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• Input: Client secret shares the data & Server secret shares the weights.

• Protocol Execution: Communicate & compute in multiple rounds.

• Output: Client get the inference result.



Function Secret Sharing [BGI19]
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• Offline Stage: Dealer generates FSS keys

• Online Stage: Parties jointly evaluate the key on the public input



Existing FSS is not Sufficient 

Dealer-based FSS is unrealistic and weakens security guarantees.

• Finding a trusted party is difficult.

• A colluded dealer may compromise the privacy of honest party.

Challenge 1:

Existing dealer-less FSS have limited practicality.

• Unable to support both arithmetic input and output.

• Potential  performance bottleneck incurred by bit length.

Challenge 2:



Our Contributions

• Propose the dealer-less FSS scheme,

including arithmetic DPF and DCF.

• FSS-based building blocks and complex

function evaluation.

• Open source implementation, achieving

27∼184× communication improvement

and 1.1∼14× runtime improvement
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Recalling Dealer-based DPF Key Generation

• Root Seed: Determine the pseudorandom GGM tree.

• Corrections words: Correct the tree to satisfy DPF invariant [BGI16].

DPF key components:



Construction of Dealer-less DPF

• Traversing the GGM tree



Construction of Dealer-less DPF

• Traversing the GGM tree

• Problem: The special path is unknown to parties.



Construction of Dealer-less DPF

• Traversing the GGM tree

• Problem: The special path is unknown to parties.

• Solution: Sum all the left (right) nodes, off-path nodes can be cancelled.
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• Supporting arithmetic output

• Problem: Securely  calculate the extra correction word.
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Construction of Dealer-less DPF (cont.)

• Supporting arithmetic output

• Problem: Securely  calculate the extra correction word.
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Construction of Dealer-less DPF (cont.)

• Supporting arithmetic output

• Problem: Securely  calculate the extra correction word.

(−1)𝑡1∙ (𝛽 − 𝑟0 + 𝑟1)

• Solution: As 𝑡1 = 0 or 1, determining which party holds the larger value suffices. 
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Construction of Dealer-less DCF

• Generating extra comparison correction words [BCG21] via 2PC

• Computing 𝑉𝐶𝑊 and 𝑉𝛼:

• Optimization: Reduced multiplexer.

• Local Compute:

• As Keep=Left or Keep=Right, the above equals:

• Just locally subtract previous multiplexer output to get what we need now.
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• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

• Offset version: 𝑦 = 1{𝑥 + 𝑟 = 𝑘 + 𝑟}
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Building Blocks

• Truncation-and-reduce: given 𝑥 , output 𝑦 where 𝑦 = 𝑥 ≫ 𝑠 ∈ ℤ2𝑙−𝑠

• Drop the lower bit, check potential overflow. 

• Interval containment: given 𝑥 , output 𝑦 where 𝑦[𝑖] = 1 𝑥 ∈ 𝐼𝑖
• For each interval, check compare with the endpoints.
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• Digit Decomposition: given 𝑥 , output 𝑥𝑘−1, … , 𝑥0 satisfying 𝑥 = 𝑥𝑘−1|| … ||𝑥0
• Local decompose, check potential overflow. 
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Building Blocks (cont.)

• Digit Decomposition: given 𝑥 , output 𝑥𝑘−1, … , 𝑥0 satisfying 𝑥 = 𝑥𝑘−1|| … ||𝑥0
• Local decompose, check potential overflow. 

• Overflow incurred by:

• Current segment overflow.

• Carryover from preceding segment.

𝑥 0

𝑥 1

CMP: 2𝑠 − 1
EQ: 2𝑠 − 1

MSB LSB𝑠2𝑠𝑛𝑠

MSB LSB𝑠2𝑠𝑛𝑠

For each segment:
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• Lookup Table

• Public table: Invoking equality test for every position.

• Private table: Generate equality test key with payload being the table entry.

• Spline polynomial approximation

• Generating coefficients from σ𝑎𝑖 ∙ 𝑥
𝑖 to σ𝑎𝑖 ∙ (𝑥 − 𝑟)𝑖 via secure multiplication.

• Fetching the coefficient for the spline.

• Optimization: We do not need costly interval containment here.

0 2𝑙 − 1𝑘1 𝑘2𝑛−2𝑘0

𝑥 Which interval?

𝐼1 𝐼2 𝐼… 𝐼2𝑛 𝑥=𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏

𝑛 bit

…

INDEX COEFS

…

Lookup

Fetch!

…

𝑎𝑎𝑎𝑎 𝑎𝑖…
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• Trigonometric evaluation

• Observation-1: Leveraging periodic properties to reduce bit length.

• Range reduction: From full domain to one period.

• Periodic Reflection: From one period to ¼ period.

• Observation-2: Leveraging sum-to-product identity.

• Specialized Transformation: Digit decomposition applicable.
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• Trigonometric evaluation

• Observation-1: Leveraging periodic properties to reduce bit length.

• Range reduction: From full domain to one period.

• Periodic Reflection: From one period to ¼ period.

• Observation-2: Leveraging sum-to-product identity.

• Specialized Transformation: Digit decomposition applicable.

sin 𝑥 + 𝑦

sin 𝑥 cos 𝑦
+cos 𝑥 sin(𝑦)

01010 11110

01010
11110

01010
11110

Target

Index

P0 P1

LUT-based

෍𝑎𝑖𝑥
𝑖

Approximation-based
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Evaluation

• Experimental results of case studies on proximity test and biometric authentication



Thank You

Pengzhi Xing, p.xing@std.uestc.edu.cn


