Distributed Function Secret Sharing and Applications

Pengzhi Xing, Hongwei Li, Meng Hao, Hanxiao Chen, Jia Hu, Dongxiao Liu

Model Inference via Secure Multiparty Computation

- Input: Client secret shares the data & Server secret shares the weights.
- **Protocol Execution**: Communicate & compute in multiple rounds.
- **Output**: Client get the inference result.

Function Secret Sharing [BGI19]

- Offline Stage: Dealer generates FSS keys
- Online Stage: Parties jointly evaluate the key on the public input

Existing FSS is not Sufficient

Challenge 1:

Dealer-based FSS is unrealistic and weakens security guarantees.

- Finding a trusted party is difficult.
- A colluded dealer may compromise the privacy of honest party.

Challenge 2:

Existing dealer-less FSS have limited practicality.

- Unable to support both arithmetic input and output.
- Potential performance bottleneck incurred by bit length.

Our Contributions

- Propose the **dealer-less FSS** scheme, including arithmetic DPF and DCF.
- FSS-based building blocks and complex function evaluation.
- Open source implementation, achieving 27~184× communication improvement and 1.1~14× runtime improvement

Recalling Dealer-based DPF Key Generation

DPF key components:

- **Root Seed**: Determine the pseudorandom GGM tree.
- Corrections words: Correct the tree to satisfy DPF invariant [BGI16].

• Traversing the GGM tree

- Traversing the GGM tree
 - **Problem**: The *special path* is unknown to parties.

- Traversing the GGM tree
 - Problem: The *special path* is unknown to parties.
 - Solution: Sum all the left (right) nodes, off-path nodes can be cancelled.

• Supporting arithmetic output

- Supporting arithmetic output
 - **Problem:** Securely calculate the extra correction word.

$$(-1)^{t_1} \cdot (\beta - r_0 + r_1)$$

- Supporting arithmetic output
 - **Problem:** Securely calculate the extra correction word.

$$(-1)^{t_1} (\beta - r_0 + r_1)$$

- Supporting arithmetic output
 - Problem: Securely calculate the extra correction word.

$$(-1)^{t_1} (\beta - r_0 + r_1)$$

• Solution: As $t_1 = 0$ or 1, determining which party holds the larger value suffices.

• Comparing two integers differs by 1

- Comparing two integers differs by 1
 - Extract the last two bits is enough.

$$\begin{array}{c} x_0 = \cdots \parallel h_0 \parallel l_0 \\ x_1 = \cdots \parallel h_1 \parallel l_1 \end{array} \longleftarrow \quad \text{Least Significant Bit} \end{array}$$

- Comparing two integers differs by 1
 - Extract the last two bits is enough.

$$x_0 = \dots \parallel h_0 \parallel l_0$$

$$x_1 = \dots \parallel h_1 \parallel l_1 \quad \leftarrow \quad \text{Least Significant Bit}$$

• The comparison can be categorized as:

$$1\{x_0 < x_1\} = \begin{cases} l_1 & \text{if } h_0 = h_1 & 00\&01, 10\&11 \\ \neg h_1 & \text{if } h_0 \neq h_1, h_0 = l_0 & 01\&10 \\ h_1 & \text{if } h_0 \neq h_1, h_0 \neq l_0 & 11\&00 \end{cases}$$

- Comparing two integers differs by 1
 - Extract the last two bits is enough.

$$x_0 = \dots \parallel h_0 \parallel l_0$$

$$x_1 = \dots \parallel h_1 \parallel l_1 \quad \leftarrow \quad \text{Least Significant Bit}$$

• The comparison can be categorized as:

$$1\{x_0 < x_1\} = \begin{cases} l_1 & \text{if } h_0 = h_1 & 00\&01, 10\&11 \\ \neg h_1 & \text{if } h_0 \neq h_1, h_0 = l_0 & 01\&10 \\ h_1 & \text{if } h_0 \neq h_1, h_0 \neq l_0 & 11\&00 \end{cases}$$

• Realized by **a single AND** gate:

 $l_1 \oplus (h_0 \oplus h_1) \land (l_1 \oplus h_1 \oplus l_0 \oplus h_0 \oplus 1)$

- Comparing two integers differs by 1
 - Extract the last two bits is enough.

$$x_0 = \dots \parallel h_0 \parallel l_0$$

$$x_1 = \dots \parallel h_1 \parallel l_1 \qquad \longleftarrow \qquad \text{Least Significant Bit}$$

• The comparison can be categorized as:

$$1\{x_0 < x_1\} = \begin{cases} l_1 & \text{if } h_0 = h_1 & 00\&01, 10\&11 \\ \neg h_1 & \text{if } h_0 \neq h_1, h_0 = l_0 & 01\&10 \\ h_1 & \text{if } h_0 \neq h_1, h_0 \neq l_0 & 11\&00 \end{cases}$$

• Realized by **a single AND** gate:

 $l_1 \oplus (h_0 \oplus h_1) \land (l_1 \oplus h_1 \oplus l_0 \oplus h_0 \oplus 1)$

• Generating extra comparison correction words [BCG21] via 2PC

- Generating extra comparison correction words [BCG21] via 2PC
 - Computing V_{CW} and V_{α} :

$$V_{CW} \coloneqq (-1)^{t_1^{(i-1)}} (C_{\mathbb{G}}(v_1^{\text{Lose}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) - V_{\alpha} + \alpha[i] \cdot \beta)$$

$$V_{\alpha} \coloneqq C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}}) + \alpha[i] \cdot \beta)$$

- Generating extra comparison correction words [BCG21] via 2PC
 - Computing V_{CW} and V_{α} :

$$V_{CW} \coloneqq (-1)^{t_1^{(i-1)}} (C_{\mathbb{G}}(v_1^{\text{Lose}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) - V_{\alpha} + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{CCMP}} \qquad \mathcal{F}_{\text{MUX}} \qquad \mathcal{F}_{\text{MUL}}$$

$$V_{\alpha} \coloneqq C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}}) + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{MUX}} \qquad (\mathcal{F}_{\text{MUX}}) \qquad (\mathcal{F}_{\text{MUL}})$$

- Generating extra comparison correction words [BCG21] via 2PC
 - Computing V_{CW} and V_{α} :

$$V_{CW} \coloneqq (-1)^{t_1^{(i-1)}} (C_{\mathbb{G}}(v_1^{\text{Lose}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) - V_{\alpha} + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{CCMP}} \qquad \mathcal{F}_{\text{MUX}} \qquad \mathcal{F}_{\text{MUL}}$$

$$V_{\alpha} \coloneqq C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}}) + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{MUX}} \qquad (\mathcal{F}_{\text{MUX}}) \qquad (\mathcal{F}_{\text{MUL}})$$

• Optimization: Reduced multiplexer.

- Generating extra comparison correction words [BCG21] via 2PC
 - Computing V_{CW} and V_{α} :

$$V_{CW} \coloneqq (-1)^{t_1^{(i-1)}} (C_{\mathbb{G}}(v_1^{\text{Lose}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) - V_{\alpha} + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{CCMP}} \qquad \mathcal{F}_{\text{MUX}} \qquad \mathcal{F}_{\text{MUL}}$$

$$V_{\alpha} \coloneqq C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}}) + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{MUX}} \qquad (\mathcal{F}_{\text{MUX}}) \qquad (\mathcal{F}_{\text{MUL}})$$

- Optimization: Reduced multiplexer.
 - Local Compute: $-C_{\mathbb{G}}(v_0^{\text{Left}}) C_{\mathbb{G}}(v_0^{\text{Right}}) + C_{\mathbb{G}}(v_1^{\text{Left}}) + C_{\mathbb{G}}(v_1^{\text{Right}})$

- Generating extra comparison correction words [BCG21] via 2PC
 - Computing V_{CW} and V_{α} :

$$V_{CW} \coloneqq (-1)^{t_1^{(i-1)}} (C_{\mathbb{G}}(v_1^{\text{Lose}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) - V_{\alpha} + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{CCMP}} \qquad \mathcal{F}_{\text{MUX}} \qquad \mathcal{F}_{\text{MUL}}$$

$$V_{\alpha} \coloneqq C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}}) + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{MUX}} \qquad (\mathcal{F}_{\text{MUX}}) \qquad (\mathcal{F}_{\text{MUL}})$$

- Optimization: Reduced multiplexer.
 - Local Compute: $-C_{\mathbb{G}}(v_0^{\text{Left}}) C_{\mathbb{G}}(v_0^{\text{Right}}) + C_{\mathbb{G}}(v_1^{\text{Left}}) + C_{\mathbb{G}}(v_1^{\text{Right}})$
 - As *Keep=Left* or *Keep=Right*, the above equals:

- Generating extra comparison correction words [BCG21] via 2PC
 - Computing V_{CW} and V_{α} :

$$V_{CW} \coloneqq (-1)^{t_1^{(i-1)}} (C_{\mathbb{G}}(v_1^{\text{Lose}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) - V_{\alpha} + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{CCMP}} \qquad \mathcal{F}_{\text{MUX}} \qquad \mathcal{F}_{\text{MUL}}$$

$$V_{\alpha} \coloneqq C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}}) + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{MUX}} \qquad (\mathcal{F}_{\text{MUX}}) \qquad (\mathcal{F}_{\text{MUL}})$$

- Optimization: Reduced multiplexer.
 - Local Compute: $-C_{\mathbb{G}}(v_0^{\text{Left}}) C_{\mathbb{G}}(v_0^{\text{Right}}) + C_{\mathbb{G}}(v_1^{\text{Left}}) + C_{\mathbb{G}}(v_1^{\text{Right}})$
 - As Keep = Left or Keep = Right, the above equals: $C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}})$

- Generating extra comparison correction words [BCG21] via 2PC
 - Computing V_{CW} and V_{α} :

$$V_{CW} \coloneqq (-1)^{t_1^{(i-1)}} (C_{\mathbb{G}}(v_1^{\text{Lose}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) - V_{\alpha} + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{CCMP}} \qquad \mathcal{F}_{\text{MUX}} \qquad \mathcal{F}_{\text{MUL}}$$

$$V_{\alpha} \coloneqq C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}}) + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{MUX}} \qquad (\mathcal{F}_{\text{MUX}}) \qquad (\mathcal{F}_{\text{MUL}})$$

- Optimization: Reduced multiplexer.
 - Local Compute: $-C_{\mathbb{G}}(v_0^{\text{Left}}) C_{\mathbb{G}}(v_0^{\text{Right}}) + C_{\mathbb{G}}(v_1^{\text{Left}}) + C_{\mathbb{G}}(v_1^{\text{Right}})$
 - As Keep = Left or Keep = Right, the above equals: $C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}})$

- Generating extra comparison correction words [BCG21] via 2PC
 - Computing V_{CW} and V_{α} :

$$V_{CW} \coloneqq (-1)^{t_1^{(i-1)}} (C_{\mathbb{G}}(v_1^{\text{Lose}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) - V_{\alpha} + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{CCMP}} \qquad \mathcal{F}_{\text{MUX}} \qquad \mathcal{F}_{\text{MUL}}$$

$$V_{\alpha} \coloneqq C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}}) + \alpha[i] \cdot \beta)$$

$$\mathcal{F}_{\text{MUX}} \qquad (\mathcal{F}_{\text{MUX}}) \qquad (\mathcal{F}_{\text{MUL}})$$

- Optimization: Reduced multiplexer.
 - Local Compute: $-C_{\mathbb{G}}(v_0^{\text{Left}}) C_{\mathbb{G}}(v_0^{\text{Right}}) + C_{\mathbb{G}}(v_1^{\text{Left}}) + C_{\mathbb{G}}(v_1^{\text{Right}})$
 - As Keep = Left or Keep = Right, the above equals: $C_{\mathbb{G}}(v_0^{\text{Keep}}) - C_{\mathbb{G}}(v_1^{\text{Keep}}) - C_{\mathbb{G}}(v_0^{\text{Lose}}) + C_{\mathbb{G}}(v_1^{\text{Lose}})$
 - Just locally subtract previous multiplexer output to get what we need now.

- Equality test: given $\langle x \rangle$, output $\langle y \rangle$ where $y = 1\{x = k\}$
 - Offset version: $y = 1\{x + r = k + r\}$

- Equality test: given $\langle x \rangle$, output $\langle y \rangle$ where $y = 1\{x = k\}$
 - Offset version: $y = 1\{x + r = k + r\}$

• Equality test: given $\langle x \rangle$, output $\langle y \rangle$ where $y = 1\{x = k\}$

• Comparison: given $\langle x \rangle$, output $\langle y \rangle$ where $y = 1\{x < k\}$

- Comparison: given $\langle x \rangle$, output $\langle y \rangle$ where $y = 1\{x < k\}$
 - Problem: an overflowed k + r lead to incorrect result!

- **Comparison:** given $\langle x \rangle$, output $\langle y \rangle$ where $y = 1\{x < k\}$
 - Problem: an overflowed k + r lead to incorrect result!

- **Comparison:** given $\langle x \rangle$, output $\langle y \rangle$ where $y = 1\{x < k\}$
 - Problem: an overflowed k + r lead to incorrect result!

- **Comparison:** given $\langle x \rangle$, output $\langle y \rangle$ where $y = 1\{x < k\}$
 - Problem: an overflowed k + r lead to incorrect result!

• Equality test: given $\langle x \rangle$, output $\langle y \rangle$ where $y = 1\{x = k\}$

- **Comparison:** given $\langle x \rangle$, output $\langle y \rangle$ where $y = 1\{x < k\}$
 - Problem: an overflowed k + r lead to incorrect result!

• Solution: Check if k > k + r at offline stage.

• **Truncation-and-reduce:** given $\langle x \rangle$, output $\langle y \rangle$ where $y = x \gg s \in \mathbb{Z}_{2^{l-s}}$

- **Truncation-and-reduce:** given $\langle x \rangle$, output $\langle y \rangle$ where $y = x \gg s \in \mathbb{Z}_{2^{l-s}}$
 - Drop the lower bit, check potential overflow.

- **Truncation-and-reduce:** given $\langle x \rangle$, output $\langle y \rangle$ where $y = x \gg s \in \mathbb{Z}_{2^{l-s}}$
 - Drop the lower bit, check potential overflow.

- **Truncation-and-reduce:** given $\langle x \rangle$, output $\langle y \rangle$ where $y = x \gg s \in \mathbb{Z}_{2^{l-s}}$
 - Drop the lower bit, check potential overflow.

• Interval containment: given $\langle x \rangle$, output $\overline{\langle y \rangle}$ where $y[i] = 1\{x \in I_i\}$

- **Truncation-and-reduce:** given $\langle x \rangle$, output $\langle y \rangle$ where $y = x \gg s \in \mathbb{Z}_{2^{l-s}}$
 - Drop the lower bit, check potential overflow.

- Interval containment: given $\langle x \rangle$, output $\overline{\langle y \rangle}$ where $y[i] = 1\{x \in I_i\}$
 - For each interval, check compare with the endpoints.

CMP:
$$k_0$$
 CMP: k_1 CMP: k_n
 \downarrow \downarrow \downarrow \downarrow
 0 k_0 k_1 k_n $2^l - 1$

• **Digit Decomposition:** given $\langle x \rangle$, output $\{x_{k-1}, \dots, x_0\}$ satisfying $x = x_{k-1} || \dots || x_0$

- **Digit Decomposition:** given $\langle x \rangle$, output $\{x_{k-1}, \dots, x_0\}$ satisfying $x = x_{k-1} || \dots || x_0$
 - Local decompose, check potential overflow.

- **Digit Decomposition:** given $\langle x \rangle$, output $\{x_{k-1}, \dots, x_0\}$ satisfying $x = x_{k-1} || \dots || x_0$
 - Local decompose, check potential overflow.
 - Overflow incurred by:
 - Current segment overflow.
 - Carryover from preceding segment.

- **Digit Decomposition:** given $\langle x \rangle$, output $\{x_{k-1}, \dots, x_0\}$ satisfying $x = x_{k-1} || \dots || x_0$
 - Local decompose, check potential overflow.
 - Overflow incurred by:
 - Current segment overflow.
 - Carryover from preceding segment.

- **Digit Decomposition:** given $\langle x \rangle$, output $\{x_{k-1}, \dots, x_0\}$ satisfying $x = x_{k-1} || \dots || x_0$
 - Local decompose, check potential overflow.
 - Overflow incurred by:
 - Current segment overflow.
 - Carryover from preceding segment.

• Lookup Table

- Lookup Table
 - Public table: Invoking equality test for every position.
 - Private table: Generate equality test key with payload being the table entry.

- Lookup Table
 - Public table: Invoking equality test for every position.
 - Private table: Generate equality test key with payload being the table entry.
- Spline polynomial approximation

- Lookup Table
 - Public table: Invoking equality test for every position.
 - Private table: Generate equality test key with payload being the table entry.
- Spline polynomial approximation
 - Generating coefficients from $\sum a_i \cdot x^i$ to $\sum a_i \cdot (x r)^i$ via secure multiplication.

- Lookup Table
 - Public table: Invoking equality test for every position.
 - Private table: Generate equality test key with payload being the table entry.
- Spline polynomial approximation
 - Generating coefficients from $\sum a_i \cdot x^i$ to $\sum a_i \cdot (x r)^i$ via secure multiplication.
 - Fetching the coefficient for the spline.

- Lookup Table
 - Public table: Invoking equality test for every position.
 - Private table: Generate equality test key with payload being the table entry.
- Spline polynomial approximation
 - Generating coefficients from $\sum a_i \cdot x^i$ to $\sum a_i \cdot (x r)^i$ via secure multiplication.
 - Fetching the coefficient for the spline.
 - Optimization: We do not need costly interval containment here.

- Lookup Table
 - Public table: Invoking equality test for every position.
 - Private table: Generate equality test key with payload being the table entry.
- Spline polynomial approximation
 - Generating coefficients from $\sum a_i \cdot x^i$ to $\sum a_i \cdot (x r)^i$ via secure multiplication.
 - Fetching the coefficient for the spline.
 - Optimization: We do not need costly interval containment here.

• Trigonometric evaluation

- Trigonometric evaluation
 - Observation-1: Leveraging periodic properties to reduce bit length.
 - Range reduction: From *full domain* to *one period*.
 - Periodic Reflection: From *one period* to ¹/₄ *period*.

- Trigonometric evaluation
 - Observation-1: Leveraging periodic properties to reduce bit length.
 - Range reduction: From *full domain* to *one period*.
 - Periodic Reflection: From *one period* to ¹/₄ *period*.
 - Observation-2: Leveraging *sum-to-product* identity.
 - Specialized Transformation: Digit decomposition applicable.

- Trigonometric evaluation
 - Observation-1: Leveraging periodic properties to reduce bit length.
 - Range reduction: From *full domain* to *one period*.
 - Periodic Reflection: From *one period* to ¹/₄ *period*.
 - Observation-2: Leveraging *sum-to-product* identity.
 - Specialized Transformation: Digit decomposition applicable.

Evaluation

• Experimental results of dealer-less DPF and DCF

Protocol	Params.	Time LAN		Time WAN		Comm.	
	ℓ	Gen(s)	$Eval(\mu s)$	Gen(s)	$Eval(\mu s)$	Gen(MB)	Eval(B)
Π_{DPF}	8	0.050	0.577	1.288	0.615	0.046	0
	16	0.092	1.150	2.450	1.151	0.080	0
	18	0.124	1.278	2.780	1.265	0.088	0
Π_{DCF}	8	0.085	1.818	2.417	1.866	0.145	0
	16	0.180	3.357	4.625	3.505	0.277	0
	18	0.280	3.739	5.247	3.718	0.310	0

Evaluation

• Experimental results of trigonometric evaluation

Protocol	Impl	Runt	ime	Comm.	Error
11010001	mpi.	LAN (ms)	WAN (s)	(KB)	(ULP)
	Ours (LUT)	0.612	0.164	0.050	1.477
Па	Ours (Approx)	0.329	0.133	0.035	1.387
IISin	MP-SPDZ	0.941	0.753	1.560	0.629
	EzPC-Secfloat	1.614	0.380	26.014	0.318
	Ours (LUT)	0.612	0.164	0.050	0.360
Π	Ours (Approx)	0.329	0.133	0.035	1.117
IICos	MP-SPDZ	0.892	0.713	1.528	1.070
	EzPC-Secfloat	1.625	0.382	26.080	0.318
	Ours (LUT)	0.307	0.092	0.021	0
Π_	Ours (Approx)	0.309	0.133	0.025	1.053
11 _{Tan}	MP-SPDZ	1.761	1.357	3.840	5.088
	EzPC-Secfloat	2.185	0.533	36.043	0.244

Evaluation

• Experimental results of case studies on *proximity test* and *biometric authentication*

Protocol	Impl.	Runt	ime	Comm.	Error
	1	LAN (ms)	WAN (S)	(KB)	(ULP)
	Ours (LUT)	1.429	0.369	0.084	0
Biometric	Ours (Approx)	1.252	0.530	0.100	2.549
Authentication	MP-SPDZ	5.977	5.339	15.360	3.707
	EzPC-Secfloat	9.369	2.372	165.293	2.370
	Ours (LUT)	2.409	0.697	0.220	2.094
Proximity	Ours (Approx)	1.394	0.572	0.160	0.926
Test	MP-SPDZ	1.977	1.694	9.424	2.266
	EzPC-Secfloat	8.210	2.030	173.322	6.299

Thank You

Pengzhi Xing, p.xing@std.uestc.edu.cn