A Formal Approach to Multi-Layered Privileges
for Enclaves

Ganxiang Yang, Chenyang Liu, Zhen Huang, Guoxing Chen,
Hongfei Fu, Yuanyuan Zhang, Haojin Zhu

SHANGHALI JTIAO TONG UNIVERSITY

Enclave / TEE (Trusted Execution Environment)

> TEE protects enclaves from untrusted
(privileged) software by
o Spatial Isolation
o Execution Isolation
> TEE trusts secure hardware and
firmware supports including
o Secure CPU
o Trusted On-chip Modules

Enclaves Normal
APPs
OS / Hypervisor

Firmware + Hardware

Trusted

Untrusted

Enclave / TEE (Trusted Execution Environment)

(nted AMDZ1 AI'M P RISC-V*

Intel AMD SEV ARM Sanctum, Keystone,
SGX, TDX TrustZone, CCA Penglai

TEEs are widely used in various remote computation scenarios
> Secure Machine Learning
> Secure Service

> Secure Storage

Motivation: Restriction of Current Enclaves

Restriction of Deploying Enclaves: Usability

> Lack of common features (e.g. Memory Sharing, Introspection, etc.)

> Incompatible with cloud/VM scenarios (e.g. cold-boot, migration, etc.)

>

Motivation: Restriction of Current Enclaves

Restriction of Deploying Enclaves: Usability

> Lack of common features (e.g. Memory Sharing, Introspection, etc.)

> Incompatible with cloud/VM scenarios (e.g. cold-boot, migration, etc.)

>

Root Cause: Spatial Isolation and Execution Isolation of enclaves

Motivation: Restriction of Current Enclaves

Restriction of Deploying Enclaves: Usability

> Lack of common features (e.g. Memory Sharing, Introspection, etc.)

> Incompatible with cloud/VM scenarios (e.g. cold-boot, migration, etc.)

>

Root Cause: Spatial Isolation and Execution Isolation of enclaves

Feature Extensions: always equipped with “Privileges”, including Spatial

Control and Execution Control

Previous Works

Providing TEE extensions based on Privilege Separation

Observation:
Privilege separation between
enclaves and extension

Feature
Extension

Previous Works

Enclave
Codes

Feature
Extension

(CCS '22) Cerberus: A Formal Approach to
Secure and Efficient Enclave Memory Sharing

(Security '22) Elasticlave: An Efficient Memory
Model for Enclaves

(ISCA "20) Nested Enclave: Supporting
Fine-grained Hierarchical Isolation with SGX

(Security '23) Reusable Enclaves for
Confidential Computing

Previous Works

®)

o=
()
—y

Where to put the extensions?

Feature
Extension

Privilege separation
between enclaves and
extension

Previous Works

®)

-
o

— Where to put the extensions?
Enclave
1. Inside the enclave (Intra-Enclave Instrumented
Compartmentalization®) Code
Feature
Extension

* Reusable Enclave (Security '23), SGX-Migration (DSN '17), etc.

Previous Works

®)

=
o

— Where to put the extensions?
Enclave
. Lacking architecture
1. Inside the enclave (Intra-Enclave Instrumented protection

Compartmentalization) Code

B —— £/

N
Feature \
Extension Depending on bug-free

software implementation

Previous Works

®)

=
()
—y

Where to put the extensions?
Enclave Code

2. Architecture-level Design
Enclave Runtime SDK

Firmware Trusted
Extension Modules

* Cerberus (CCS '22), SMILE (S&P 22), etc.

Previous Works

®)

-
()
—y

Where to put the extensions?
Enclave Code

2. Architecture-level Design
Enclave Runtime SDK

Firmware Trusted
i i Modules

E-vma

Firmware |2
Extension 3

Previous Works

®)

-
()
—y

Where to put the extensions?
Enclave Code

2. Architecture-level Design
Enclave Runtime SDK

Heavy TCB burden - -~ -
Firmware Trusted

1y . A Modules
/ Firmware |2
Violating Principle of Extension 3

Least Privilege (PoLP)

Previous Works

3.

®)

-
o
-

Where to put the extensions?

Inter-enclave Privileges?

Normal Enclave

Normal Enclave

—— 1

Service Enclave

Service Enclave

\/

Service Enclave

Idea: Inter-Enclave Privilege Separation

Normal Enclave Normal Enclave
Service Enclave Service Enclave
Extension 1 Extension 2

\/

Service Enclave

Idea: Inter-Enclave Privilege Separation

Adva ntages; Normal Enclave Normal Enclave
% Architecture-based security T/'T
guarantees Service Enclave Service Enclave
Extension 1 Extension 2

\/

Service Enclave

% Firmware Extension

Idea: Inter-Enclave Privilege Separation

Advantages:

% Architecture-based security
guarantees

% Use only necessary extensions,
minimize TCB

% Normal Enclave Normal Enclave
% Service Enclave Service Enclave
Extension 1 Extension 2

\/

% Service Enclave

% Firmware Extension

Idea: Inter-Enclave Privilege Separation

Advantages: % Normal Enclave Normal Enclave
% Architecture-based security T/T
guarantees % Service Enclave Service Enclave

% Extension 1 Extension 2

% Use only necessary extensions,

minimize TCB —

% Service Enclave

% Customizable extensions in
userspace, easy to program T T T T T - - - - - - - - - - - - ———-

% Firmware Extension

Idea: Inter-Enclave Privilege Separation

Previous Work: % Normal Enclave Normal Enclave
Nested Enclave (ISCA 20) M T
CapStone (Security 23) % Service Enclave Service Enclave

% Extension 1 Extension 2

! No formal security guarantees

I Single-layer separation —

% Service Enclave

% Firmware Extension

Idea: Inter-Enclave Privilege Separation

Challenge 1: Security Normal Enclave Normal Enclave
of Parent Enclaves (PE) when
Child Enclave (CE) compromised T><T
Service Enclave Service Enclave
Extension 1 Extension 2

\/

Service Enclave

Firmware Extension

Idea: Inter-Enclave Privilege Separation

Challenge 1: Security \k Normal Enclave Normal Enclave
of Parent Enclaves (PE) when

Child Enclave (CE) compromised T><T

Service Enclave Service Enclave

Challenge 2: Scalability —

. [Extension 1 Extension 2
of Feature Extensions. — |

Proving security for any extension \/

/ any layer number

Service Enclave

Firmware Extension

A Formal Approach to Multi-Layered Privileges
for Enclaves

Threat Model

- Malicious OS
- Side-channel attacks and DoS attacks are out of scope

- Concerning about the security of a Parent Enclave when any these

enclaves are compromised:

(1) its own Children Enclaves;
(2) any other legacy enclaves;

(3) other non-ancestor Children Enclaves

Our Design

Challenge 1: Security
of Parent Enclaves (PE) when
Child Enclave (CE) compromised

Challenge 2: Scalability of
Multi-Layered Privilege (MLP).

Our Design

Challenge 1: Security
of Parent Enclaves (PE) when
Child Enclave (CE) compromised

Challenge 2: Scalability of
Multi-Layered Privilege (MLP).

L

4

Sol: Give formally verified security
properties and enclave model based
on the TAP model.

Sol: Prove the security for
unlimited layer number with
real-world case study.

Our Design

Challenge 1: Security of Parent Enclaves (PE) when Child Enclave (CE) compromised

Solution Operation
1. Define 7 privilege instructions from Parent LAUNCH
Enclave (PE) to its Children Enclave (CE) @ @ @ ENTER
PAUSE
2. Build an abstract enclave platform model @ O RESUME
supporting Multi-Layered Privileges
PP g y g —
©) DESTROY

Multi-Layered ;
Privileges (v) INSPECT

Our Design

Challenge 1: Security of Parent Enclaves (PE) when Child Enclave (CE) compromised

Solution

3.

Define the Secure Remote
Computation (SRE) property for
Multi-Layered Privileges (MLP)

Use Z3 prover and inductions to

verify security

e.g. Formalizing the Integrity

i o, ; : - :

7r§0> eopg "'7T§l> 1 7T§z+1) eop; 7T§z+2>m7rij> 1 7r§]+1> €opy
73‘ ~ =~ R N = 3 =

~ Q Q Q Q Q

Q

eop ! i+1) eop) h oA it1) eop
7r§0>—0>-~-7réz>—2>7r§1+>—1>7ré1+>-~-7r§]>—2>7r§”>—2>~--

V1, me € TRACE(TS). (C)]
(Be(l™) = Be(mf™) A
Vi € N. 7r§i>.cu'rr =e <> 7r§”.curr =e A
VieN. m%curr =e = L(r") = Ie(wéi>)) =

(Vi € N. Ec(n{?) = Be(n{") A Oc(mf?) = 0. (n{"))

Our Design

Challenge 1: Security of Parent Enclaves (PE) when Child Enclave (CE) compromised

Solution

3.

Define the Secure Remote
Computation (SRE) property for
Multi-Layered Privileges (MLP)

Use Z3 prover and inductions to

verify security

Proof Tree:

SRE

i

{Lemmas}

e

Parent-Children
Consistency

Exclusive Memory
Consistency

Our Design

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

— Introducing inter-enclave privileges

Our Design

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

— Introducing inter-enclave privileges

— Introducing new execution-flow

PS Layer @
= M, (C(n)) /M
Enclave
Layer

(b) Legacy PS-Enclave
Model

—

PS Layer @ = Rx(n)

[7 = /

I;\Etlliayer @ @ = Raa(n
e / M

(A~ 1)th
PE Layer

(d) Multi-Layered Privilege Model

Our Design

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

— Introducing inter-enclave privileges

— Introducing new execution-flow

— Verification state explodes!

PS Layer

Layer

@
= Mo (C(n)) /M

Enclave @ @

(b) Legacy PS-Enclave
Model

—

PS Layer @ = Rx(n)
T(n) = M,(C(n) / M

A-th

PE Layer @ @ = Raa(n
e /‘ M

G
PE Layer

(d) Multi-Layered Privilege Model

Our Design

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

— Introducing inter-enclave privileges

— Introducing new execution-flow

— Verification state explodes!

Poly(n) = 2EXP(n)

*Complexity analysis refers our paper appendix

Model Complexity Explosion

Legacy TEE Platform: Poly(n)
MLP TEE Platform: 2EXP(n)*

Our Design

Challenge 2: Scalability of Multi-Layered Privilege (MLP).

Solution

1. Z3 optimizations

Skolemization

Relevancy Propagation

2. Parameterizing layer depth 4
Proof by Induction

Model Complexity Explosion

(solved)

Legacy TEE Platform: verified!

MLP TEE Platform: verified!

Child Child
Enclave Enclave

Legacy Normal Parent
Enclaves APPs Enclave

Linux 7 MLP primitives as

Kernel instructions
PENGLAI Trap MLP
Secure Monitor |Handler | Support

®

Evaluation: Implementation

Implementation Efforts
- Formal Model
~ 800 LoC of Formal Model
~ 5,000 LoC for Security Proof
- TEE Platform
~ 5,000 LoC (3,300 LoC in TCB)

Environment
2 Intel Xeon Gold 5318Y CPUs, each 48 cores, 512 GB Memory

Z3 4.8.7, Boogie 2.16.0

Evaluation: Verification Costs

Security Property

Decomposition Theorem g (Secure Remote Computation)

[Subramanyan et al., CCS' 17] /l\

. Secure . . 1
Integrity -+ Measurement T Confidentiality
Our verification _ Proof by -
cost =11 hours Induction =2 hours
Previous works : : <15 min
(TAP, Cerberus) <1min <> min

Evaluation: Verification Costs

Security Property

Decomposition Theorem g (Secure Remote Computation)

[Subramanyan et al., CCS' 17] /l\

: Secure _ o
Recap: gaps in Integrity + Measurement T Confidentiality
model Proof by
complexity! =11 hours Induction =2 hours
Poly(n) = 2EXP(n) I
Previous works : , <15 min
(TAP, Cerberus) <1 min <> min

Evaluation: Implementation

6
s LA
Q1: Burden of PE-CE context switches? gAs —fr i
R
Overhead: < 5% 3
o
23,
é C
Q2: Burden of Multi-Layering? '
0 S 2 S S L V)
. . . 0 e 0 A oY
Insight: Context switches among different layers are M gt 00 A @ g
independent. Sub-task
Overhead: Should be a constant! (< 3%) S
Privilege Level (1) 1 2 ? 4 9 o f Avg.
AES 0407 0.892 0842 1472 1308 1.338 1.042 | 0.090
dhrystone 0561 0.184 -0.070 0.190 0.051 0.878 0.326 | 0.860
Q3: Memory Overhead for each extension? norx 1.085 1.240 0.863 0.831 0.425 1.622 1.064 | 1.544
primes 1349 1496 1351 1558 1362 1954 2007 | 1.752
gsort 0468 0.613 0452 0808 0826 1.110 0.875 | 0.736
Overhead: Reduce O(I‘I) to 0(1) by a sharable PE. sha512 0.118 0.279 0.644 2.887 3.627 1.178 0.206 | 1.276
Avg. 0406 0.892 0842 1472 1308 1338 1.042 | 1.043

Evaluation: Usability

- Hierarchical Deterministic Wallet (~ 200 LoC in PE, ~27,000 LoC as runtime lib)
- Reusable Enclaves (~ 500 LoC in PE)

- Inter-Enclave Memory Sharing (~500 LoC in PE)

- Runtime Attestation (~ 100 LoC in PE)

- Enclave Introspection...

All above can be integrated into PEs!

Q&A

Artifact Available: https://github.com/arxgy/Palantir (Implementation)

https://github.com/arxgy/TAP-lambda (Formal Model)

Thanks!

https://github.com/arxgy/Palantir
https://github.com/arxgy/TAP-lambda

