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With TEEs, the operating system is untrusted. Classical Trusted Execution Environments run only a small part of specialized code in an enclave.
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There might be side-channels, hence constant time programming should be used (no secret dependent branches etc.)
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However: Confidential Virtual Machines, such as AMD SEV-ES, try to protect an entire general purpose OS and general purpose applications from the privileged hypervisor. That's their use case!
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But we cannot guarantee constant time for that amount of code – and some things like keystroke handling inherently are non-constant-time. In the following, we'll show this with performance counters and single-stepping.
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Program the APIC timer to fire within the single-step window, then execute vmrun. If the single-step window is hit, only one instruction is executed. Record performance counter changes in the vmexit handler, then start over. But there can be multi-steps.
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But we do not want to single-step the entire VM – that's too slow. Instead, we use page fault tracking to skip uninteresting pages. Start and stop page usually is the page containing the call to our target function.
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We monitor the counters for retired branches and branches taken. If none of them increments, the executed instruction was not a branch.
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If only retired branches increments, we know that the instruction was a conditional branch, and its condition was false.
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If both counters increment, we know it was a branch – either conditional or unconditional. Inspecting the binary can tell more, but often isn't even necessary.
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for (;;) {
if (ei == 0 && state == 1) {

MBEDTLS_MPI_CHK(mpi_select (&WW , W, w_table_used_size , x_index));
mpi_montmul (&W[x_index], &WW , N, mm, &T);
continue;

}
state = 2;
MBEDTLS_MPI_CHK(mpi_select (&WW , W, w_table_used_size , x_index));
mpi_montmul (&W[x_index], &WW , N, mm, &T);
MBEDTLS_MPI_CHK(mpi_select (&WW , W, w_table_used_size , ei));
mpi_montmul (&W[x_index], &WW , N, mm, &T);
state --;

}
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Modular exponentiation iterates over all bits in the private key: If it's 0, only square; if it's 1, square and multiply. So we have a branch to attack...
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Attacked branch at step 20 is inverted due to compiler optimizations: It's not taken if the secret bit is 0…
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…and taken if the secret bit is 1. Also, the blue pattern only occurs if the bit is 1 and allows for multistep recovery (cross: mpi_montmul, circle: mpi_select). These are on different pages, limiting multisteps.
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Secret recovered: Full RSA-4096 private key
Average attack runtime: ≈ 7 min

Bit error rate: 0%
Success rate: 100%

(n = 10)
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COTPRESULT totp_compare(OTPData* data , const char* key ,

int64_t offset , uint64_t for_time)
{

char time_str[data ->digits +1];
memset(time_str , 0, data ->digits +1);
if (totp_at(data , for_time , offset , time_str) == 0)

return OTP_ERROR;
for (size_t i=0; i<data ->digits; i++) {

if (key[i] != time_str[i])
return OTP_ERROR;

}
return OTP_OK;

}

Guess TOTP digit-by-digit, with at most 60 attempts, instead of 1 000 000
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Function checking whether a user-submitted TOTP (for 2FA) is correct. The for-loop is basically a naive memcmp implementation with an early exit on the first mismatch.
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Step 4 and 10 are the loop branch, iterating over each digit. Step 13 is the early exit…
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…which is taken later, if we have more correct digits in the beginning.
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Secret recovered: 6-digit TOTP token
Average attack runtime: 18.14 s

Byte error rate: 0%
Success rate: 100%

(n = 50)
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Common code pattern, unsafe with secrets in CVMs
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static const char OTP_DEFAULT_BASE32_CHARS [32] = { ’A’,’B’,’C’ ,... };
COTPRESULT otp_byte_secret(OTPData* data , char* out_str)
{

for (size_t i = 0; i < num_blocks; i++) {
unsigned int block_values [8] = { 0 };
for (int j = 0; j < 8; j++) {

char c = data ->base32_secret[i * 8 + j];
for (int k = 0; k < 32; k++) {

if (c == OTP_DEFAULT_BASE32_CHARS[k]) {
block_values[j] = k;
break;

}
}

}
}

}

13 Stefan Gast https://stefangast.eu



Iterates over base32 encoded secret string (2 outer loops), linearly searching for the base32 character in the array, stops when found.
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Again, it's just counting patterns
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Secret recovered: 16 base32 character TOTP secret key
Average attack runtime: < 1 s

Byte error rate: 0%
Success rate: 86%

(n = 86)
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Secrets are often stored in base32 form, and decoders are often implemented like this (e.g. otplib) or even as an if-cascade (gnulib).
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for(size_t i=0; i<75; ++i)
tmp[i] = i + rand_u32[i] % (17669U - i);

Modulo operator → div instruction with operand-dependent execution time

On Zen 3 and 4: 1 extra cycle per every 9 bit of division result

rand_u32[i] < 512 * (17669-i)→ 7 cycles; otherwise 8 cycles

Observable via Div Cycles Busy performance counter

Sufficient to build plaintext-checking oracle
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