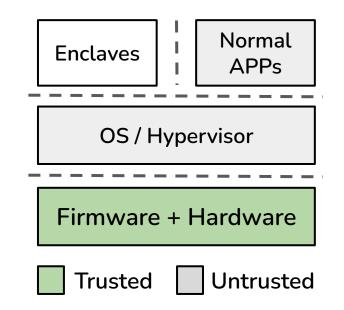
A Formal Approach to Multi-Layered Privileges for Enclaves

Ganxiang Yang, Chenyang Liu, Zhen Huang, Guoxing Chen, Hongfei Fu, Yuanyuan Zhang, Haojin Zhu



SHANGHAI JIAO TONG UNIVERSITY

Enclave / TEE (Trusted Execution Environment)

- TEE protects enclaves from untrusted (privileged) software by
 - Spatial Isolation
 - Execution Isolation
- TEE trusts secure hardware and firmware supports including
 - Secure CPU
 - Trusted On-chip Modules

Enclave / TEE (Trusted Execution Environment)

IntelAMD SEVARMSanctum, Keystone,SGX, TDXTrustZone, CCAPenglai

TEEs are widely used in various remote computation scenarios

- Secure Machine Learning
- > Secure Service
- Secure Storage

Motivation: Restriction of Current Enclaves

Restriction of Deploying Enclaves: Usability

 \succ

• • •

- Lack of common features (e.g. Memory Sharing, Introspection, etc.)
- Incompatible with cloud/VM scenarios (e.g. cold-boot, migration, etc.)

Motivation: Restriction of Current Enclaves

Restriction of Deploying Enclaves: Usability

 \succ

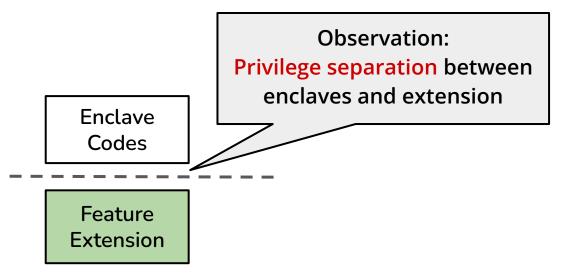
- Lack of common features (e.g. Memory Sharing, Introspection, etc.)
- Incompatible with cloud/VM scenarios (e.g. cold-boot, migration, etc.)

Root Cause: Spatial Isolation and Execution Isolation of enclaves

Motivation: Restriction of Current Enclaves

Restriction of Deploying Enclaves: Usability

 \succ


...

- Lack of common features (e.g. Memory Sharing, Introspection, etc.)
- Incompatible with cloud/VM scenarios (e.g. cold-boot, migration, etc.)

Root Cause: Spatial Isolation and Execution Isolation of enclaves

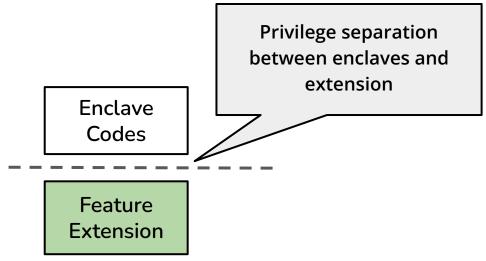
Feature Extensions: always equipped with "Privileges", including Spatial Control and Execution Control

Providing TEE extensions based on Privilege Separation

(CCS '22) Cerberus: A Formal Approach to Secure and Efficient Enclave Memory Sharing

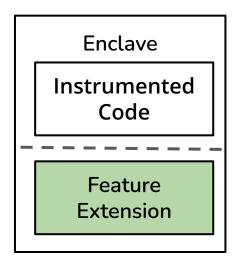
(Security '22) Elasticlave: An Efficient Memory Model for Enclaves

(ISCA '20) Nested Enclave: Supporting Fine-grained Hierarchical Isolation with SGX


(Security '23) Reusable Enclaves for Confidential Computing

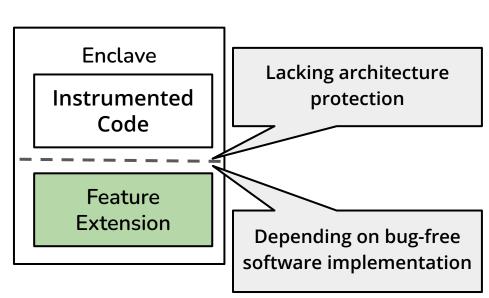
Enclave Codes

Feature Extension


Where to put the extensions?

Where to put the extensions?

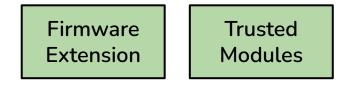
1. Inside the enclave (Intra-Enclave Compartmentalization*)



* Reusable Enclave (Security '23), SGX-Migration (DSN '17), etc.

Where to put the extensions?

1. Inside the enclave (Intra-Enclave Compartmentalization)

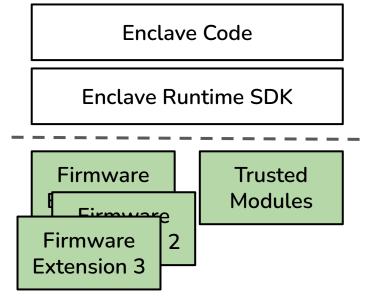


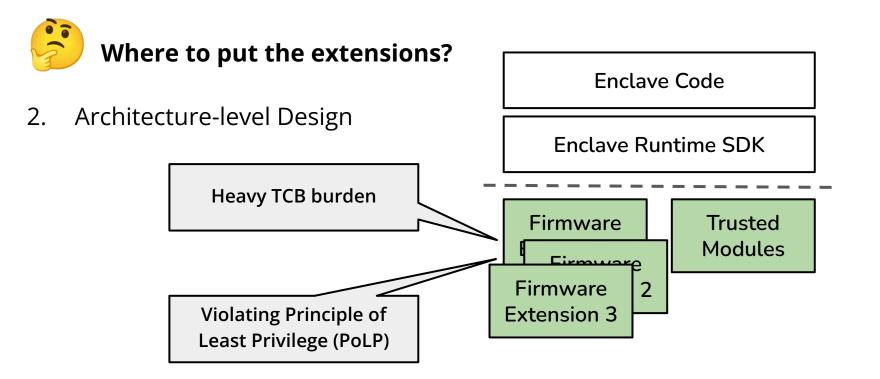
Where to put the extensions?

2. Architecture-level Design

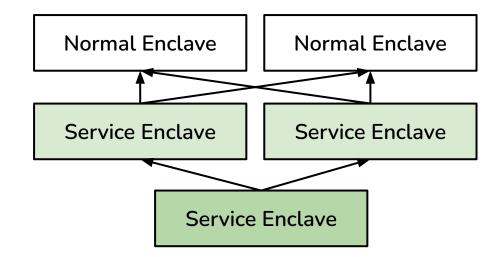
Enclave Code

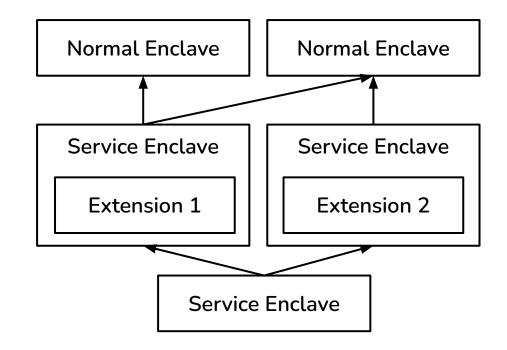
Enclave Runtime SDK

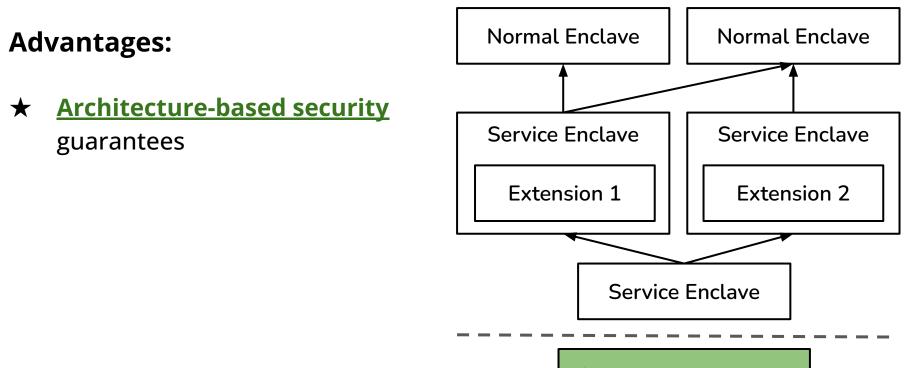



* Cerberus (CCS '22), SMILE (S&P '22), etc.

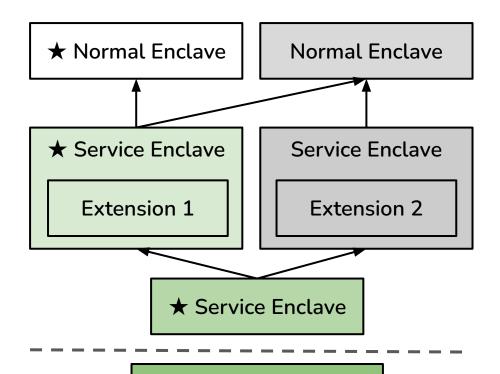
Where to put the extensions?


2. Architecture-level Design



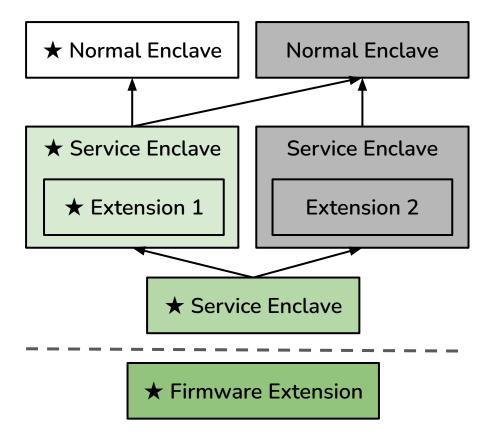


3. Inter-enclave Privileges?



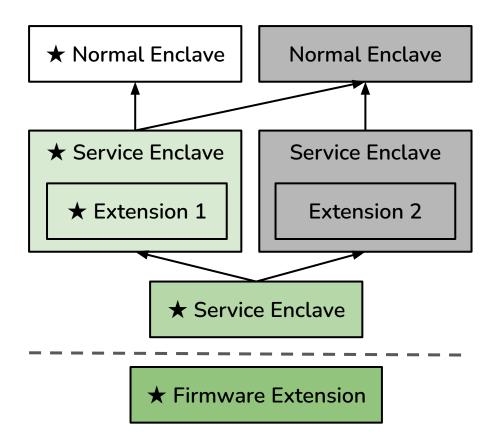
★ Firmware Extension

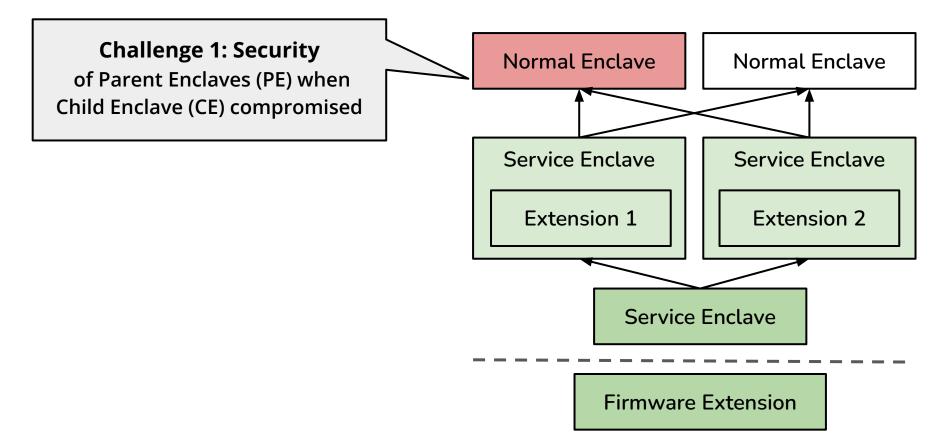
Advantages:

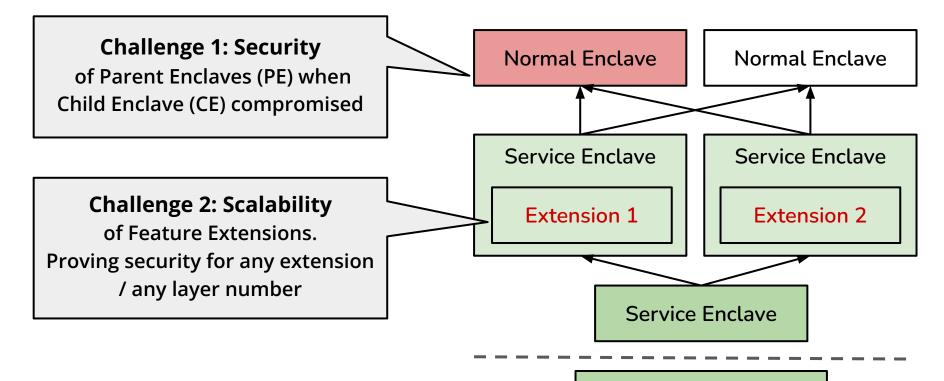

- ★ Architecture-based security guarantees
- ★ Use only necessary extensions, minimize TCB

 \star Firmware Extension

Advantages:


- ★ Architecture-based security guarantees
- ★ Use only necessary extensions, minimize TCB
- ★ <u>Customizable extensions</u> in userspace, easy to program




Previous Work: Nested Enclave (ISCA '20)

CapStone (Security '23)

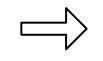
- ! No formal security guarantees
- ! Single-layer separation

Firmware Extension

A Formal Approach to Multi-Layered Privileges for Enclaves

Threat Model

- Malicious OS
- Side-channel attacks and DoS attacks are out of scope
- Concerning about the security of a Parent Enclave when any these enclaves are compromised:
 - (1) its own Children Enclaves;
 - (2) any other legacy enclaves;
 - (3) other non-ancestor Children Enclaves


Challenge 1: Security

of Parent Enclaves (PE) when Child Enclave (CE) compromised

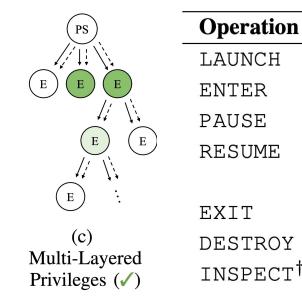
Challenge 2: Scalability of Multi-Layered Privilege (MLP).


Challenge 1: Security

of Parent Enclaves (PE) when Child Enclave (CE) compromised

Sol: Give <u>formally verified</u> security properties and enclave model based on the TAP model.

Challenge 2: Scalability of Multi-Layered Privilege (MLP).



Sol: Prove the security for <u>unlimited</u> layer number with real-world case study.

Challenge 1: Security of Parent Enclaves (PE) when Child Enclave (CE) compromised

Solution

- 1. Define 7 privilege instructions from Parent Enclave (PE) to its Children Enclave (CE)
- 2. Build an abstract enclave platform model supporting Multi-Layered Privileges

Challenge 1: Security of Parent Enclaves (PE) when Child Enclave (CE) compromised

Solution

- Define the Secure Remote
 Computation (SRE) property for
 Multi-Layered Privileges (MLP)
- Use Z3 prover and inductions to verify security

e.g. Formalizing the Integrity

$$\pi_1^{\langle 0 \rangle} \xrightarrow{eop_0} \cdots \pi_1^{\langle i \rangle} \xrightarrow{\mathcal{A}_1} \pi_1^{\langle i+1 \rangle} \xrightarrow{eop_1} \pi_1^{\langle i+2 \rangle} \cdots \pi_1^{\langle j \rangle} \xrightarrow{\mathcal{A}_1} \pi_1^{\langle j+1 \rangle} \xrightarrow{eop_2} \cdots$$

$$\pi_1^{\langle 0 \rangle} \xrightarrow{\mathcal{A}_1} \pi_1^{\langle i \rangle} \xrightarrow{\mathcal{A}_1} \pi_1^{\langle i+1 \rangle} \xrightarrow{\mathcal{A}_1} \pi_1^{\langle i+2 \rangle} \cdots$$

$$\pi_1^{\langle i \rangle} \xrightarrow{\mathcal{A}_1} \pi_1^{\langle i+1 \rangle} \xrightarrow{\mathcal{A}_2} \pi_2^{\langle i+1 \rangle} \xrightarrow{\mathcal{A}_2} \pi_2^{\langle i+2 \rangle} \cdots$$

$$\pi_2^{\langle i \rangle} \xrightarrow{\mathcal{A}_2} \pi_2^{\langle i+1 \rangle} \xrightarrow{eop_1} \pi_2^{\langle i+2 \rangle} \cdots$$

$$\pi_2^{\langle i \rangle} \xrightarrow{\mathcal{A}_2} \pi_2^{\langle i+1 \rangle} \xrightarrow{eop_2} \cdots$$

$$\forall \pi_1, \pi_2 \in TRACE(TS). \tag{4}$$

$$\sum_{i} E_e(\pi_1^{(0)}) = E_e(\pi_2^{(0)}) \qquad \qquad \land$$

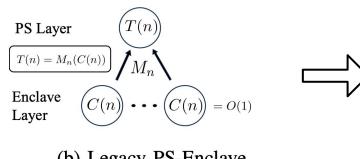
 $\begin{aligned} \forall i \in \mathbb{N}. \ \pi_1^{\langle i \rangle}.curr &= e \iff \pi_2^{\langle i \rangle}.curr = e & & \land \\ \forall i \in \mathbb{N}. \ \pi_1^{\langle i \rangle}.curr &= e \implies I_e(\pi_1^{\langle i \rangle}) = I_e(\pi_2^{\langle i \rangle}) \Big) & \implies \\ \left(\forall i \in \mathbb{N}. \ E_e(\pi_1^{\langle i \rangle}) = E_e(\pi_2^{\langle i \rangle}) \land O_e(\pi_1^{\langle i \rangle}) = O_e(\pi_2^{\langle i \rangle}) \right) & \end{aligned}$

Challenge 1: Security of Parent Enclaves (PE) when Child Enclave (CE) compromised

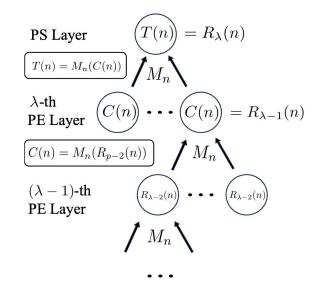
Proof Tree:

Solution

- Define the Secure Remote
 Computation (SRE) property for
 Multi-Layered Privileges (MLP)
- 4. Use Z3 prover and inductions to verify security

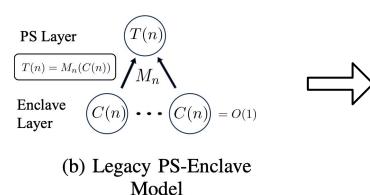

SRE {Lemmas} Parent-Children Consistency ... Exclusive Memory Consistency

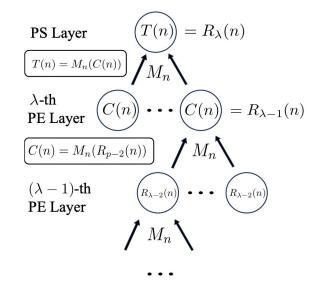
Challenge 2: Scalability of Multi-Layered Privilege (MLP).


 \rightarrow Introducing inter-enclave privileges

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

- \rightarrow Introducing inter-enclave privileges
- \rightarrow Introducing new execution-flow


(b) Legacy PS-Enclave Model



(d) Multi-Layered Privilege Model

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

- \rightarrow Introducing inter-enclave privileges
- \rightarrow Introducing new execution-flow
- \rightarrow Verification state explodes!

(d) Multi-Layered Privilege Model

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

- \rightarrow Introducing inter-enclave privileges
- \rightarrow Introducing new execution-flow
- \rightarrow Verification state explodes!

 $Poly(n) \Rightarrow 2EXP(n)$

Model Complexity Explosion

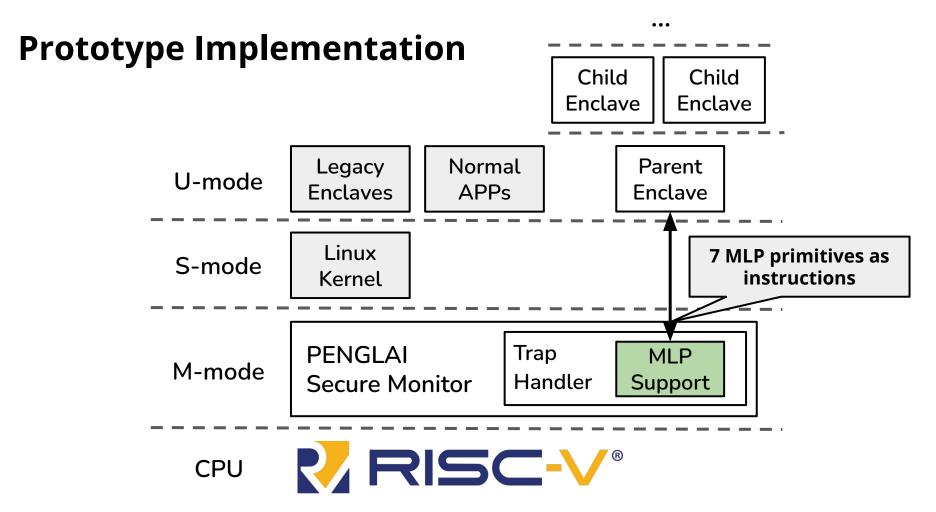
Legacy TEE Platform: **Poly(n)** MLP TEE Platform: **2EXP(n)***

*Complexity analysis refers our paper appendix

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

Solution

1. Z3 optimizations


Skolemization

Relevancy Propagation

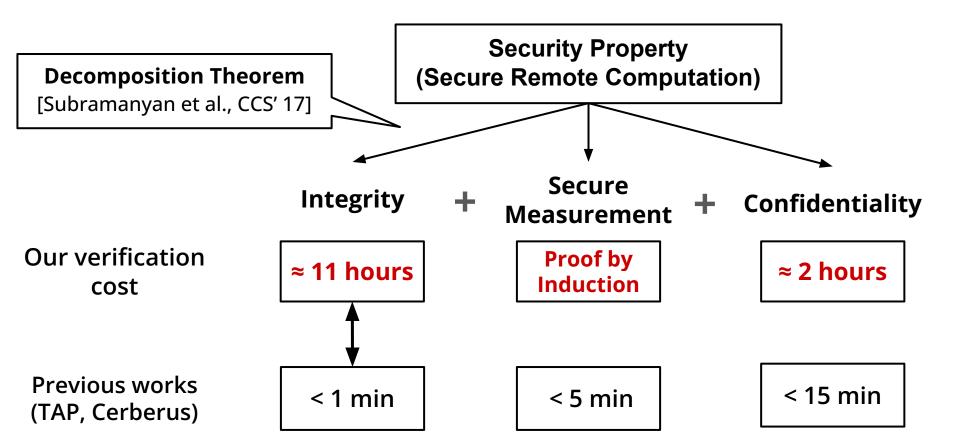
2. Parameterizing layer depth λ

Proof by Induction

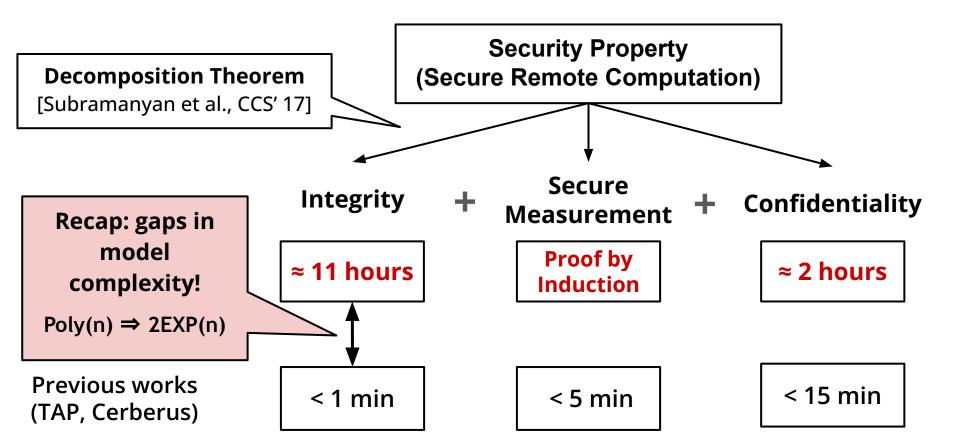
Model Complexity Explosion (solved) Legacy TEE Platform: verified! MLP TEE Platform: verified!

Evaluation: Implementation

Implementation Efforts


- Formal Model
 - ~ 800 LoC of Formal Model
 - ~ 5,000 LoC for Security Proof
- TEE Platform
 - ~ 5,000 LoC (3,300 LoC in TCB)

Environment


2 Intel Xeon Gold 5318Y CPUs, each 48 cores, 512 GB Memory

Z3 4.8.7, Boogie 2.16.0

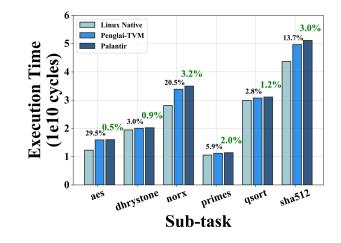
Evaluation: Verification Costs

Evaluation: Verification Costs

Evaluation: Implementation

Q1: Burden of PE-CE context switches?

Overhead: < 5%


Q2: Burden of Multi-Layering?

Insight: Context switches among different layers are independent.

Overhead: Should be a constant! (< 3%)

Q3: Memory Overhead for each extension?

Overhead: Reduce O(n) to O(1) by a sharable PE.

Sub-task \ Privilege Level (λ)	1	2	3	4	5	6	7	Avg.
AES	0.407	0.892	0.842	1.472	1.308	1.338	1.042	0.090
dhrystone	0.561	0.184	-0.070	0.190	0.051	0.878	0.326	0.860
norx	1.085	1.240	0.863	0.831	0.425	1.622	1.064	1.544
primes	1.349	1.496	1.351	1.558	1.362	1.954	2.007	1.752
qsort	0.468	0.613	0.452	0.808	0.826	1.110	0.875	0.736
sha512	0.118	0.279	0.644	2.887	3.627	1.178	0.206	1.276
Avg.	0.406	0.892	0.842	1.472	1.308	1.338	1.042	1.043

Evaluation: Usability

- Hierarchical Deterministic Wallet (~ 200 LoC in PE, ~27,000 LoC as runtime lib)
- Reusable Enclaves (~ 500 LoC in PE)
- Inter-Enclave Memory Sharing (~500 LoC in PE)
- Runtime Attestation (~ 100 LoC in PE)
- Enclave Introspection...

All above can be integrated into PEs!

Artifact Available: <u>https://github.com/arxgy/Palantir</u> (Implementation) <u>https://github.com/arxgy/TAP-lambda</u> (Formal Model)

Thanks!