Blindfold: Confidential Memory Management
by Untrusted Operating System

Cathua Li Seung-seob Lee Lin Zhong
Yale University Yale University Yale University
cathua.li@yale.edu seung-seob.lee @yale.edu lin.zhong @yale.edu

OS Is Not Trustworthy

* OSis complex & has large attack surface
* Written in unsafe language & not certified

* Once compromised, attackers can steal app data

onR1

PASSPORT a App g App

7

€ *
9 Operating System

Memory
Motivation 2

OS Has More Access Capabilities than It Needs

* Management: virtual memory & virtual CPU
* Access: physical frames & CPU registers

A Librarian who also
reads the books

OS Has More Access Capabilities than It Needs

* Management: virtual memory & virtual CPU
* Access: physical frames & CPU registers

"ﬁllﬁ * OS does not care the value of data for
§ management, e.g.,

* Moving pages on memory paging

A Librarian who also * Moving contexts on interrupts / exceptions
reads the books

Motivation 3

Can OS Manage Memory without Access?

Answering it requires a deeper understanding of OS

A Librarian who also A Librarian who does not
reads the books read the books

Motivation 4

Linux Requires Only Non-Semantic Access to
User Space for Memory Management

e Non-semantic access

* OS does not care the value of data for management
* E.g., paging, page migration, read / write system call, ...

E.g., Move all the books

ssize t write(int fd, const void *buf, size t count); from shelf #1 to #2

Case study: Linux kernel’s access to user space 5

Linux Still Requires Semantic Access to
User Space beyond Memory Management

* Semantic access
* OS needs the value of data to fulfill its job
* E.g., syscall arguments, futex, signal handling, ...

E.g., Locate and open
the chapter about
memory paging in an OS

Int open(const char *pathname, int flags);

Case study: Linux kernel’s access to user space textbook

6

User-space Access in Traditional OS

* Non-semantic: clear / copy pages
* Semantic: system call parameters & signal handling
* Direct access to user-space: efficient but insecure

—> Memory access ===% System/API calls OAO OS functions

User memory: D Accessible by OS Not accessible by OS Temporarily allowed by TCB

Non-semantic | Semantic
access access

|
! !
1 |
! [
os: O A O :
: I
! !
! |
1 |

Existing CC Blindfold 7
- Comparison

User-space Access in Prior Work

* Non-semantic: clear/ copy pages
* Always provide an encrypted view, or hide user’s private data from OS
* Encryption is expensive, or the OS’s optimizations stop functioning

* Semantic: system call parameters & signal handling

—> Memory access ===% System/API calls OAO OS functions

User memory: D Accessible by OS Not accessible by OS Temporarily allowed by TCB

User

Copy— i
toOS |\ E
0S
] ! 1
! ! ’
i
TCB a Z}? |
—

Traditional OS Blindfold 8

+>[>4
ks

User-space Access in Prior Work

* Non-semantic: clear / copy pages

* Semantic: system call parameters & signal handling
* Copy to buffer & need case-by-case handlings for signal / syscalls like futex
* Extra data copy & complex TCB

—> Memory access ===% System/API calls OAO OS functions

User memory: D Accessible by OS Not accessible by OS Temporarily allowed by TCB

User

Copy—
to OS
oS
!
TCB a 43 ?

Traditional OS Blindfold 9

: -.D‘:

Key Design |: User-space Access in Blindfold

* Non-semantic: clear/ copy pages
* For 10 and swapping: provide OS an encrypted view
* Moving within memory: trigger TCB to operate pages on behalf of OS
* Allow OS to manage sensitive user pages & encrypt data only when necessary

* Semantic: system call parameters & signal handling

—> Memory access ===#% System/API calls OAO OS functions

User memory: G Accessible by OS Not accessible by OS Temporarily allowed by TCB

User

0s

* i i
Secure || Capability !
ABI system [~

TCB

Blindfold

10

———————————
)
___..DE -

Traditional OS Existing CC

Key Design |: User-space Access in Blindfold

* Non-semantic: clear/ copy pages

* Semantic: system call parameters & signal handling
* Capabilities are created / destroyed before / after syscalls & exceptions
* The TCB copies objects on behalf of OS after capability checks
* Provide a universal mechanism & no extra data copy

—> Memory access ===#% System/API calls OAO OS functions

User memory: G Accessible by OS Not accessible by OS Temporarily allowed by TCB

User

0s

X 1 i
Secure || Capability !
ABI system [~

—
-

TCB

Blindfold

11

———————————
)
___..DE -

Traditional OS Existing CC

Key Design Il: Switching Instead of Nesting

* Previous works leverage virtualization

—>:Access R__A:PTswitch s Nested paging * Switch between two nested page tables to

HW support
] provide different views of memory
ser
—1 * Increase TCB & require nested paging HW
(0N
Privileged Eﬂ
| Pl |
TCB r v) _
igher- i [PT][PT] i
o)
Prior work

Design Overview — Key insights 12

Key Design Il: Switching Instead of Nesting

—>: Access R__A: PT switch

R . Nested paging
[—— . HW Support

User

oS
Privileged

TCB
Higher-
privileged

{ / N
[PT || PT|

cuaidian]« Blindfold employs mediation
* Mediate page tables & switch between them

* Mediate control flow via switching exception
vector tables

* Small TCB (about half of that in prior systems)

Blindfold

Design Overview — Key insights 12

Evaluation: Questions to Answer

* Memory related overhead, e.g., page table mediation
* Application-side — memory access overhead

* OS-level - memory management overhead
= Memory paging

* System call-related overhead, e.g., capability check
* [n memory-intensive and I/O-intensive applications

(More details in the paper)

Evaluation Questions 13

Evaluation: Memory Access

* For common case: Memory access has negligible overhead

* For both non-sensitive and sensitive applications

W
o
o
o
o

=
o
o
o
o

o

Throughput (MBps) Throughput (MBps)

o

20000 -

-

[Vanilla
1 Non-sensitive
Sensitive

Memory Read

] [E

2KB

8KB 32KB 128KB512KB 2MB 8MB

20000 -

10000 1

T

TTIH

[Vanilla
.El Non-sensitive

F 1 B2 Sensitive

Memory Write

2KB 8KB 32KB 128KB512KB 2MB 8MB

Memory Access Overhead

14

Evaluation: Memory Paging

* For memory intensive applications like Memcached & Redis
* Typically invoke system calls far less frequently than 1O intensive apps

* Overhead of memory paging is about 10%~20%

N
o

7 [C_—_1 Non-sensitive
1 Sensitive

Relative latency
|_I
(O]

=
o

Memory Paging Overhead 15

Evaluation: Semantic Access

* For 1O intensive applications like Nginx & Apache

* Semantic access for system call parameters incurs high overhead
(e.g., 80%) when involving large number of system calls

S |
7 1 Non-sensitive

1 Sensitive

N
o

Relative latency
|_I
(O]

—
|

=
o

Semantic Access Overhead 16

Takeaways

* OSis not trustworthy & has more access than necessary

* Linux needs only non-semantic access for memory management,
but requires semantic access for tasks like handling system calls

* Blindfold uses a general capability system to limit semantic access

* Blindfold uses page table mediation & switching to let OS manage
memory securely without knowing its content

Takeaways 17

	Slide 1: Blindfold: Confidential Memory Management by Untrusted Operating System
	Slide 2: OS Is Not Trustworthy
	Slide 3: OS Has More Access Capabilities than It Needs
	Slide 4: OS Has More Access Capabilities than It Needs
	Slide 5: Can OS Manage Memory without Access?
	Slide 6: Linux Requires Only Non-Semantic Access to User Space for Memory Management
	Slide 7: Linux Still Requires Semantic Access to User Space beyond Memory Management
	Slide 8: User-space Access in Traditional OS
	Slide 9: User-space Access in Prior Work
	Slide 10: User-space Access in Prior Work
	Slide 11: Key Design I: User-space Access in Blindfold
	Slide 12: Key Design I: User-space Access in Blindfold
	Slide 13: Key Design II: Switching Instead of Nesting
	Slide 14: Key Design II: Switching Instead of Nesting
	Slide 15: Evaluation: Questions to Answer
	Slide 16: Evaluation: Memory Access
	Slide 17: Evaluation: Memory Paging
	Slide 18: Evaluation: Semantic Access
	Slide 19: Takeaways

