
Blindfold: Confidential Memory Management
by Untrusted Operating System

OS Is Not Trustworthy
• OS is complex & has large attack surface

• Written in unsafe language & not certified

• Once compromised, attackers can steal app data

2Motivation

OS Has More Access Capabilities than It Needs

• Management: virtual memory & virtual CPU
• Access: physical frames & CPU registers

A Librarian who also
reads the books

3Motivation

• Management: virtual memory & virtual CPU
• Access: physical frames & CPU registers

• OS does not care the value of data for
management, e.g.,
• Moving pages on memory paging
• Moving contexts on interrupts / exceptionsA Librarian who also

reads the books

3Motivation

OS Has More Access Capabilities than It Needs

A Librarian who does not
read the books

4

A Librarian who also
reads the books

?

Answering it requires a deeper understanding of OS

Motivation

Can OS Manage Memory without Access?

Linux Requires Only Non-Semantic Access to
User Space for Memory Management

• Non-semantic access
• OS does not care the value of data for management
• E.g., paging, page migration, read / write system call, …

5

E.g., Move all the books
from shelf #1 to #2

Case study: Linux kernel’s access to user space

ssize_t write(int fd, const void *buf, size_t count);

Linux Still Requires Semantic Access to
User Space beyond Memory Management

• Non-semantic access
• OS does not care the value of data for management
• E.g., paging, page migration, read / write system call, …

• Semantic access
• OS needs the value of data to fulfill its job
• E.g., syscall arguments, futex, signal handling, …

6

E.g., Move all the books
from shelf #1 to #2

E.g., Locate and open
the chapter about
memory paging in an OS
textbookCase study: Linux kernel’s access to user space

ssize_t write(int fd, const void *buf, size_t count);

int open(const char *pathname, int flags);

• Non-semantic: clear / copy pages
• Semantic: system call parameters & signal handling
• Direct access to user-space: efficient but insecure

Comparison
7

User-space Access in Traditional OS

User-space Access in Prior Work

• Non-semantic: clear / copy pages
• Always provide an encrypted view, or hide user’s private data from OS
• Encryption is expensive, or the OS’s optimizations stop functioning

• Semantic: system call parameters & signal handling

8

User-space Access in Prior Work

• Non-semantic: clear / copy pages
• Semantic: system call parameters & signal handling

• Copy to buffer & need case-by-case handlings for signal / syscalls like futex
• Extra data copy & complex TCB

9

Key Design I: User-space Access in Blindfold

• Non-semantic: clear / copy pages
• For IO and swapping: provide OS an encrypted view
• Moving within memory: trigger TCB to operate pages on behalf of OS
• Allow OS to manage sensitive user pages & encrypt data only when necessary

• Semantic: system call parameters & signal handling

10

• Non-semantic: clear / copy pages
• Semantic: system call parameters & signal handling

• Capabilities are created / destroyed before / after syscalls & exceptions
• The TCB copies objects on behalf of OS after capability checks
• Provide a universal mechanism & no extra data copy

11

Key Design I: User-space Access in Blindfold

Key Design II: Switching Instead of Nesting

• Previous works leverage virtualization
• Switch between two nested page tables to

provide different views of memory
• Increase TCB & require nested paging HW

Design Overview — Key insights 12

Guardian

PT

PT PT’

PT PT’

: Access : PT switch

OS
Privileged

User

TCB
Higher-

privileged

BlindfoldPrior work

Nested paging
HW support

:

Key Design II: Switching Instead of Nesting

• Previous works leverage virtualization
• Switch between two nested page tables to

provide different views of memory
• Increase TCB & require nested paging HW

• Blindfold employs mediation
• Mediate page tables & switch between them
• Mediate control flow via switching exception

vector tables
• Small TCB (about half of that in prior systems)

Design Overview — Key insights 12

Guardian

PT

PT PT’

PT PT’

: Access : PT switch

OS
Privileged

User

TCB
Higher-

privileged

BlindfoldPrior work

Nested paging
HW support

:

Evaluation: Questions to Answer

• Memory related overhead, e.g., page table mediation
• Application-side – memory access overhead
• OS-level – memory management overhead

▪ Memory paging
▪ Encrypting sensitive user pages
▪ Optimization for reducing encryption overhead

• System call-related overhead, e.g., capability check
• In memory-intensive and I/O-intensive applications
• Optimization for improving system call performance

Evaluation Questions 13

(More details in the paper)

Evaluation: Memory Access

Memory Access Overhead 14

• For common case: Memory access has negligible overhead
• For both non-sensitive and sensitive applications

Memory Read

Memory Write

• For memory intensive applications like Memcached & Redis
• Typically invoke system calls far less frequently than IO intensive apps

• Overhead of memory paging is about 10%~20%

Evaluation: Memory Paging

Memory Paging Overhead 15

• For IO intensive applications like Nginx & Apache
• Semantic access for system call parameters incurs high overhead

(e.g., 80%) when involving large number of system calls

Evaluation: Semantic Access

Semantic Access Overhead 16

Takeaways

• OS is not trustworthy & has more access than necessary

• Linux needs only non-semantic access for memory management,
but requires semantic access for tasks like handling system calls

• Blindfold uses a general capability system to limit semantic access

• Blindfold uses page table mediation & switching to let OS manage
memory securely without knowing its content

Takeaways 17

	Slide 1: Blindfold: Confidential Memory Management by Untrusted Operating System
	Slide 2: OS Is Not Trustworthy
	Slide 3: OS Has More Access Capabilities than It Needs
	Slide 4: OS Has More Access Capabilities than It Needs
	Slide 5: Can OS Manage Memory without Access?
	Slide 6: Linux Requires Only Non-Semantic Access to User Space for Memory Management
	Slide 7: Linux Still Requires Semantic Access to User Space beyond Memory Management
	Slide 8: User-space Access in Traditional OS
	Slide 9: User-space Access in Prior Work
	Slide 10: User-space Access in Prior Work
	Slide 11: Key Design I: User-space Access in Blindfold
	Slide 12: Key Design I: User-space Access in Blindfold
	Slide 13: Key Design II: Switching Instead of Nesting
	Slide 14: Key Design II: Switching Instead of Nesting
	Slide 15: Evaluation: Questions to Answer
	Slide 16: Evaluation: Memory Access
	Slide 17: Evaluation: Memory Paging
	Slide 18: Evaluation: Semantic Access
	Slide 19: Takeaways

