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Satisfying the timing condition is
necessary for a gadget to be exploitable.
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Measure the timing condition accurately,

under strong windowing power!
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What if | do cache eviction? 5

Timing Condition Index was -7.

Now, it increases to 183!

The attack pattern is effective :-)
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Evaluation: Performance improvement

Performance

W/O PATCHING FULL-PATCHING SOTA GADGETMETER

* Patching method: LFENCE serialization.
* Reduce overhead by 20.66%, compared with SOTA.
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