
1

Yiming Zhang, Fengwei Zhang, Xiapu Luo , Rui Hou, Xuhua Ding,
Zhenkai Liang, Shoumeng Yan, Tao Wei, Zhengyu He

SCRUTINIZER: Towards Secure Forensics
on Compromised TrustZone

2

Trusted Execution Environment (TEE) Protects Data in Use

TEE is a key technology in Confidential
Computing; Hardware-assisted security
design.

TEE has been applied to the computing
platforms and commercial products of
several companies.

Intel SGX/TDX

Arm
TrustZone/CCAAMD SEV

Microsoft
Azure Cloud

Google
Cloud Ant Occlum

NVIDIA H100
Keystone

3

Arm TrustZone TEE

• TrustZone was first introduced
in ARMv6 and provides a
hardware-based isolation of
two execution environments
• Normal World and Secure World

• TrustZone ensure isolation two
words through hardware
extensions (e.g. TZASC and TZPC)

• Since Armv8.4, TrustZone was
extended to support
virtualization (Secure EL2)

4

TrustZone System Vulnerabi l i t ies

More than 207 vulnerabilities# have been identified in
Arm TrustZone system* over the past five years

TEE
System

CVE
Databases

SVE
Databases

Scientific
Publications

Miscellaneous
Reports

Source
Code

Total

Qualcomm TEE 92 - - 7 - 99

Trustonic TEE 5 17 - 4 - 26
Huawei TEE 3 - - 1 - 4
Nvidia TEE 10 - - - - 10
Linaro TEE 3 - - 1 36 40

Other 11 - 15 2 - 28
Total 124 17 15 15 36 207
#Sok: Understanding the prevailing security vulnerabilities in trustzone-assisted tee systems. In IEEE SP, 2020

* We use ’TrustZone systems’ to refer to the software in Secure
World, including trusted apps, trusted OS and secure hypervisor (S.EL0 – S.EL2)

5

Motivation: TrustZone Inspection

More than 207 vulnerabilities have been
identified in Arm TrustZone system over
the past five years

It's crucial to add extra security
forensics* to check TEE systems

TEE
System

CVE
Databases

SVE
Databases

Scientific
Publications

Miscellaneous
Reports

Source
Code

Total

Qualcomm TEE 92 - - 7 - 99

Trustonic TEE 5 17 - 4 - 26
Huawei TEE 3 - - 1 - 4
Nvidia TEE 10 - - - - 10
Linaro TEE 3 - - 1 36 40

Other 11 - 15 2 - 28
Total 124 17 15 15 36 207
#Sok: Understanding the prevailing security vulnerabilities in trustzone-assisted tee systems. In IEEE SP, 2020

*Capture snapshots of target for backend analysis,
letting the platform owner for incident response or periodic security scans

6

Exist ing Approaches Presents L imitations

External methods for
TrustZone are hindered by
TrustZone’s protection.

1. Out-TEE

TrustZone hardware
features (e.g., TZASC) are
insufficient to protect a
inspection system

3. TZASC

Internal solutions within
Secure World cannot be
isolated from the
compromised TrustZone

2. In-TEE

7

Arm Confidential Compute Architecture (CCA)

• CCA was announced in March 2021
• Introduced as supplement to Armv9.2-A

• CCA introduces a set of new hardware
features
• New isolation boundaries for third party

confidential computing (Root and Realm
Worlds)

• Dynamic assignment of memory to
different worlds (Granule Protection
Check, GPC)

8

Towards Secure Forensics on Compromised TrustZone

Root

EL3

H/WRME PMU ETE GIC

EL2

EL1

EL0
Normal SecureSecure

① Memory
Acquisition

Agent

Scrutinizer Monitor

Secure Hypervisor

TOS Forwarding

Isolation Control② Memory Traps ③ Instruction Tracing

Client
E2EE

E2EE

Host

TA TA

• SCRUTINIZER based on Arm CCA Platform
• Targeting the TrustZone software in Secure World

• SCRUTINIZER Monitor in the EL3 Root World protecting the components
from compromised TrustZone

9

Memory Acquisit ion in Root World?

Hypervisor SPM

Host OS

Apps TA

TOS

TA

Normal World Secure World

EL0

EL1

EL2

EL3 Monitor

Apps

Root World

• Challenge 1: Memory acquisition in
the Root World enlarges the Root
World codebase.

• Challenge 2: Acquiring Secure World
memory from the Root World is
slower than native access.

10

Solution 1: Memory Acquisit ion with TCB Optimization

• Codebase Reduction: Decouple the
memory acquisition functionality from
the Monitor and integrate it into an
agent
• Reduce the expanded codebase of Monitor
• Ensure that the Root World’s size does not

grow with the agent’s code
• Isolation Control for Agent: Establish an

agent execution domain within Secure
World via dual-GPTs isolation
• Ensure that the agent executes within

Secure World yet remains isolated from
compromised TrustZone systems

Scrutinizer Monitor

Extract

Agent
Memory

Agent
Secure Hypervisor

TOS

TA TA

 Secure PASNo-access Root PAS
Agent Core with GPTAg
Other Cores with GPTM

CPU Cores

Agent
Memory

GPTAg

GPTM

11

Solution 2: Memory Acquisit ion with Performance
Optimization

Grafting Mechanism: Copy the first-level
page table, i.e., the target’s L0 table, to the
agent’s memory, and directly graft the
remaining levels

• Agent’s mappings are inaccessible to
TrustZone systems

• Enable efficient access to the target memory
without building additional operations
(VA_TZ → PA_TZ → VA_Ag)

…

1
0

511

L0 L1 L2 PA

0

…

1

511

Agent TTBR
L0Ag

Target TTBR

… … …

L1 L2 PA
… … …

Page mapping Grafting

Copy & the execution permissions are removed

 Target mappings
Local mappings

L1 L2 PA

Since agent run in the Secure EL1/EL2, enabling it to have the capability to directly use the
TrustZone virtual address space (VA_TZ) for reading memory (infeasible at EL3 Monitor)

12

Memory Access Traps

Root

EL3

H/WRME PMU ETE GIC

EL2

EL1

EL0
Normal SecureSecure

① Memory
Acquisition

Agent

Scrutinizer Monitor

Secure Hypervisor

TOS Forwarding

Isolation Control② Memory Traps ③ Instruction
Tracing

Client
E2EE

E2EE

Host

TA TA

Three secure forensic functions with several standard hardware features (RME,
PMU, ETE, GIC):
① Memory Acquisition; ②Memory Access Traps; ③ Instruction Tracing

13

GPC-based Memory Access Traps

• When RME-enforced GPC verification fails, a Granule Protection Fault (GPF)
is generated to prevent unauthorized access. This fault can be rerouted to
the EL3 Root world.

• How to provide fine-grained memory access traps?
• The granule protection information (GPI) of GPT corresponds to a page (typically 4KB)

is coarse.

14

Fine-grained Memory Access Traps

mov x0，x2

add x0，sp，#0

…

0x2000

Target PAS No-access

0x2004

0x3000

① Unset Access;
PMI Deactived

② Enable Access;
PMI-trap Actived

Monitoring Address

④ Re-unset Access;
 PMI Deactived

③ Enable Access;
Target Address Match

Program Counter

add x0，sp，#0

…

0x2004

0x2008

0x3000

…

0x2008

mov x0，x2

…
0x2000

… …

add x0，sp，#0

…

0x2004

0x2008

0x3000

mov x0，x2

…
0x2000

…

mov x0，x2

add x0，sp，#0

…

0x2000

0x2004

0x3000

…

0x2008

…

mov x1，x0 mov x1，x0 mov x1，x0 mov x1，x0

• Fine-grained improvement: Leverage PMU and GIC hardware features to
enhance GPC-based traps to instruction-level granularity

• Isolation control for PMU and GIC: MMIO isolation and system register
restriction

15

Evaluation

*NINJA: Towards Transparent Tracing and Debugging on ARM, USENIX Security 2017

Compared to EL3-based
memory acquisition
(NINJA*), SCRUTINIZER
is improved by 20x

SCRUTINIZER’s memory
trap overhead is
reduced by 49.5%

• Functional Prototype: Arm FVP Base RevC-2xAEMvA with RME enabled
• Performance Evaluation based on the Armv8 Juno R2 Board with GPT-

analogue + FVP instruction counts

16

Conclusions

•SCRUTINIZER
• Provides a secure forensics framework for compromised TrustZone
• Leverage the hardware features of Arm CCA to create an isolated

forensic environment
• Optimizes the TCB and performance
• Ensures platform compatibility

Source Code Available at https://github.com/Compass-All/SCRUTINIZER

https://github.com/Compass-All/SCRUTINIZER

