
S C I E N C E
P A S S I O N

T E C H N O L O G Y

Performance-Counter Attacks on AMD SEV-SNP

CounterSEVeillance

Stefan Gast 1 Hannes Weissteiner 1 Robin Leander Schröder 2,3 Daniel Gruss 1

1Graz University of Technology, Austria
2Fraunhofer SIT, Darmstadt, Germany
3Fraunhofer Austria, Vienna, Austria

NDSS 2025

isec.tugraz.at

isec.tugraz.at"Classical" TEEs vs. Confidential VMs

Hardware

Host Operating System

specialized Enclave

TEE

Constant-time programming to protect against side-channels

2 Stefan Gast https://stefangast.eu

With TEEs, the operating system is untrusted. Classical Trusted Execution Environments run only a small part of specialized code in an enclave.

https://stefangast.eu

isec.tugraz.at"Classical" TEEs vs. Confidential VMs

Hardware

Host Operating System

specialized Enclave

TEE

Constant-time programming to protect against side-channels
2 Stefan Gast https://stefangast.eu

There might be side-channels, hence constant time programming should be used (no secret dependent branches etc.)

https://stefangast.eu

isec.tugraz.at"Classical" TEEs vs. Confidential VMs

Hardware

Host Operating System

specialized Enclave

TEE

Hardware

Hypervisor

general purpose
Guest Operating System

general purpose
Applications

CVM

Constant-time programming to protect against side-channels
2 Stefan Gast https://stefangast.eu

However: Confidential Virtual Machines, such as AMD SEV-ES, try to protect an entire general purpose OS and general purpose applications from the privileged hypervisor. That's their use case!

https://stefangast.eu

isec.tugraz.at"Classical" TEEs vs. Confidential VMs

Hardware

Host Operating System

specialized Enclave

TEE

Hardware

Hypervisor

general purpose
Guest Operating System

general purpose
Applications

CVM

Constant-time programming to protect against side-channels
2 Stefan Gast https://stefangast.eu

But we cannot guarantee constant time for that amount of code – and some things like keystroke handling inherently are non-constant-time. In the following, we'll show this with performance counters and single-stepping.

https://stefangast.eu

isec.tugraz.atHardware Performance Counters

Counters for specific hardware events

Initial observation: HPCs also increment when executing an SEV VM!

Examples:

Retired Instructions
Retired Branches
Retired Taken Branches
Div Cycles Busy
. . .

Can we get this information for every single instruction?

3 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atHardware Performance Counters

Counters for specific hardware events

Initial observation: HPCs also increment when executing an SEV VM!

Examples:

Retired Instructions
Retired Branches
Retired Taken Branches
Div Cycles Busy
. . .

Can we get this information for every single instruction?

3 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atHardware Performance Counters

Counters for specific hardware events

Initial observation: HPCs also increment when executing an SEV VM!

Examples:

Retired Instructions
Retired Branches
Retired Taken Branches
Div Cycles Busy
. . .

Can we get this information for every single instruction?

3 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atHardware Performance Counters

Counters for specific hardware events

Initial observation: HPCs also increment when executing an SEV VM!

Examples:
Retired Instructions

Retired Branches
Retired Taken Branches
Div Cycles Busy
. . .

Can we get this information for every single instruction?

3 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atHardware Performance Counters

Counters for specific hardware events

Initial observation: HPCs also increment when executing an SEV VM!

Examples:
Retired Instructions
Retired Branches

Retired Taken Branches
Div Cycles Busy
. . .

Can we get this information for every single instruction?

3 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atHardware Performance Counters

Counters for specific hardware events

Initial observation: HPCs also increment when executing an SEV VM!

Examples:
Retired Instructions
Retired Branches
Retired Taken Branches

Div Cycles Busy
. . .

Can we get this information for every single instruction?

3 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atHardware Performance Counters

Counters for specific hardware events

Initial observation: HPCs also increment when executing an SEV VM!

Examples:
Retired Instructions
Retired Branches
Retired Taken Branches
Div Cycles Busy

. . .

Can we get this information for every single instruction?

3 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atHardware Performance Counters

Counters for specific hardware events

Initial observation: HPCs also increment when executing an SEV VM!

Examples:
Retired Instructions
Retired Branches
Retired Taken Branches
Div Cycles Busy
. . .

Can we get this information for every single instruction?

3 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atHardware Performance Counters

Counters for specific hardware events

Initial observation: HPCs also increment when executing an SEV VM!

Examples:
Retired Instructions
Retired Branches
Retired Taken Branches
Div Cycles Busy
. . .

Can we get this information for every single instruction?
3 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atInterrupt-based Single Stepping

4 Stefan Gast https://stefangast.eu

Program the APIC timer to fire within the single-step window, then execute vmrun. If the single-step window is hit, only one instruction is executed. Record performance counter changes in the vmexit handler, then start over. But there can be multi-steps.

https://stefangast.eu

isec.tugraz.atPage-Fault Tracking to Start and Stop Recordings

Track Start Page

Track Target Page(s)

Single Step
Track Other Pages

Start page hit

Target
page

hit

Non-Target
page hit

End page hit

5 Stefan Gast https://stefangast.eu

But we do not want to single-step the entire VM – that's too slow. Instead, we use page fault tracking to skip uninteresting pages. Start and stop page usually is the page containing the call to our target function.

https://stefangast.eu

isec.tugraz.atRecovering Control Flow

???

???

???

rip

Single Step:
retired branches = 0
branches taken = 0

no branch

???

???

rip

???

???

???

rip

Single Step:
retired branches = 1
branches taken = 0

conditional branch,
not taken

???

???

rip

???

???

???

rip

Single Step:
retired branches = 1
branches taken = 1

taken branch

???

???
rip

6 Stefan Gast https://stefangast.eu

We monitor the counters for retired branches and branches taken. If none of them increments, the executed instruction was not a branch.

https://stefangast.eu

isec.tugraz.atRecovering Control Flow

???

???

???

rip

Single Step:
retired branches = 0
branches taken = 0

no branch

???

???

rip

???

???

???

rip

Single Step:
retired branches = 1
branches taken = 0

conditional branch,
not taken

???

???

rip

???

???

???

rip

Single Step:
retired branches = 1
branches taken = 1

taken branch

???

???
rip

6 Stefan Gast https://stefangast.eu

If only retired branches increments, we know that the instruction was a conditional branch, and its condition was false.

https://stefangast.eu

isec.tugraz.atRecovering Control Flow

???

???

???

rip

Single Step:
retired branches = 0
branches taken = 0

no branch

???

???

rip

???

???

???

rip

Single Step:
retired branches = 1
branches taken = 0

conditional branch,
not taken

???

???

rip

???

???

???

rip

Single Step:
retired branches = 1
branches taken = 1

taken branch

???

???
rip

6 Stefan Gast https://stefangast.eu

If both counters increment, we know it was a branch – either conditional or unconditional. Inspecting the binary can tell more, but often isn't even necessary.

https://stefangast.eu

isec.tugraz.atBreaking Mbed TLS Square + Multiply

for (;;) {
if (ei == 0 && state == 1) {

MBEDTLS_MPI_CHK(mpi_select (&WW , W, w_table_used_size , x_index));
mpi_montmul (&W[x_index], &WW , N, mm, &T);
continue;

}
state = 2;
MBEDTLS_MPI_CHK(mpi_select (&WW , W, w_table_used_size , x_index));
mpi_montmul (&W[x_index], &WW , N, mm, &T);
MBEDTLS_MPI_CHK(mpi_select (&WW , W, w_table_used_size , ei));
mpi_montmul (&W[x_index], &WW , N, mm, &T);
state --;

}

7 Stefan Gast https://stefangast.eu

Modular exponentiation iterates over all bits in the private key: If it's 0, only square; if it's 1, square and multiply. So we have a branch to attack...

https://stefangast.eu

isec.tugraz.atBreaking Mbed TLS Square + Multiply

0 5 10 15 20 25 30 35 40 45
page fault

taken
branch

Step

ei = 0

0 5 10 15 20 25 30 35 40 45
page fault

taken
branch

Step

ei = 1

8 Stefan Gast https://stefangast.eu

Attacked branch at step 20 is inverted due to compiler optimizations: It's not taken if the secret bit is 0…

https://stefangast.eu

isec.tugraz.atBreaking Mbed TLS Square + Multiply

0 5 10 15 20 25 30 35 40 45
page fault

taken
branch

Step

ei = 0

0 5 10 15 20 25 30 35 40 45
page fault

taken
branch

Step

ei = 1
8 Stefan Gast https://stefangast.eu

…and taken if the secret bit is 1. Also, the blue pattern only occurs if the bit is 1 and allows for multistep recovery (cross: mpi_montmul, circle: mpi_select). These are on different pages, limiting multisteps.

https://stefangast.eu

isec.tugraz.atBreaking Mbed TLS Square + Multiply: Results

Secret recovered: Full RSA-4096 private key
Average attack runtime: ≈ 7 min

Bit error rate: 0%
Success rate: 100%

(n = 10)

9 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atRecovering TOTPs (memcmp-style)
COTPRESULT totp_compare(OTPData* data , const char* key ,

int64_t offset , uint64_t for_time)
{

char time_str[data ->digits +1];
memset(time_str , 0, data ->digits +1);
if (totp_at(data , for_time , offset , time_str) == 0)

return OTP_ERROR;
for (size_t i=0; i<data ->digits; i++) {

if (key[i] != time_str[i])
return OTP_ERROR;

}
return OTP_OK;

}

Guess TOTP digit-by-digit, with at most 60 attempts, instead of 1 000 000

10 Stefan Gast https://stefangast.eu

Function checking whether a user-submitted TOTP (for 2FA) is correct. The for-loop is basically a naive memcmp implementation with an early exit on the first mismatch.

https://stefangast.eu

isec.tugraz.atRecovering TOTPs (memcmp-style)
COTPRESULT totp_compare(OTPData* data , const char* key ,

int64_t offset , uint64_t for_time)
{

char time_str[data ->digits +1];
memset(time_str , 0, data ->digits +1);
if (totp_at(data , for_time , offset , time_str) == 0)

return OTP_ERROR;
for (size_t i=0; i<data ->digits; i++) {

if (key[i] != time_str[i])
return OTP_ERROR;

}
return OTP_OK;

}

Guess TOTP digit-by-digit, with at most 60 attempts, instead of 1 000 000

10 Stefan Gast https://stefangast.eu

Function checking whether a user-submitted TOTP (for 2FA) is correct. The for-loop is basically a naive memcmp implementation with an early exit on the first mismatch.

https://stefangast.eu

isec.tugraz.atRecovering TOTPs (memcmp-style)

0 2 4 6 8 10 12 14 16 18 20 22 24 26
taken

retired

Step

2 correct digits

0 2 4 6 8 10 12 14 16 18 20 22 24 26
taken

retired

Step

3 correct digits

11 Stefan Gast https://stefangast.eu

Step 4 and 10 are the loop branch, iterating over each digit. Step 13 is the early exit…

https://stefangast.eu

isec.tugraz.atRecovering TOTPs (memcmp-style)

0 2 4 6 8 10 12 14 16 18 20 22 24 26
taken

retired

Step

2 correct digits

0 2 4 6 8 10 12 14 16 18 20 22 24 26
taken

retired

Step

3 correct digits

11 Stefan Gast https://stefangast.eu

…which is taken later, if we have more correct digits in the beginning.

https://stefangast.eu

isec.tugraz.atRecovering TOTPs (memcmp-style): Results

Secret recovered: 6-digit TOTP token
Average attack runtime: 18.14 s

Byte error rate: 0%
Success rate: 100%

(n = 50)

12 Stefan Gast https://stefangast.eu

Common code pattern, unsafe with secrets in CVMs

https://stefangast.eu

isec.tugraz.atStealing TOTP secret keys (base32 decoder)
static const char OTP_DEFAULT_BASE32_CHARS [32] = { ’A’,’B’,’C’ ,... };
COTPRESULT otp_byte_secret(OTPData* data , char* out_str)
{

for (size_t i = 0; i < num_blocks; i++) {
unsigned int block_values [8] = { 0 };
for (int j = 0; j < 8; j++) {

char c = data ->base32_secret[i * 8 + j];
for (int k = 0; k < 32; k++) {

if (c == OTP_DEFAULT_BASE32_CHARS[k]) {
block_values[j] = k;
break;

}
}

}
}

}

13 Stefan Gast https://stefangast.eu

Iterates over base32 encoded secret string (2 outer loops), linearly searching for the base32 character in the array, stops when found.

https://stefangast.eu

isec.tugraz.atStealing TOTP secret keys (base32 decoder)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
taken

retired

Step

Base32 character is D

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
taken

retired

Step

Base32 character is E

14 Stefan Gast https://stefangast.eu

Again, it's just counting patterns

https://stefangast.eu

isec.tugraz.atStealing TOTP secret keys (base32 decoder): Results

Secret recovered: 16 base32 character TOTP secret key
Average attack runtime: < 1 s

Byte error rate: 0%
Success rate: 86%

(n = 86)

15 Stefan Gast https://stefangast.eu

Secrets are often stored in base32 form, and decoders are often implemented like this (e.g. otplib) or even as an if-cascade (gnulib).

https://stefangast.eu

isec.tugraz.atDivide-and-Surrender-style Attack on HQC

for(size_t i=0; i<75; ++i)
tmp[i] = i + rand_u32[i] % (17669U - i);

Modulo operator → div instruction with operand-dependent execution time

On Zen 3 and 4: 1 extra cycle per every 9 bit of division result

rand_u32[i] < 512 * (17669-i)→ 7 cycles; otherwise 8 cycles

Observable via Div Cycles Busy performance counter

Sufficient to build plaintext-checking oracle

16 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atDivide-and-Surrender-style Attack on HQC

for(size_t i=0; i<75; ++i)
tmp[i] = i + rand_u32[i] % (17669U - i);

Modulo operator → div instruction with operand-dependent execution time

On Zen 3 and 4: 1 extra cycle per every 9 bit of division result

rand_u32[i] < 512 * (17669-i)→ 7 cycles; otherwise 8 cycles

Observable via Div Cycles Busy performance counter

Sufficient to build plaintext-checking oracle

16 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atDivide-and-Surrender-style Attack on HQC

for(size_t i=0; i<75; ++i)
tmp[i] = i + rand_u32[i] % (17669U - i);

Modulo operator → div instruction with operand-dependent execution time

On Zen 3 and 4: 1 extra cycle per every 9 bit of division result

rand_u32[i] < 512 * (17669-i)→ 7 cycles; otherwise 8 cycles

Observable via Div Cycles Busy performance counter

Sufficient to build plaintext-checking oracle

16 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atDivide-and-Surrender-style Attack on HQC

for(size_t i=0; i<75; ++i)
tmp[i] = i + rand_u32[i] % (17669U - i);

Modulo operator → div instruction with operand-dependent execution time

On Zen 3 and 4: 1 extra cycle per every 9 bit of division result

rand_u32[i] < 512 * (17669-i)→ 7 cycles; otherwise 8 cycles

Observable via Div Cycles Busy performance counter

Sufficient to build plaintext-checking oracle

16 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atDivide-and-Surrender-style Attack on HQC

for(size_t i=0; i<75; ++i)
tmp[i] = i + rand_u32[i] % (17669U - i);

Modulo operator → div instruction with operand-dependent execution time

On Zen 3 and 4: 1 extra cycle per every 9 bit of division result

rand_u32[i] < 512 * (17669-i)→ 7 cycles; otherwise 8 cycles

Observable via Div Cycles Busy performance counter

Sufficient to build plaintext-checking oracle

16 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atDivide-and-Surrender-style Attack on HQC

for(size_t i=0; i<75; ++i)
tmp[i] = i + rand_u32[i] % (17669U - i);

Modulo operator → div instruction with operand-dependent execution time

On Zen 3 and 4: 1 extra cycle per every 9 bit of division result

rand_u32[i] < 512 * (17669-i)→ 7 cycles; otherwise 8 cycles

Observable via Div Cycles Busy performance counter

Sufficient to build plaintext-checking oracle

16 Stefan Gast https://stefangast.eu

https://stefangast.eu

isec.tugraz.atAcknowledgments

This research was made possible by generous funding from:

Supported in part by the European Research Council (ERC project FSSec 101076409), the Austrian Science Fund (FWF SFB project SPyCoDe 10.55776/F85), and by the
National Research Center for Applied Cybersecurity ATHENE as part of the PORTUNUS project in the research area Crypto. Any opinions, findings, and conclusions or

recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the funding parties.

17 Stefan Gast https://stefangast.eu

https://stefangast.eu

S C I E N C E
P A S S I O N

T E C H N O L O G Y

Performance-Counter Attacks on AMD SEV-SNP

CounterSEVeillance

Stefan Gast Hannes Weissteiner Robin Leander Schröder Daniel Gruss

� https://stefangast.eu
stefan.gast@tugraz.at
ø notbobbytables@infosec.exchange

NDSS 2025

isec.tugraz.at

