The Road to Trust: Building Enclaves within Confidential VMs

Wenhao Wang, <u>Linke Song</u>, Benshan Mei, Shuang Liu, Shijun Zhao, Shoumeng Yan, XiaoFeng Wang, Dan Meng, Rui Hou

Isolate the code and data of a confidential workload from other code

Isolate the code and data of a confidential workload from other code

INTEL SGX

- Intel SGX workflow:
 - Create enclave and add pages
 - Initialize
 - Enter enclaves
 - Execute
 - Exit enclaves
 - Remove enclaves and recycle

Isolate the code and data of a confidential workload from other code

AMD SEV:

- Encrypts the entire VM
 Explicitly chores data
 - Explicitly shares data

* https://www.amd.com/content/dam/amd/en/documents/epycbusiness-docs/white-papers/memory-encryption-white-paper.pdf

- Isolate the code and data of a confidential workload from other code
 Types:
 - Process-based: Intel SGX

Intel SGX

- Isolate the code and data of a confidential workload from other code
 Types:
 - Process-based: Intel SGX
 - VM-based: AMD SEV/Intel TDX/ARM CCA

* https://www.bleepingcomputer.com/news/security/new-intelchips-wont-play-blu-ray-disks-due-to-sgx-deprecation/ 6

- Isolate the code and data of a confidential workload from other code
 Types:
 - Process-based: Intel SGX
 - VM-based: AMD SEV/Intel TDX/ARM CCA

VM-based TEEs are more prevalent now

Intel has removed support for SGX (software guard extension) in 12th Generation Intel Core 11000 and 12000 processors ...*

> * https://www.bleepingcomputer.com/news/security/new-intelchips-wont-play-blu-ray-disks-due-to-sgx-deprecation/ 7

- Isolate the code and data of a confidential workload from other code Types:
 - Process-based: Intel SGX
 - VM-based: AMD SEV/Intel TDX/ARM CCA

Untrusted

VM-based TEEs are more prevalent now

Intel has removed support for SGX (software guard extension) in 12th Generation Intel Core 11000 and 12000 processors ...*

Concern: What if the guest OS might be compromised in VM-Based TEEs?

* https://www.bleepingcomputer.com/news/security/new-intelchips-wont-play-blu-ray-disks-due-to-sgx-deprecation/

Research Gap: In VM-based TEE, how can users establish trust in applications within confidential VM, if the guest OS is compromised?

The whole lifecycle of enclaves should be trusted
 build, load, modification, execution, etc.

Research Gap: In VM-based TEE, how can users establish trust in applications within confidential VM, if the guest OS is compromised?

The whole lifecycle of enclaves should be trusted
 build, load, modification, execution, etc.

Seminal work: vSGX [S&P'22]

Research Gap: In VM-based TEE, how can users establish trust in applications within confidential VM, if the guest OS is compromised?

The whole lifecycle of enclaves should be trusted
 build, load, modification, execution, etc.

Seminal work: vSGX [S&P'22]

Using two-VMs, one for untrusted apps, the other for enclaves.

Research Gap: In VM-based TEE, how can users establish trust in applications within confidential VM, if the guest OS is compromised?

The whole lifecycle of enclaves should be trusted
 build, load, modification, execution, etc.

Seminal work: vSGX [S&P'22]

- Using two-VMs, one for untrusted apps, the other for enclaves.
- Great TCBs
- Significant overhead for 'world-switch'
 - Empty ECall: 1.5 ms, ~160x slower than Native Intel SGX
 - Benchmarks:
 - 6x slower cURL, 5 mins for launching 256 MB Enclave 12

NestedSGX

Overview of NestedSGX

NestedSGX:

■ The only trusted component is the **enclave**

Trivial Questions for NestedSGX

A.K.A Goals

Trivial Questions for NestedSGX

A.K.A Goals

How to mitigate the significant overhead of 'world-switching' without compromising security requirements?

Trivial Questions for NestedSGX

A.K.A Goals

How to mitigate the significant overhead of 'world-switching' without compromising security requirements?

Is NestedSGX built on CVM sufficiently compatible? Can it support a certain level of application ecosystem?

Design: Using the VMPL feature within AMD SEV-SNP, NestedSGX establishes trust for applications while minimizing reliance on the guest OS.

Design: Using the VMPL feature within AMD SEV-SNP, NestedSGX establishes trust for applications while minimizing reliance on the guest OS.

Compatibility with Intel SGX: NestedSGX has similar management of enclaves to Intel SGX, and it significantly reduces the effort required to port existing applications of Intel SGX onto the NestedSGX framework. Design: Using the VMPL feature within AMD SEV-SNP, NestedSGX establishes trust for applications while minimizing reliance on the guest OS.

Compatibility with Intel SGX: NestedSGX has similar management of enclaves to Intel SGX, and it significantly reduces the effort required to port existing applications of Intel SGX onto the NestedSGX framework.

Implementations and Evaluations: We Implemented NestedSGX on commercial hardware, the evaluation shows the overhead is comparable to that of Intel SGX, affirming its efficiency and viability. ■ **Design:** Using the VMPL feature of AMD SEV-SNP

Design: Using the VMPL feature of AMD SEV-SNP

VMPL: Virtual Machine Privilege Levels (VMPL0 – VMPL3)
 Every VMPL shares the same address space, with VMPL0 representing the highest privilege level, and VMPL3 representing the lowest privilege level.

Privilege Separation: VMPL0 (Trusted), VMPL1 (Untrusted)

Architecture

Privilege Separation: VMPL0 (Trusted), VMPL1 (Untrusted)

- VMPL0, Kernel: Security Monitor
- VMPL0, User: Enclave

Architecture

Privilege Separation: VMPL0 (Trusted), VMPL1 (Untrusted)

- VMPL0, Kernel: Security Monitor
- VMPL0, User: Enclave

VMPL1: Guest CVM Host Guest OS, Security Monitor Higher VMPL Application VMM (e.g., VMPL0) Memory SGX Memory RoT emulation layer isolation management Kernel entry SGX SDK User Enclave Trusted Runtime (trts) Guest OS Lower VMPL (e.g., VMPL1) App page table NestedSGX-driver

App

Kernel

User

High

privilege

Low

privilege

VM

and

exit

SGX SDK

Untrusted Runtime (urts)

Architecture

Key Features:

- Security Monitor
- Memory Isolation
- Integrity of Enclave

Instruction-level emulation ECREATE/EADD/EINIT

- Enclave/Monitor: VMPL0
- Driver/App: VMPL1

Memory Isolation

Booting:

- Security monitor initializes the Guest OS, and set up its page table
- Then the security monitor hands over control to BIOS of Guest OS

Memory Isolation

EPC Management:

- EPC pages are allocated and recorded with EPCM by security monitor
- Security monitor handles page fault of Enclaves
- Shadow Page Tables: same gVA-to-gPA mappings for Apps and Enclaves

Memory Isolation

Isolation of Enclaves

- Guest OS can't access
 Secure memory in
 VMPL0
- Security monitor ensures the page table of Enclaves does not map to any gPA of security monitor and guest OS

Measurement, attestation, sealing

Enclaves: EGETKEY/EREPORT

Measurement, attestation, sealing

Enclaves: EGETKEY/EREPORT

Chain of Trust:

- Generate AIK
 - Pub key for CVM
 - Pri key for Quoting Enclave
- AMD SP decrypts CA and generate attestation report

Measurement, attestation, sealing

Enclaves: EGETKEY/EREPORT

Chain of Trust:

- Generate AIK
 - Pub key for CVM
 - Pri key for Quoting Enclave
- AMD SP decrypts CA and generate attestation report

Sealing: MSG_KEY_REQ

Separate page tables

Untrusted App, Guest OS INS NestedSGX Driver

Solely tasked with switching VMPL
 not introduce additional attack vendors

Untrusted App, Guest OS

Separate page tables

NestedSGX Driver

Solely tasked with switching VMPL not introduce additional attack vendors

Untrusted host VMM

- Refuse to switch VMPL (DoS)
- Observe Ecall, Ocall, AEX patterns (Also exists in SGX)

Untrusted host VMM

- Refuse to switch VMPL (DoS)
- Observe Ecall, Ocall, AEX patterns (Also exists in SGX)

Out of Our Scope

Untrusted host VMM

- Refuse to switch VMPL (DoS)
- Observe Ecall, Ocall, AEX patterns (Also exists in SGX)

Out of Our Scope

Untrusted Enclave

User mode: Security Monitor controls its page table

Can't bypass the Security Monitor

Untrusted Enclave

User mode: Security Monitor controls its page table

Can't bypass the Security Monitor, no data can be shared

Chain of Trust Analysis:

NestedSGX AIK private key: inaccessible to other components
 SNP_REPORT_REQ: can only initiated from the kernel mode

Attestation Generation: lower or equal privilege than current

Chain of Trust Analysis:

NestedSGX AIK private key: inaccessible to other components
 SNP_REPORT_REQ: can only initiated from the kernel mode

Attestation Generation: lower or equal privilege than current

- ~7500 LoC
 Occlum, Monitor: Rust
 Others: C
- Based on open-source Linux
 Secure VM Service Module
 (SVSM) framework
- Description Line of Code Component Emulation of SGX data structures, Security monitor 5,500 instructions and AEX Handling switches between App NestedSGX-driver 800 and security monitor Replacing SGX instructions with SGX SDK & 1,200 IOCTL and system calls, HotCalls Occlum 7,500 Total

- Deployed on a server with two AMD EPYC 7543 CPU
 - Ubuntu 22.04
 - Kernel: svsm-preview-guest-v3(CVM), svsm-preview-host-v3(Host)
 - Linux SGX SDK: v2.20
 - Occlum: v0.29.7

Evaluation:

Baseline for comparison:

- Intel SGX Hardware
- Simulation mode SGX

Benchmarks:

- Micro Benchmarks
- Real-world evaluations

Evaluation: Micro Benchmarks

SCV Loof Instruction:			vSGX	NestedSGX
 SGX-Lear Instruction: Rust Implementations of cryptographic crates is a little slower (EGETKEY/EREPOR Context switches: 	e RT) ^{ENCLS}	ECREATE EADD EEXTEND EINIT EREMOVE EAUG EBLOCK ELDB/ELDU EMODPR EWB	3,719 us 1,421 us 987 us 811 us 1,014 us 990 us 841 us 1,958 us 1,071 us 1,819 us	8.4 us 8.0 us 33 us 46 us 7.8 us 7.9 us 9.2 us 9.3 us 9.9 us 7.9 us
VMPL switch: 19400 cycles	ENCLU	EGETKEY EREPORT	5.0 us 19 us	17 us 30 us
ECAL	Intel SG2 L 10,988 cycles ($\frac{\mathbf{x} \mathbf{vSGX}}{(4.1 \text{ us})} \approx 1,500$	NestedSGX as 33,584 cycles (12 us)	

OCALL

9,337 cycles (3.5 us)

32,014 cycles (11 us)

-

Evaluation: Micro Benchmarks

Evaluation: Micro Benchmarks

WolfSSL

Flexible I/O Tester (With Occlum)

(c) FIO

Evaluation: Real World Applications

Hash JoinSQLite

Evaluation: Real World Applications

TLS ServerRedis (With Occlum)

Evaluation: Real World Applications

TLS ServerRedis (With Occlum)

Limitation and Future Work

Limitations exist!!

- Not all SGX model features are supported
 - user_check, memory sharing
- Scheduling of enclave threads is lacking
- Applications written without SDK and Occlum are not supported

Limitation and Future Work

Limitations exist!!

- Not all SGX model features are supported
 - user_check, memory sharing
- Scheduling of enclave threads is lacking
- Applications written without SDK and Occlum are not supported

Future?

- Extend NestedSGX to other CVM platforms
- Other TEE abstractions

Conclusion

NestedSGX

- Hybrid VM-Based and Process-Based TEE models
- Build trust enclaves within Confidential VMs

■ A more compatible, secure, and efficient CVM framework

- Enable compatibility to current Intel SGX ecosystem (With Occlum)
- Build trust within CVM
- Achieve significant performance improvements

Thanks

songlinke@iie.ac.cn

中国和学院大学

University of Chinese Academy of Sciences