
A Formal Approach to Multi-Layered Privileges
for Enclaves

Ganxiang Yang, Chenyang Liu, Zhen Huang, Guoxing Chen,
Hongfei Fu, Yuanyuan Zhang, Haojin Zhu

Enclave / TEE (Trusted Execution Environment)

➢ TEE protects enclaves from untrusted

(privileged) software by

○ Spatial Isolation

○ Execution Isolation
➢

➢ TEE trusts secure hardware and

firmware supports including

○ Secure CPU

○ Trusted On-chip Modules

Firmware + Hardware

Enclaves

OS / Hypervisor

Normal
APPs

Trusted Untrusted

Intel
SGX, TDX

AMD SEV ARM
TrustZone, CCA

Sanctum, Keystone,
Penglai

Enclave / TEE (Trusted Execution Environment)

TEEs are widely used in various remote computation scenarios

➢ Secure Machine Learning

➢ Secure Service

➢ Secure Storage

Motivation: Restriction of Current Enclaves

Restriction of Deploying Enclaves: Usability

➢ Lack of common features (e.g. Memory Sharing, Introspection, etc.)

➢ Incompatible with cloud/VM scenarios (e.g. cold-boot, migration, etc.)

➢ …

Motivation: Restriction of Current Enclaves

Restriction of Deploying Enclaves: Usability

➢ Lack of common features (e.g. Memory Sharing, Introspection, etc.)

➢ Incompatible with cloud/VM scenarios (e.g. cold-boot, migration, etc.)

➢ …

Root Cause: Spatial Isolation and Execution Isolation of enclaves

Motivation: Restriction of Current Enclaves

Restriction of Deploying Enclaves: Usability

➢ Lack of common features (e.g. Memory Sharing, Introspection, etc.)

➢ Incompatible with cloud/VM scenarios (e.g. cold-boot, migration, etc.)

➢ …

Root Cause: Spatial Isolation and Execution Isolation of enclaves

Feature Extensions: always equipped with “Privileges”, including Spatial

Control and Execution Control

Providing TEE extensions based on Privilege Separation

Feature
Extension

Enclave
Codes

Previous Works

Observation:
Privilege separation between

enclaves and extension

Feature
Extension

Enclave
Codes

(CCS ’22) Cerberus: A Formal Approach to
Secure and Efficient Enclave Memory Sharing

(Security ’22) Elasticlave: An Efficient Memory
Model for Enclaves

(Security ’23) Reusable Enclaves for
Confidential Computing

(ISCA ’20) Nested Enclave: Supporting
Fine-grained Hierarchical Isolation with SGX

…

Previous Works

Feature
Extension

Enclave
Codes

Privilege separation
between enclaves and

extension

🤔 Where to put the extensions?

Previous Works

Enclave

Feature
Extension

🤔 Where to put the extensions?

1. Inside the enclave (Intra-Enclave
Compartmentalization*)

Instrumented
Code

* Reusable Enclave (Security ’23), SGX-Migration (DSN ’17), etc.

Previous Works

Enclave

Feature
Extension

🤔 Where to put the extensions?

1. Inside the enclave (Intra-Enclave
Compartmentalization)

Instrumented
Code

Lacking architecture
protection

Depending on bug-free
software implementation

Previous Works

🤔 Where to put the extensions?

2. Architecture-level Design

Firmware
Extension

Trusted
Modules

Enclave Runtime SDK

Enclave Code

Previous Works

* Cerberus (CCS ’22), SMILE (S&P ’22), etc.

🤔 Where to put the extensions?

2. Architecture-level Design

Firmware
Extension 1

Trusted
Modules

Enclave Runtime SDK

Enclave Code

Firmware
Extension 2 Firmware

Extension 3

Previous Works

🤔 Where to put the extensions?

2. Architecture-level Design

Firmware
Extension 1

Trusted
Modules

Enclave Runtime SDK

Enclave Code

Violating Principle of
Least Privilege (PoLP)

Heavy TCB burden

Firmware
Extension 2 Firmware

Extension 3

Previous Works

🤔 Where to put the extensions?

3. Inter-enclave Privileges?

Service Enclave

Service Enclave

Normal Enclave Normal Enclave

Service Enclave

Previous Works

Idea: Inter-Enclave Privilege Separation

Service Enclave

Service Enclave

Normal Enclave Normal Enclave

Service Enclave

Extension 1 Extension 2

Idea: Inter-Enclave Privilege Separation

Advantages:

★ Architecture-based security
guarantees

Service Enclave

Service Enclave

Normal Enclave Normal Enclave

Service Enclave

Extension 1

★ Firmware Extension

Extension 2

Idea: Inter-Enclave Privilege Separation

Advantages:

★ Architecture-based security
guarantees

★ Use only necessary extensions,
minimize TCB

★ Service Enclave

★ Service Enclave

★ Normal Enclave Normal Enclave

Service Enclave

Extension 1

★ Firmware Extension

Extension 2

Idea: Inter-Enclave Privilege Separation

Advantages:

★ Architecture-based security
guarantees

★ Use only necessary extensions,
minimize TCB

★ Customizable extensions in
userspace, easy to program

★ Service Enclave

★ Service Enclave

★ Normal Enclave Normal Enclave

Service Enclave

★ Extension 1

★ Firmware Extension

Extension 2

Idea: Inter-Enclave Privilege Separation

Previous Work:

Nested Enclave (ISCA ’20)

CapStone (Security ’23)

 ! No formal security guarantees

 ! Single-layer separation
★ Service Enclave

★ Service Enclave

★ Normal Enclave Normal Enclave

Service Enclave

★ Extension 1

★ Firmware Extension

Extension 2

Idea: Inter-Enclave Privilege Separation

Service Enclave

Service Enclave

Normal Enclave Normal Enclave

Service Enclave

Extension 1

Firmware Extension

Challenge 1: Security
 of Parent Enclaves (PE) when

Child Enclave (CE) compromised

Extension 2

Idea: Inter-Enclave Privilege Separation

Service Enclave

Service Enclave

Normal Enclave Normal Enclave

Extension 1Challenge 2: Scalability
of Feature Extensions.

Proving security for any extension
/ any layer number

Challenge 1: Security
 of Parent Enclaves (PE) when

Child Enclave (CE) compromised

Firmware Extension

Service Enclave

Extension 2

A Formal Approach to Multi-Layered Privileges
for Enclaves

Threat Model

- Malicious OS

- Side-channel attacks and DoS attacks are out of scope

- Concerning about the security of a Parent Enclave when any these

enclaves are compromised:

(1) its own Children Enclaves;

(2) any other legacy enclaves;

(3) other non-ancestor Children Enclaves

Our Design

Challenge 1: Security
 of Parent Enclaves (PE) when

Child Enclave (CE) compromised

Challenge 2: Scalability of
Multi-Layered Privilege (MLP).

Our Design

Challenge 1: Security
 of Parent Enclaves (PE) when

Child Enclave (CE) compromised

Challenge 2: Scalability of
Multi-Layered Privilege (MLP).

Sol: Give formally verified security
properties and enclave model based

on the TAP model.

Sol: Prove the security for
unlimited layer number with

real-world case study.

Our Design

Challenge 1: Security of Parent Enclaves (PE) when Child Enclave (CE) compromised

Solution

1. Define 7 privilege instructions from Parent

Enclave (PE) to its Children Enclave (CE)

2. Build an abstract enclave platform model

supporting Multi-Layered Privileges

Our Design

e.g. Formalizing the IntegritySolution

3. Define the Secure Remote

Computation (SRE) property for

Multi-Layered Privileges (MLP)

4. Use Z3 prover and inductions to

verify security

Challenge 1: Security of Parent Enclaves (PE) when Child Enclave (CE) compromised

Our Design

Proof Tree:

SRE

{Lemmas}

Parent-Children
Consistency

Exclusive Memory
Consistency…

Solution

3. Define the Secure Remote

Computation (SRE) property for

Multi-Layered Privileges (MLP)

4. Use Z3 prover and inductions to

verify security

Challenge 1: Security of Parent Enclaves (PE) when Child Enclave (CE) compromised

Our Design

→ Introducing inter-enclave privileges

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

Our Design

→ Introducing inter-enclave privileges

→ Introducing new execution-flow

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

Our Design

→ Introducing inter-enclave privileges

→ Introducing new execution-flow

→ Verification state explodes!

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

Our Design

→ Introducing inter-enclave privileges

→ Introducing new execution-flow

→ Verification state explodes!

Poly(n) ⇒ 2EXP(n)

*Complexity analysis refers our paper appendix

Model Complexity Explosion

Legacy TEE Platform: Poly(n)

MLP TEE Platform: 2EXP(n)*

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

Our Design

Solution

1. Z3 optimizations
Skolemization

Relevancy Propagation

2. Parameterizing layer depth 𝜆
Proof by Induction

Model Complexity Explosion
(solved)

Legacy TEE Platform: verified!

MLP TEE Platform: verified!

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

Prototype Implementation

 PENGLAI
 Secure Monitor

CPU

M-mode
Trap
Handler

S-mode

U-mode
Legacy

Enclaves

Linux
Kernel

Normal
APPs

MLP
Support

Parent
Enclave

Child
Enclave

…

Child
Enclave

7 MLP primitives as
instructions

Evaluation: Implementation

Implementation Efforts

- Formal Model

~ 800 LoC of Formal Model

~ 5,000 LoC for Security Proof

- TEE Platform

~ 5,000 LoC (3,300 LoC in TCB)

Environment

2 Intel Xeon Gold 5318Y CPUs, each 48 cores, 512 GB Memory

Z3 4.8.7, Boogie 2.16.0

Evaluation: Verification Costs

Security Property
(Secure Remote Computation)

Integrity Secure
Measurement Confidentiality+ +

≈ 11 hours ≈ 2 hoursProof by
Induction

Our verification
cost

Previous works
(TAP, Cerberus) < 1 min < 5 min < 15 min

Decomposition Theorem
[Subramanyan et al., CCS’ 17]

Evaluation: Verification Costs

Security Property
(Secure Remote Computation)

Integrity Secure
Measurement Confidentiality+ +

≈ 11 hours ≈ 2 hoursProof by
Induction

Our verification
cost

Previous works
(TAP, Cerberus) < 1 min < 5 min < 15 min

Recap: gaps in
model

complexity!

Poly(n) ⇒ 2EXP(n)

Decomposition Theorem
[Subramanyan et al., CCS’ 17]

Evaluation: Implementation

Q1: Burden of PE-CE context switches?

Overhead: < 5%

Q2: Burden of Multi-Layering?

Insight: Context switches among different layers are
independent.

Overhead: Should be a constant! (< 3%)

Q3: Memory Overhead for each extension?

Overhead: Reduce O(n) to O(1) by a sharable PE.

Evaluation: Usability

- Hierarchical Deterministic Wallet (~ 200 LoC in PE, ~27,000 LoC as runtime lib)

- Reusable Enclaves (~ 500 LoC in PE)

- Inter-Enclave Memory Sharing (~500 LoC in PE)

- Runtime Attestation (~ 100 LoC in PE)

- Enclave Introspection…

All above can be integrated into PEs!

Q & A

Artifact Available: https://github.com/arxgy/Palantir (Implementation)

 https://github.com/arxgy/TAP-lambda (Formal Model)

Thanks!

https://github.com/arxgy/Palantir
https://github.com/arxgy/TAP-lambda

