LeakLess: Selective Data Protection Against Memory Leakage Attacks for Serverless Platforms

Maryam Rostamipoor, Seyedhamed Ghavamnia, Michalis Polychronakis February 2025

Serverless Computing Platforms

✓ Also known as *Function-as-a-Service* (*FaaS*)

- **W** No need to manage servers—focus purely on code execution
- •E Allow developers to run functions with on-demand scalability
- Efficient resource allocation

Serverless Computing Platforms

✓ Also Known as Function-as-a-Service (FaaS)

- •E Allows developers to run functions with on-demand scalability
- No need to manage servers—focus purely on code execution
- Efficient resource allocation and auto-scaling

Serverless platforms introduce **security challenges**, especially when multiple tenants share the same execution environment

LeakLess: Selective Data Protection Against Memory Leakage Attacks for Serverless Platforms

Function Isolation

Memory Leakage Attacks

Bugs in the Language Runtime

Transient Execution Attacks

Stony Brook University

Memory Leakage Attacks

Bugs in the Language Runtime

Transient Execution Attacks

Persistent compiler-related issues

Out-of-bounds memory access vulnerabilities

Memory Leakage Attacks

Bugs in the Language Runtime

Transient Execution Attacks

Persistent compiler-related issues

Exploit speculative execution (e.g., Spectre)

Out-of-bounds memory access vulnerabilities

Bypass memory safety, memory isolation, or enforced data flows

Effective defense remains a significant challenge

Sensitive Data in Serverless Applications

Serverless applications are a tempting target for attackers

Contain sensitive data API access keys Database connection strings

Handle sensitive data

- Session keys
- 🔑 User passwords
- 💳 Credit card details

Sensitive Data in Serverless Applications

Serverless applications are a tempting target for attackers

Contain sensitive data *P* API access keys

Database connection strings

Handle sensitive data

🔑 Session keys

🔑 User passwords

💳 Credit card details

The existence of memory leakage attacks, combined with the presence of sensitive secrets, creates significant security challenges

Existing Works

Ensuring memory safety [Johnson et al., 2021; Bosamiya et al., 2022]

Verification-based approaches improve memory isolation in language-level sandboxes through binary verification or verified compilers

• Limitations: Ensures only memory safety, difficult to adapt

Protecting against transient execution attacks [Narayan et al., 2021, Schwarzl et al., 2022]

- © Defenses include compiler-based hardening and probabilistic detection techniques
 - Limitations: High performance overhead (240% in some cases), susceptibility to false positives/negatives, protect only against Spectre attacks

Maintain low runtime overhead by selectively protecting only sensitive data instead of all data

LeakLess: Selective Data Protection Against Memory Leakage Attacks for Serverless Platforms

Threat Model

- Solution Attacker may be a legitimate user of the serverless platform
- Attacker can exploit any data leakage vulnerability to read sensitive data belonging to other tenants
 - Memory disclosure vulnerabilities in the runtime
 - Spectre-style attacks and user-space Meltdown-style attacks
 - Image: Second stateImage: Second stateImage: Second stateSecond state<
- Solution Attacker can not execute arbitrary code outside the runtime

LeakLess protects sensitive data in serverless platforms by:

1. Always keeping sensitive data encrypted in memory

LeakLess protects sensitive data in serverless platforms by:

- 1. Always keeping sensitive data encrypted in memory
- 2. Handling cryptographic operations using a separate I/O module

* Stony Brook University

LeakLess protects sensitive data in serverless platforms by:

- 1. Always keeping sensitive data encrypted in memory
- 2. Handling cryptographic operations using a separate I/O module

* Stony Brook University

LeakLess protects sensitive data in serverless platforms by:

- 1. Always keeping sensitive data encrypted in memory
- 2. Handling cryptographic operations using a separate I/O module

* Stony Brook University

Sensitive Data Annotation

Cross-process Flow of Sensitive data

Authorization Token

Compatibility Assessment

Analyzed 1,074 serverless applications

© Compatible with the vast majority of them

- **449 applications** (42%) contain at least one sensitive data object
- LeakLess fully supports 91% (407/449) of these applications

Compatibility Assessment

Analyzed 1,074 serverless applications

© Compatible with the vast majority of them

- **449 applications** (42%) contain at least one sensitive data object
- LeakLess fully supports 91% (407/449) of these applications
- © Broad support for sensitive data objects:
 - 966 sensitive data objects identified across all applications
 - LeakLess fully protects 94% (912/966) of sensitive data objects
 - 66% are immutable and directly supported
 - 26% are supported by outsourcing certain mutable operations (e.g., verification, signing) to the I/O module

Performance Evaluation

Real-World Testing:

- Evaluated on six widely-used serverless applications
- Description and *operation* Each application represents a different *type* of sensitive data and *operation*

Performance Evaluation

Real-World Testing:

Evaluated on six widely-used serverless applications

Each application represents a different *type* of sensitive data and *operation*

Performance Impact:

- *Remote* Scenario (I/O module on a separate host):
 - ☑ Latency Increase: Up to 3.4%
 - Introughput Decrease: Up to 2.8%
- Local Scenario (I/O module on the same host):
 - ☑ Latency Increase: Up to 9.7%
 - Introughput Decrease: Up to 8.5%

Summary

- LeakLess: Efficient, Scalable, and Future-Proof Data Protection for Serverless Computing
 - Future-proof against memory leaks and transient execution attacks
 - Combines in-memory encryption with a dedicated I/O module for enhanced security
 - ✓ **Easy Integration**: Uses **simple annotations**, minimizing developer effort
 - ✓ Slight overhead with minimal effect on system efficiency

https://github.com/mrostamipoor/LeakLess

