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KV Cache as a Bottleneck

Llama2-7B model weights vs one 128K token prompt under this model

Source: Hooper, Coleman, et al., 2024



KV Cache Sharing

Reusing KV cache across users significantly reduces memory consumption



KV Cache Sharing

KV cache can only be reused if all preceding tokens match
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Our Attack



Attack Overview

Attack Core: The adversary can detect if its request matches a previous one 

by observing whether KV cache sharing is triggered.
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Token-by-token Extraction

Assume a previously served request: “Imagine you are an IT expert”

The adversary has already extracted: “Imagine you are”



Token-by-token Extraction

Use a local LLM to predict possible tokens



Token-by-token Extraction

Also generate a dummy token for side channel effect



Token-by-token Extraction

Send three batches of requests in turn

Query Queue

Imagine you are %

Imagine you are %

Imagine you are %

...



Token-by-token Extraction

Send three batches of requests in turn

Query Queue

Imagine you are %

Imagine you are %

Imagine you are %

Imagine you are a

Imagine you are an

Imagine you are the

...



Token-by-token Extraction

Send three batches of requests in turn

Query Queue

Imagine you are %

Imagine you are %

Imagine you are %

Imagine you are a

Imagine you are an

Imagine you are the

Imagine you are %

Imagine you are %

Imagine you are %

...



Token-by-token Extraction

We leverage serving order as a side-channel effect, as the longer token 

matches can be served first
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Complete Attack Flow

The adversary tracks a random prompt and use token-by-token extraction



Complete Attack Flow

The adversary switches to another prompt if the tracked prompt is evicted 

or the next token is hard to guess



Complete Attack Flow
The adversary uses flush_cache in SGLang to clear KV storage and switch prompts 

from a clean slate (our paper adopts a more complex alternative when flush_cache is 

unavailable)



Attack Scenarios



Scenario 1

The adversary has no background knowledge and extracts all tokens to reverse 

the full prompt from another user



Scenario 2

The adversary knows the prompt template and extracts only a few key tokens 

to steal sensitive information from another user



Scenario 3

The adversary knows the prompt input and aims to steal prompt template 

(valuable in today’s LLM application)



Evaluations



Evaluation Setup

• LLM server configuration: Llama2-13B, Llama3-8B-GQA

• User configuration: 40 requests every 3 hours per user (OpenAI)

• Four datasets: ultrachat, PromptBase, awesome-chatgpt, alpacca

• Three scenarios: whole prompt reconstruction, input reconstruction, template 

reconstruction 

• Two research questions:

• How effective is the attack?

• How much cost of the attack?



How effective is the attack?

Three decisive factors: memory capacity, concurrent users’ requests, 

attack strategy



How much cost of the attack?

Most tokens can be reversed with less than 10 guesses

More evaluation on all three scenarios can be found in our paper

Scenario 1 Scenario 2 & Scenario 3



Countermeasures
• Prioritizing requests with multiple matched tokens instead of one, which 

significantly raises attack cost while preserving performance.

• Adding rare tokens to the prompt to disrupt the token-by-token attack



Conclusions
• We point out that resource sharing in multi-tenant LLM systems introduces a 

new attack surface for LLM security

• We propose an attack targeting the KV cache sharing mechanism to extract 
prompts from other users

• We outline the necessary attack conditions for resource sharing in multi-tenant 
LLM systems, offering guidance to framework designers and service providers 
for more secure design



Thanks!
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