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OS Is Not Trustworthy

* OSis complex & has large attack surface
* Written in unsafe language & not certified

* Once compromised, attackers can steal app data
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OS Has More Access Capabilities than It Needs

* Management: virtual memory & virtual CPU
* Access: physical frames & CPU registers

A Librarian who also
reads the books



OS Has More Access Capabilities than It Needs

* Management: virtual memory & virtual CPU
* Access: physical frames & CPU registers

"ﬁllﬁ * OS does not care the value of data for
§ management, e.g.,

* Moving pages on memory paging

A Librarian who also * Moving contexts on interrupts / exceptions
reads the books
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Can OS Manage Memory without Access?

Answering it requires a deeper understanding of OS

A Librarian who also A Librarian who does not
reads the books read the books
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Linux Requires Only Non-Semantic Access to
User Space for Memory Management

e Non-semantic access

* OS does not care the value of data for management
* E.g., paging, page migration, read / write system call, ...

E.g., Move all the books

ssize t write(int fd, const void *buf, size t count); from shelf #1 to #2

Case study: Linux kernel’s access to user space 5



Linux Still Requires Semantic Access to
User Space beyond Memory Management

* Semantic access
* OS needs the value of data to fulfill its job
* E.g., syscall arguments, futex, signal handling, ...

E.g., Locate and open
the chapter about
memory paging in an OS

Int open(const char *pathname, int flags);

Case study: Linux kernel’s access to user space textbook
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User-space Access in Traditional OS

* Non-semantic: clear / copy pages
* Semantic: system call parameters & signal handling
* Direct access to user-space: efficient but insecure

—> Memory access ===% System/API calls OAO OS functions

User memory: D Accessible by OS Not accessible by OS Temporarily allowed by TCB
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User-space Access in Prior Work

* Non-semantic: clear/ copy pages
* Always provide an encrypted view, or hide user’s private data from OS
* Encryption is expensive, or the OS’s optimizations stop functioning

* Semantic: system call parameters & signal handling

—> Memory access ===% System/API calls OAO OS functions

User memory: D Accessible by OS Not accessible by OS Temporarily allowed by TCB
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User-space Access in Prior Work

* Non-semantic: clear / copy pages

* Semantic: system call parameters & signal handling
* Copy to buffer & need case-by-case handlings for signal / syscalls like futex
* Extra data copy & complex TCB

—> Memory access ===% System/API calls OAO OS functions

User memory: D Accessible by OS Not accessible by OS Temporarily allowed by TCB
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Key Design |: User-space Access in Blindfold

* Non-semantic: clear/ copy pages
* For 10 and swapping: provide OS an encrypted view
* Moving within memory: trigger TCB to operate pages on behalf of OS
* Allow OS to manage sensitive user pages & encrypt data only when necessary

* Semantic: system call parameters & signal handling

—> Memory access  ===#% System/API calls OAO OS functions

User memory: G Accessible by OS Not accessible by OS Temporarily allowed by TCB
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Key Design |: User-space Access in Blindfold

* Non-semantic: clear/ copy pages

* Semantic: system call parameters & signal handling
* Capabilities are created / destroyed before / after syscalls & exceptions
* The TCB copies objects on behalf of OS after capability checks
* Provide a universal mechanism & no extra data copy

—> Memory access  ===#% System/API calls OAO OS functions

User memory: G Accessible by OS Not accessible by OS Temporarily allowed by TCB
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Key Design Il: Switching Instead of Nesting

* Previous works leverage virtualization

—>:Access R__A:PTswitch s Nested paging * Switch between two nested page tables to
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Key Design Il: Switching Instead of Nesting

—>: Access R__A: PT switch

R . Nested paging
[ —— . HW Support

User
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cuaidian ]« Blindfold employs mediation
* Mediate page tables & switch between them

* Mediate control flow via switching exception
vector tables

* Small TCB (about half of that in prior systems)

Blindfold
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Evaluation: Questions to Answer

* Memory related overhead, e.g., page table mediation
* Application-side — memory access overhead

* OS-level - memory management overhead
= Memory paging

* System call-related overhead, e.g., capability check
* [n memory-intensive and I/O-intensive applications

(More details in the paper)

Evaluation Questions 13



Evaluation: Memory Access

* For common case: Memory access has negligible overhead

* For both non-sensitive and sensitive applications
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Evaluation: Memory Paging

* For memory intensive applications like Memcached & Redis
* Typically invoke system calls far less frequently than 1O intensive apps

* Overhead of memory paging is about 10%~20%
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Evaluation: Semantic Access

* For 1O intensive applications like Nginx & Apache

* Semantic access for system call parameters incurs high overhead
(e.g., 80%) when involving large number of system calls
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Takeaways

* OSis not trustworthy & has more access than necessary

* Linux needs only non-semantic access for memory management,
but requires semantic access for tasks like handling system calls

* Blindfold uses a general capability system to limit semantic access

* Blindfold uses page table mediation & switching to let OS manage
memory securely without knowing its content

Takeaways 17
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