GadgetMeter: Quantitatively and
Accurately Gauging the Exploitability
of Speculative Gadgets

Qi Ling, Yujun Liang, Yi Ren, Baris Kasikci, Shuwen Deng

Purdue University, University of Washington, Tsinghua University

Spectre Attacks

01-04-18

“Spectre” And “Meltdown” Chip Flaws Touch
“Almost Every System,” Say Researchers

The critical vulnerabilities in Intel, AMD, and ARM processors will “haunt us for some time.”

64 |e: http://mesa?
id |.okg@efriginal
9 GlaiBEtaTRE R De!

HOME IT/ENTERPRISE

New Spectre Chip Security Vulnerability Found Thato
Leaves Billions Of PCs Still Defenseless

by Nathan Ord — Saturday, May 01, 2021, 10:04 AM EDT

LY @BECOME A PATRON

Spectre Attacks

01-04-18

“Spectre” And “Meltdown” Chip Flaws Touch
“Almost Every System,” Say Researchers

The critical vulnerabilities in Intel, AMD, and ARM processors will “haunt us for some time.”

1 |e: http://mesa?
| |.ox@@elriginal
) O lglaintaingrnle!

HOME IT/ENTERPRISE

New Spectre Chip Security Vulnerability Found Thato
Leaves Billions Of PCs Still Defenseless

by Nathan Ord — Saturday, May 01, 2021, 10:04 AM EDT

=1g=1alela]
Prediction

Branch
Target
Pred.

LY @BECOME A PATRON

Return
Address
Pred.

Spectre Attacks

01-04-18

“Spectre” And “Meltdown” Chip Flaws Touch
“Almost Every System,” Say Researchers

The critical vulnerabilities in Intel, AMD, and ARM processors will “haunt us for some time.”

1 |e: http://mesa?
id | .ok@@eOriginal
) O lglaintaingrnle!

HOME IT/ENTERPRISE

New Spectre Chip Security Vulnerability Found Thato
Leaves Billions Of PCs Still Defenseless

by Nathan Ord — Saturday, May 01, 2021, 10:04 AM EDT

LY @BECOME A PATRON

Branch
Target
Pred.

Return
Address
Pred.

Spectre Attacks

01-04-18

“Spectre” And “Meltdown” Chip Flaws Touch
“Almost Every System,” Say Researchers

The critical vulnerabilities in Intel, AMD, and ARM processors will “haunt us for some time.”

1 |e: http://mesa?
id | .ok@@eOriginal
) O lglaintaingrnle!

HOME IT/ENTERPRISE

New Spectre Chip Security Vulnerability Found Thato
Leaves Billions Of PCs Still Defenseless

by Nathan Ord — Saturday, May 01, 2021, 10:04 AM EDT " Prediction
Branch
9 @BECOME A PATRON Target

Pred.

Retu n
Address
Pred.

Spectre Attacks

01-04-18

“Spectre” And “Meltdown” Chip Flaws Touch
“Almost Every System,” Say Researchers

The critical vulnerabilities in Intel, AMD, and ARM processors will “haunt us for some time.”

1 |e: http://mesa?
| |.okgieOriginal
) O lglaintaingrnle!

HOME

New Spectre Chip Security Vulnerability Found Thato
Leaves Billions Of PCs Still Defenseless

by Nathan Ord — Saturday, May 01, 2021, 10:04 AM EDT

IT/ENTERPRISE

Branch

), @BECOME A PATRON Target

Pred.

Retu n
Address
Pred.

Spectre Attacks

01-04-18

“Spectre” And “Meltdown” Chip Flaws Touch
“Almost Every System,” Say Researchers

The critical vulnerabilities in Intel, AMD, and ARM processors will “haunt us for some time.”

3a 2 8 7 e: http://mesa?
2emef 72 67 2f 0a 4f 72 69 67 69 6e 61 6 .ocg@e0riginal
AP OuliE74 61 69 6e 6 5 62 laf@intainer.De

HOME IT/ENTERPRISE

New Spectre Chip Security Vulnerability Found Thato
Leaves Billions Of PCs Still Defenseless

by Nathan Ord — Saturday, May 01, 2021, 10:04 AM EDT

LY @BECOME A PATRON

</>\Victim Program

Branch
Target
Pred.
Retu n
Address
Pred.

Spectre Attacks

01-04-18

“Spectre” And “Meltdown” Chip Flaws Touch
“Almost Every System,” Say Researchers

The critical vulnerabilities in Intel, AMD, and ARM processors will “haunt us for some time.”

64 |e: http://mesa?
.OrgieOriginal
2 69 GlaiBENtaTnERmDe!

: 65 3a 20 68 74 74 70 3a 2f 2f 6d 65 73
: 2emef 72 67 2f 0a 4f 72 69 67 69 6e 61

AT ouglen’4 61 69 6e 65
IT/ENTERPRISE

HOME

New Spectre Chip Security Vulnerability Found Thato
Leaves Billions Of PCs Still Defenseless

by Nathan Ord — Saturday, May 01, 2021, 10:04 AM EDT

@BECOME A PATRON

%

</>\Victim Program

" Prediction

Branch
Target
Pred.
Retu n
Address
Pred.

Accurate detection of Spectre gadgets.

What is a Spectre gadget?

9999 Time

if (x < BOUND) f{
y = arrayl[x]

z = array2[y]

==

What is a Spectre gadget?

9999 Time

if (x < BOUND) f{
y = arrayl[x]

z = array2[y]

==

What is a Spectre gadget?

9999 Time

: Checkin
if (x < BOUND) {

Speculatively
Executing...

y = arrayl[x]

z = array2[y]

==

What is a Spectre gadget?

9999 Time

if (x < BOUND) {

squash

y = arrayl[x]

z = array2[y]

=

What is a Spectre gadget?

9999 Time

if (x < BOUND) {

squash

y = arrayl[x]

z = array2[y]

-

BBB E: recover
: —
= secret

How do existing gadget scanners work?

X = user_input()
if (x < BOUND) {

y = arrayl[x]

z = array2[y]

How do existing gadget scanners work?

X = user_input()
if (x 2 BOUND) {

y = arrayl[x]

z = array2[y]

How do existing gadget scanners work?

Vulnerable
information flow

X = user_input()

if (x 2 BOUND) {

y = arrayl[x]

z = array2[y]

How do existing gadget scanners work?

Vulnerable
information flow

user_input()

if (x 2 BOUND) {

arrayl[x] Secret access

Attacker injection

array2[y]

Secret leakage

Missing piece: Timing condition

X = user_input()

if (x < BOUND) {

VE=SAT T a Ve fexal

z = array2ly]

Missing piece: Timing condition

oo
__.--m‘“--_ﬂ

EERETEvIE

Missing piece: Timing condition

o,

Missing piece: Timing condition

if (x < BOUND) { oo

faster secret leakage

@’.?

Missing piece: Timing condition

if (x < BOUND) { faster authorization

Missing piece: Timing condition

if (x < BOUND) { faster authorization

@’.?

POﬁO.

Satisfying the timing condition is
necessary for a gadget to be exploitable.

Satisfying the timing condition is
necessary for a gadget to be exploitable.

How do existing works model the timing
condition?

Most scanners: Approximating with RoB size

B

if (x < BOUND) { jo) " TY8

Most scanners: Approximating with RoB size

Fitin RoB[?] i,
if (< eounn) { nts

Most scanners: Approximating with RoB size

Fitin RoB[\’ e
i (< Bouno) { [s

Most scanners: Approximating with RoB size

Fitin RoB[\’ i
otho.

Attack fails:
False positive!

Most scanners: Approximating with RoB size

@ 2
Fitin RoB[\’ i
otho.

Measure the timing condition accurately!

Some others: Timing modelling

if (x < BOUND) {

Some others: Timing modelling

if (x < BOUND) {

Some otkéLs: Timing modelling

if (x < BOUND) {

Some otkéLs: Timing modelling

if (x < BOUND) {

Attack succeeds:
False negative!

Some otkéLs: Timing modelling

if (x < BOUND) {

Measure the timing condition accurately,

under strong windowing power!

Our approach: Modelling windowing power

- N
windowing
capability

N)

a :E: N

windowing

strategy
N Y

Our approach: Modelling windowing power

-
windowing
capability
_
=
windowing
strategy

\l

Cache Line

Eviction

Div Unit

O
O
Contention O
O
O

Cache Bank
Contention

Latency Effect

Control Granularity (Finer)

Our approach: Modelling windowing power

-
windowing
capability
_
=
windowing
strategy

\l

Cache Line
Eviction

Div Unit

O
O
Contention ‘
O
O

Cache Bank
Contention

Latency Effect

Control Granularity (Finer)

Our approach: Modelling windowing power

/ \ Cache Line -
windowing 2 £
Div Unit ~
ca pa b| | |ty Contention %
\ Y -
E Control Granularity (Finer)
e I
windowing
strategy

\ /

Our approach: Modelling windowing power

/ \ Cache Line -
windowing S £
o Div Un.lt >
capability g
N / -
” :
windowing i]
strategy 5
K / Strategy

Effectiveness

Our approach: Modelling windowing power

windowing Sdaid £
Div Unit >
capability 5
N Y, =
windowing - 7 e
St rategy % Brute force
\\‘ 4// strategy Strategy

Effectiveness

Our approach: Modelling windowing power

windowing S £
Div Unit ~
capability ;
\ y >
a N
windowing g
strategy “5
- /

Effectiveness

Well, how do we evaluate gadgets?

Well, how do we evaluate gadgets?

Step A: Modelling timing condition

Well, how do we evaluate gadgets?

Step A: Modelling timing condition
Step B: Simulating windowing power

Well, how do we evaluate gadgets?

Step A: Modelling timing condition
Step B: Simulating windowing power
Step C: Quantifying exploitability

Our approach: An example

size = *xsizePtr

if (x < size) {

z = array2[y]

Our approach: An example

X = user_input() / 4 DIV r2, ri, #4
size = *sizePtr

if (x < size) {

z = array2[y]

Our approach: An example

X = user_input() / 4 DIV r2, rl, #4
size = *sizePtr LOAD r3, [sizePtr]

if (x < size) {

z = array2[y]

Our approach: An example

size = *sizePtr LOAD r3, [sizePtr]

if (x < size) {

CMP r2, r3

BGE end 1f

z = array2[y]

end_1f:

Our approach: An example

size = *xsizePtr

if (x < size) {

y = arrayl[x]

z = array2[y]

LOAD r3, [sizePtr]
CMP r2, r3

BGE end 1f

LOAD r4 arrayl[r2]

LOAD r5 arrayl[r4]

end_1f:

Step A: Modelling timing condition

LOAD r3, [sizePtr]

CMP r2, r3
BGE end 1if
LOAD r4 arrayl[r2]

LOAD r5 arrayl[r4]

end _1f:

Step A: Modelling timing condition

LOAD r3, [sizePtr]

CMP r2, r3
BGE end 1if
LOAD r4 arrayl[r2]

LOAD r5 arrayl[r4]

end _1f:

Step A: Modelling timing condition

LOAD r3, [sizePtr]

CMP r2, r3
BGE end 1if
LOAD r4 arrayl[r2]

LOAD r5 arrayl[r4]

end _1f:

Step A: Modelling timing condition

LOAD r3, [sizePtr]

CMP r2, r3

BGE end 1if

LOAD r5 arrayl[r4]

end _1f:

MaxPathWeight() — MaxPathWeight()

Step A: Modelling timing condition

LOAD r3, [sizePtr]

CMP r2, r3

BGE end 1if

LOAD r5 arrayl[r4]

end _1f:

MaxPathWeight() — MaxPathWeight()

Step A: Modelling timing condition

LOAD r3, [sizePtr]

CMP r2, r3

BGE end 1if

LOAD r5 arrayl[r4]

end _1f:

MaxPathWeight() — MaxPathWeight()

Step A: Modelling timing condition

LOAD r3, [sizePtr]

CMP r2, r3

BGE end 1if

LOAD r5 arrayl[r4]

end _1f:

Timing Condition Index == MaxPathWeight([5edl) = MaxPathWeight([EI0Y)

Step B: Simulating windowing power

g : | can do cache eviction,
and/or div contention

Step B: Simulating windowing power

@ : | can do cache eviction, Attack Pattern
and/or div contention

Do nothing

Cache eviction

Div contention

Cache eviction
+

Div contention

Step B: Simulating windowing power

Attack Pattern Increase in
Timing Condition Index

@ : | can do cache eviction,
and/or div contention

Do nothing ?
Cache eviction ?
Div contention ?

Cache eviction
+ ?

Div contention

What if | do cache eviction? @

What if | do cache eviction? 5

What if | do cache eviction? @

What if | do cache eviction? 5

Timing Condition Index was -7.

Now, it increases to 183!

The attack pattern is effective :-)

Step B: Simulating windowing power

Attack Pattern Increase in
Timing Condition Index

@ : | can do cache eviction,
and/or div contention

Do nothing O
Cache eviction +190
Div contention - 140

Cache eviction

+ +50

Div contention

Step B: Simulating windowing power

Attack Pattern Increase in
Timing Condition Index

Do nothing 0)

g : | can do cache eviction,
and/or div contention

Cache eviction +190

Div contention -140

Cache eviction

+ +50

Div contention

Step C: Measuring exploitability

-

LOAD

CMP

.

LOAD

Machine

Step C: Measuring exploitability

/ I

Machine

Step C: Measuring exploitability

-

J

LOAD

Machine

Step C: Measuring exploitability
/
]

leakage speculation

& Time (cycle)

~

/

-

o

score = 10 * P[speculation > leakage] = 10/10

~

)

Evaluation: Gauging exploitability

Count of gadgets

0 1 2 3 4 5 6 7 8 9 10
Vulnerability score on a 0~10 scale

* Target: gadgets with vulnerable information flow, identified by SOTA
scanners.

* Applications: 6 security-centric applications and Linux kernel

Evaluation: Gauging exploitability

Count of gadgets

0 1 2 3 4 5 6 7 8 9 10
Vulnerability score on a 0~10 scale

» Target: gadgets with vulnerable information flow, identified by SOTA
scanners.

* Applications: 6 security-centric applications and Linux kernel

Evaluation: Gauging exploitability

Count of gadgets

0 1 2 3 4 5 6 7 8 9 10
Vulnerability score on a 0~10 scale

* Target: gadgets with vulnerable information flow, identified by SOTA
scanners.

* Applications: 6 security-centric applications and Linux kernel

Evaluation: Performance improvement

Performance

W/O PATCHING FULL-PATCHING SOTA GADGETMETER

* Patching method: LFENCE serialization.

Evaluation: Performance improvement

Performance

W/O PATCHING FULL-PATCHING SOTA GADGETMETER

* Patching method: LFENCE serialization.

Evaluation: Performance improvement

Performance

W/O PATCHING FULL-PATCHING SOTA GADGETMETER

* Patching method: LFENCE serialization.

Evaluation: Performance improvement

Performance

W/O PATCHING FULL-PATCHING SOTA GADGETMETER

* Patching method: LFENCE serialization.
* Reduce overhead by 20.66%, compared with SOTA.

=1L Le]
Conclusion : 'i-l
[m]

giling07.github.io

Program
Potentially
Exploitable
SOTA Scanners Gadgets

v Few false negatives
X Many false positives

X Binary detection results

qiling07.github.io

(=] 325 o]
3

[B1EEE

giling07.github.io

Conclusion
Program e
Potentially y
Exploitable :
SOTA Scanners Gadgets C

GadgetMeter
quantifying timing condition
under a simulated attacker

with strong windowing power

)

X Many false positives

X Binary detection results

qiling07.github.io

B
Conclusion L

giling07.github.io

Program 4 GadgetMeter A
Potentially * quantifying timing condition] o
Exploitable e under a simulated attacker EXPIOItab'hty
SOTA Scanners Gadgets & with strong windowing power) Report
> >
v Few false negatives v Few false negatives
X Many false positives v Few false positives

X Binary detection results v' Quantitative evaluation results

qiling07.github.io

