

LAMP: Lightweight Approaches for Latency Minimization in Mixnets with Practical Deployment Considerations

Mahdi Rahimi, Piyush Kumar Sharma and Claudia Diaz

Metadata Security

Diffie & Landau – 'Privacy on the line':

"Traffic analysis, not cryptanalysis, is the backbone of communications intelligence."

NSA General Counsel Stewart Baker:

"Metadata absolutely tells you everything about somebody's life. If you have enough metadata, you don't really need content."

Mixnets

- Perturb traffic by mixing and shuffling packets
 - Stronger protection
- Threat Model: Global Adversary
- Problem: High latency
 - Limits the kind of applications that could be supported

Latency Minimization

- Reducing latency facilitates wider application usage
 - Better privacy protection for end users
- **Mixing latency:** fundamental trade-off
- **Propagation Latency:** indirectly affects anonymity

Previous Work

- LARMix (Rahimi et. al. NDSS'24)
 - Reduces propagation latency
- Provided a set of approaches for different stages of a mixnet
 - Arrangement (diversification algorithm)
 - Routing
 - Balancing

LARMix Challenges

- 1. LARMix's computation grows exponentially with the size of the network
- 2. Does not minimize latency from the client to the mixnet
- 3. Requires considerable changes to the original mixnet design

Practical Deployment Considerations

- Nym: the largest realistic deployment of a mixnet
- For deploying latency minimization approaches
 - Lightweight
 - Easy to implement and integrate
 - Minimum codebase changes

LAMP Problem Statement

How to minimize latency in continuous mixnets while not significantly impacting anonymity

Lightweight & easy to integrate in existing deployments

Key ideas

- Random arrangement of nodes to layers
 - Saves computation
 - Minimizes codebase changes
- Create routing approaches with simpler designs
 - Require only a subset of the global network for routing policy computation
- Consider minimizing latency from the client to the last layer
 - Initially done from first to last layer
 - Balancing not possible

Key ideas

- Random arrangement of nodes to layers
 - Saves computation
 - Minimizes codebase changes
- Create routing approaches with simpler designs
 - Require only a subset of the global network for routing policy computation
- Consider minimizing latency from the client to the last layer
 - Initially done from first to last layer
 - Balancing not possible

LAMP Routing

1. Single Circle

2. Multiple Circles

3. Regional

Single Circle

Step1: Client measures latency to all mixnodes

Step2: Forms a circle of radius 'r' with 'r' being the latency bound

Step3: Client creates a path among nodes within the latency bounded circle Multiple ways of creating a path

Constraint: Minimum ' α ' % of mixnodes have to be part of the circle

Colors represent different layers: Layer 1 (blue), Layer 2 (yellow), Layer 3 (green)

Multiple Circle

Multiple Circle

- Communication Link

$c_1c_2c_3$: Multiple Circles

Regional Mixnets

— Communication Link

Evaluation

- Metrics
 - Latency
 - Anonymity (Entropy): High entropy \rightarrow High anonymity
 - Tradeoff: latency/anonymity
- Variables (For SC & MC)
 - Routing within the circle (random, proportional, larmix), α
- Experiments
 - Latency vs r
 - Entropy vs r
 - Effect of α
 - Effect of network size
 - Effect of client traffic rate

Evaluation

- Metrics
 - Latency
 - Anonymity (Entropy): High entropy \rightarrow High anonymity
 - Tradeoff: latency/anonymity
- Variables (For SC & MC)
 - Routing within the circle (random, proportional, larmix), α
- Experiments
 - Latency vs r
 - Entropy vs r
 - Effect of α
 - Effect of network size
 - Effect of client traffic rate

Dataset

- Use real mixnode latency dataset from deployed Nym network
- VERLOC (USENIX Sec'21) protocol used for consistent latency measurement

Results: MC

Results: MC

Results: Regional

Results: Regional

Overall Comparison

Summary

- Present LAMP, an approach to minimize latency in mixnets
 - With practical deployment considerations
- Develop three novel routing approaches
 - Single circle, Multiple circles, Regional mixnets
- Perform realistic evaluation on the deployed mixnet: Nym
 - Obtain superior tradeoffs than the state-of-the-art
 - 3x better Anonymity-Latency tradeoff
 - Supported by theoretical analysis for larger scale
- Conducted a thorough security analysis
 - Corrupt a subset of mixnodes (randomly, single location, worst case)
 - Measure fraction of corrupted paths (FCP)
 - LAMP does not give away significant advantage

Appendix Slides

Security Analysis

- Adversary
 - Corrupt a subset of mixnodes (randomly, single location, worst case)
- Metrics
 - Fraction of Corrupted Paths
- Variables
 - Corruption rate
 - Value of r
 - Value of α

Evaluation: Results

Security Analysis: Results

