn

Query Queue

Imagine you are %

Imagine you are %

Imagine you are %

...

Token-by-token Extraction

Send three batches of requests in turn

Query Queue

Imagine you are %

Imagine you are %

Imagine you are %

Imagine you are a

Imagine you are an

Imagine you are the

...

Token-by-token Extraction

Send three batches of requests in turn

Query Queue

Imagine you are %

Imagine you are %

Imagine you are %

Imagine you are a

Imagine you are an

Imagine you are the

Imagine you are %

Imagine you are %

Imagine you are %

...

Token-by-token Extraction

We leverage serving order as a side-channel effect, as the longer token

matches can be served first

Query Queue

Imagine you are %

Imagine you are %

Imagine you are %

Imagine you are a

Imagine you are an

Imagine you are the

Imagine you are %

Imagine you are %

Imagine you are %

...

Query Queue

Imagine you are %

Imagine you are %

Imagine you are %

Imagine you are an

Imagine you are %

Imagine you are %

Imagine you are %

Imagine you are a

Imagine you are the

...

After

LPM

Complete Attack Flow

The adversary tracks a random prompt and use token-by-token extraction

Complete Attack Flow

The adversary switches to another prompt if the tracked prompt is evicted

or the next token is hard to guess

Complete Attack Flow
The adversary uses flush_cache in SGLang to clear KV storage and switch prompts

from a clean slate (our paper adopts a more complex alternative when flush_cache is

unavailable)

Attack Scenarios

Scenario 1

The adversary has no background knowledge and extracts all tokens to reverse

the full prompt from another user

Scenario 2

The adversary knows the prompt template and extracts only a few key tokens

to steal sensitive information from another user

Scenario 3

The adversary knows the prompt input and aims to steal prompt template

(valuable in today’s LLM application)

Evaluations

Evaluation Setup

• LLM server configuration: Llama2-13B, Llama3-8B-GQA

• User configuration: 40 requests every 3 hours per user (OpenAI)

• Four datasets: ultrachat, PromptBase, awesome-chatgpt, alpacca

• Three scenarios: whole prompt reconstruction, input reconstruction, template

reconstruction

• Two research questions:

• How effective is the attack?

• How much cost of the attack?

How effective is the attack?

Three decisive factors: memory capacity, concurrent users’ requests,

attack strategy

How much cost of the attack?

Most tokens can be reversed with less than 10 guesses

More evaluation on all three scenarios can be found in our paper

Scenario 1 Scenario 2 & Scenario 3

Countermeasures
• Prioritizing requests with multiple matched tokens instead of one, which

significantly raises attack cost while preserving performance.

• Adding rare tokens to the prompt to disrupt the token-by-token attack

Conclusions
• We point out that resource sharing in multi-tenant LLM systems introduces a

new attack surface for LLM security

• We propose an attack targeting the KV cache sharing mechanism to extract
prompts from other users

• We outline the necessary attack conditions for resource sharing in multi-tenant
LLM systems, offering guidance to framework designers and service providers
for more secure design

Thanks!

	Slide 1: I Know What You Asked: Prompt Leakage via KV-Cache Sharing in Multi-Tenant LLM Serving
	Slide 2: Large Language Model (LLM)
	Slide 3: Large Language Model (LLM)
	Slide 4: Large Language Model (LLM)
	Slide 5: KV Cache as a Bottleneck
	Slide 6: KV Cache Sharing
	Slide 7: KV Cache Sharing
	Slide 8: LLM Inference Systems
	Slide 9: LLM Inference Systems
	Slide 10: LLM Inference Systems
	Slide 11: LLM Inference Systems
	Slide 12: LLM Inference Systems
	Slide 13: Our Attack
	Slide 14: Attack Overview
	Slide 15: Attack Overview
	Slide 16: Attack Overview
	Slide 17: Attack Overview
	Slide 18: Attack Overview
	Slide 19: Attack Overview
	Slide 20: Token-by-token Extraction
	Slide 21: Token-by-token Extraction
	Slide 22: Token-by-token Extraction
	Slide 23: Token-by-token Extraction
	Slide 24: Token-by-token Extraction
	Slide 25: Token-by-token Extraction
	Slide 26: Token-by-token Extraction
	Slide 27: Complete Attack Flow
	Slide 28: Complete Attack Flow
	Slide 29: Complete Attack Flow
	Slide 30: Attack Scenarios
	Slide 31: Scenario 1
	Slide 32: Scenario 2
	Slide 33: Scenario 3
	Slide 34: Evaluations
	Slide 35: Evaluation Setup
	Slide 36: How effective is the attack?
	Slide 37: How much cost of the attack?
	Slide 38: Countermeasures
	Slide 39: Conclusions
	Slide 40: Thanks!

