
Distributed Function Secret Sharing and Applications

Pengzhi Xing, Hongwei Li, Meng Hao, Hanxiao Chen,

Jia Hu, Dongxiao Liu

Private

Weight

Private

Data

Client Server

Model Inference via Secure Multiparty Computation

MPC Protocols

Inference

Result

• Input: Client secret shares the data & Server secret shares the weights.

• Protocol Execution: Communicate & compute in multiple rounds.

• Output: Client get the inference result.

Function Secret Sharing [BGI19]

Offline

Phase

Online

Phase

𝑓(𝑥)

FSS Keys
Private

Function
Parties

𝑘0

𝑘1

𝑥

Public

Input
Shared

Output

𝑦 0

𝑦 1

• Offline Stage: Dealer generates FSS keys

• Online Stage: Parties jointly evaluate the key on the public input

Existing FSS is not Sufficient

Dealer-based FSS is unrealistic and weakens security guarantees.

• Finding a trusted party is difficult.

• A colluded dealer may compromise the privacy of honest party.

Challenge 1:

Existing dealer-less FSS have limited practicality.

• Unable to support both arithmetic input and output.

• Potential performance bottleneck incurred by bit length.

Challenge 2:

Our Contributions

• Propose the dealer-less FSS scheme,

including arithmetic DPF and DCF.

• FSS-based building blocks and complex

function evaluation.

• Open source implementation, achieving

27∼184× communication improvement

and 1.1∼14× runtime improvement

Distributed

Point Function

Distributed

Comparison Function

(1) Basic Function Secret Sharing Scheme

Lookup

Table

Spline

Approximation

Trigonometric

Function

(3) Applications

Truncation
Digit

Decomposition

Interval

Containment

(2) Building Blocks

Equality

Test
Comparison

Construct

Support

Recalling Dealer-based DPF Key Generation

• Root Seed: Determine the pseudorandom GGM tree.

• Corrections words: Correct the tree to satisfy DPF invariant [BGI16].

DPF key components:

Construction of Dealer-less DPF

• Traversing the GGM tree

Construction of Dealer-less DPF

• Traversing the GGM tree

• Problem: The special path is unknown to parties.

Construction of Dealer-less DPF

• Traversing the GGM tree

• Problem: The special path is unknown to parties.

• Solution: Sum all the left (right) nodes, off-path nodes can be cancelled.

Construction of Dealer-less DPF (cont.)

• Supporting arithmetic output

Construction of Dealer-less DPF (cont.)

• Supporting arithmetic output

• Problem: Securely calculate the extra correction word.

(−1)𝑡1∙ (𝛽 − 𝑟0 + 𝑟1)

Construction of Dealer-less DPF (cont.)

• Supporting arithmetic output

• Problem: Securely calculate the extra correction word.

(−1)𝑡1∙ (𝛽 − 𝑟0 + 𝑟1)

Construction of Dealer-less DPF (cont.)

• Supporting arithmetic output

• Problem: Securely calculate the extra correction word.

(−1)𝑡1∙ (𝛽 − 𝑟0 + 𝑟1)

• Solution: As 𝑡1 = 0 or 1, determining which party holds the larger value suffices.

Efficient Constraint Comparison

Efficient Constraint Comparison

• Comparing two integers differs by 1

Efficient Constraint Comparison

• Comparing two integers differs by 1

• Extract the last two bits is enough.

𝑥0 = ⋯ ∥ ℎ0 ∥ 𝑙0
𝑥1 = ⋯ ∥ ℎ1 ∥ 𝑙1

Least Significant Bit

Efficient Constraint Comparison

• Comparing two integers differs by 1

• Extract the last two bits is enough.

𝑥0 = ⋯ ∥ ℎ0 ∥ 𝑙0
𝑥1 = ⋯ ∥ ℎ1 ∥ 𝑙1

• The comparison can be categorized as:

1 𝑥0 < 𝑥1 = ൞

𝑙1 if ℎ0 = ℎ1
¬ℎ1 if ℎ0 ≠ ℎ1, ℎ0= 𝑙0
ℎ1 if ℎ0 ≠ ℎ1, ℎ0≠ 𝑙0

00&01, 10&11
01&10
11&00

Least Significant Bit

Efficient Constraint Comparison

• Comparing two integers differs by 1

• Extract the last two bits is enough.

𝑥0 = ⋯ ∥ ℎ0 ∥ 𝑙0
𝑥1 = ⋯ ∥ ℎ1 ∥ 𝑙1

• The comparison can be categorized as:

1 𝑥0 < 𝑥1 = ൞

𝑙1 if ℎ0 = ℎ1
¬ℎ1 if ℎ0 ≠ ℎ1, ℎ0= 𝑙0
ℎ1 if ℎ0 ≠ ℎ1, ℎ0≠ 𝑙0

00&01, 10&11
01&10
11&00

• Realized by a single AND gate:

𝑙1⨁(ℎ0⨁ℎ1)⋀(𝑙1⨁ℎ1⨁𝑙0⨁ℎ0⨁1)

Least Significant Bit

Efficient Constraint Comparison

• Comparing two integers differs by 1

• Extract the last two bits is enough.

𝑥0 = ⋯ ∥ ℎ0 ∥ 𝑙0
𝑥1 = ⋯ ∥ ℎ1 ∥ 𝑙1

• The comparison can be categorized as:

1 𝑥0 < 𝑥1 = ൞

𝑙1 if ℎ0 = ℎ1
¬ℎ1 if ℎ0 ≠ ℎ1, ℎ0= 𝑙0
ℎ1 if ℎ0 ≠ ℎ1, ℎ0≠ 𝑙0

00&01, 10&11
01&10
11&00

• Realized by a single AND gate:

𝑙1⨁(ℎ0⨁ℎ1)⋀(𝑙1⨁ℎ1⨁𝑙0⨁ℎ0⨁1)

Least Significant Bit

Construction of Dealer-less DCF

• Generating extra comparison correction words [BCG21] via 2PC

Construction of Dealer-less DCF

• Generating extra comparison correction words [BCG21] via 2PC

• Computing 𝑉𝐶𝑊 and 𝑉𝛼:

𝑉𝐶𝑊 ≔ −1 𝑡1
𝑖−1

(𝐶𝔾 𝑣1
Lose − 𝐶𝔾 𝑣0

Lose − 𝑉𝛼 + 𝛼[𝑖] ∙ 𝛽)

𝑉𝛼 ≔ 𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose + 𝛼[𝑖] ∙ 𝛽)

Construction of Dealer-less DCF

• Generating extra comparison correction words [BCG21] via 2PC

• Computing 𝑉𝐶𝑊 and 𝑉𝛼:

ℱMUX (ℱMUX) (ℱMUL)

ℱCCMP ℱMULℱMUX

𝑉𝐶𝑊 ≔ −1 𝑡1
𝑖−1

(𝐶𝔾 𝑣1
Lose − 𝐶𝔾 𝑣0

Lose − 𝑉𝛼 + 𝛼[𝑖] ∙ 𝛽)

𝑉𝛼 ≔ 𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose + 𝛼[𝑖] ∙ 𝛽)

Construction of Dealer-less DCF

• Generating extra comparison correction words [BCG21] via 2PC

• Computing 𝑉𝐶𝑊 and 𝑉𝛼:

• Optimization: Reduced multiplexer.

ℱMUX (ℱMUX) (ℱMUL)

ℱCCMP ℱMULℱMUX

𝑉𝐶𝑊 ≔ −1 𝑡1
𝑖−1

(𝐶𝔾 𝑣1
Lose − 𝐶𝔾 𝑣0

Lose − 𝑉𝛼 + 𝛼[𝑖] ∙ 𝛽)

𝑉𝛼 ≔ 𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose + 𝛼[𝑖] ∙ 𝛽)

Construction of Dealer-less DCF

• Generating extra comparison correction words [BCG21] via 2PC

• Computing 𝑉𝐶𝑊 and 𝑉𝛼:

• Optimization: Reduced multiplexer.

• Local Compute:

ℱMUX (ℱMUX) (ℱMUL)

ℱCCMP ℱMULℱMUX

𝑉𝐶𝑊 ≔ −1 𝑡1
𝑖−1

(𝐶𝔾 𝑣1
Lose − 𝐶𝔾 𝑣0

Lose − 𝑉𝛼 + 𝛼[𝑖] ∙ 𝛽)

𝑉𝛼 ≔ 𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose + 𝛼[𝑖] ∙ 𝛽)

−𝐶𝔾 𝑣0
Left − 𝐶𝔾 𝑣0

Right
+ 𝐶𝔾 𝑣1

Left + 𝐶𝔾 𝑣1
Right

Construction of Dealer-less DCF

• Generating extra comparison correction words [BCG21] via 2PC

• Computing 𝑉𝐶𝑊 and 𝑉𝛼:

• Optimization: Reduced multiplexer.

• Local Compute:

• As Keep=Left or Keep=Right, the above equals:

ℱMUX (ℱMUX) (ℱMUL)

ℱCCMP ℱMULℱMUX

𝑉𝐶𝑊 ≔ −1 𝑡1
𝑖−1

(𝐶𝔾 𝑣1
Lose − 𝐶𝔾 𝑣0

Lose − 𝑉𝛼 + 𝛼[𝑖] ∙ 𝛽)

𝑉𝛼 ≔ 𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose + 𝛼[𝑖] ∙ 𝛽)

−𝐶𝔾 𝑣0
Left − 𝐶𝔾 𝑣0

Right
+ 𝐶𝔾 𝑣1

Left + 𝐶𝔾 𝑣1
Right

Construction of Dealer-less DCF

• Generating extra comparison correction words [BCG21] via 2PC

• Computing 𝑉𝐶𝑊 and 𝑉𝛼:

• Optimization: Reduced multiplexer.

• Local Compute:

• As Keep=Left or Keep=Right, the above equals:

ℱMUX (ℱMUX) (ℱMUL)

ℱCCMP ℱMULℱMUX

𝑉𝐶𝑊 ≔ −1 𝑡1
𝑖−1

(𝐶𝔾 𝑣1
Lose − 𝐶𝔾 𝑣0

Lose − 𝑉𝛼 + 𝛼[𝑖] ∙ 𝛽)

𝑉𝛼 ≔ 𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose + 𝛼[𝑖] ∙ 𝛽)

−𝐶𝔾 𝑣0
Left − 𝐶𝔾 𝑣0

Right
+ 𝐶𝔾 𝑣1

Left + 𝐶𝔾 𝑣1
Right

𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose

Construction of Dealer-less DCF

• Generating extra comparison correction words [BCG21] via 2PC

• Computing 𝑉𝐶𝑊 and 𝑉𝛼:

• Optimization: Reduced multiplexer.

• Local Compute:

• As Keep=Left or Keep=Right, the above equals:

ℱMUX (ℱMUX) (ℱMUL)

ℱCCMP ℱMULℱMUX

𝑉𝐶𝑊 ≔ −1 𝑡1
𝑖−1

(𝐶𝔾 𝑣1
Lose − 𝐶𝔾 𝑣0

Lose − 𝑉𝛼 + 𝛼[𝑖] ∙ 𝛽)

𝑉𝛼 ≔ 𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose + 𝛼[𝑖] ∙ 𝛽)

−𝐶𝔾 𝑣0
Left − 𝐶𝔾 𝑣0

Right
+ 𝐶𝔾 𝑣1

Left + 𝐶𝔾 𝑣1
Right

𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose

Construction of Dealer-less DCF

• Generating extra comparison correction words [BCG21] via 2PC

• Computing 𝑉𝐶𝑊 and 𝑉𝛼:

• Optimization: Reduced multiplexer.

• Local Compute:

• As Keep=Left or Keep=Right, the above equals:

• Just locally subtract previous multiplexer output to get what we need now.

ℱMUX (ℱMUX) (ℱMUL)

ℱCCMP ℱMULℱMUX

𝑉𝐶𝑊 ≔ −1 𝑡1
𝑖−1

(𝐶𝔾 𝑣1
Lose − 𝐶𝔾 𝑣0

Lose − 𝑉𝛼 + 𝛼[𝑖] ∙ 𝛽)

𝑉𝛼 ≔ 𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose + 𝛼[𝑖] ∙ 𝛽)

−𝐶𝔾 𝑣0
Left − 𝐶𝔾 𝑣0

Right
+ 𝐶𝔾 𝑣1

Left + 𝐶𝔾 𝑣1
Right

𝐶𝔾 𝑣0
Keep

− 𝐶𝔾 𝑣1
Keep

− 𝐶𝔾 𝑣0
Lose + 𝐶𝔾 𝑣1

Lose

Basic Building Blocks

Basic Building Blocks

• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

Basic Building Blocks

• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

• Offset version: 𝑦 = 1{𝑥 + 𝑟 = 𝑘 + 𝑟}

Basic Building Blocks

• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

• Offset version: 𝑦 = 1{𝑥 + 𝑟 = 𝑘 + 𝑟}

0 2𝑙 − 1𝑘 0 2𝑙 − 1𝑘 𝑘 + 𝑟

Basic Building Blocks

• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

• Offset version: 𝑦 = 1{𝑥 + 𝑟 = 𝑘 + 𝑟}

0 2𝑙 − 1𝑘

DPF: 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟

Basic Building Blocks

• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

• Offset version: 𝑦 = 1{𝑥 + 𝑟 = 𝑘 + 𝑟}

• Comparison: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 < 𝑘}

0 2𝑙 − 1𝑘

DPF: 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟

Basic Building Blocks

• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

• Offset version: 𝑦 = 1{𝑥 + 𝑟 = 𝑘 + 𝑟}

• Comparison: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 < 𝑘}

• Problem: an overflowed 𝑘 + 𝑟 lead to incorrect result!

0 2𝑙 − 1𝑘

DPF: 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟

Basic Building Blocks

• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

• Offset version: 𝑦 = 1{𝑥 + 𝑟 = 𝑘 + 𝑟}

• Comparison: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 < 𝑘}

• Problem: an overflowed 𝑘 + 𝑟 lead to incorrect result!

0 2𝑙 − 1𝑘

DPF: 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟𝑟 0 2𝑙 − 1𝑘𝑘 + 𝑟 𝑟

No overflow Overflow

Basic Building Blocks

• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

• Offset version: 𝑦 = 1{𝑥 + 𝑟 = 𝑘 + 𝑟}

• Comparison: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 < 𝑘}

• Problem: an overflowed 𝑘 + 𝑟 lead to incorrect result!

0 2𝑙 − 1𝑘

DPF: 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟𝑟 0 2𝑙 − 1𝑘𝑘 + 𝑟 𝑟

No overflow Overflow

Correct interval

Basic Building Blocks

• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

• Offset version: 𝑦 = 1{𝑥 + 𝑟 = 𝑘 + 𝑟}

• Comparison: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 < 𝑘}

• Problem: an overflowed 𝑘 + 𝑟 lead to incorrect result!

0 2𝑙 − 1𝑘

DPF: 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟𝑟 0 2𝑙 − 1𝑘𝑘 + 𝑟 𝑟

No overflow Overflow

Correct interval Correct interval Correct interval

Basic Building Blocks

• Equality test: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 = 𝑘}

• Offset version: 𝑦 = 1{𝑥 + 𝑟 = 𝑘 + 𝑟}

• Comparison: given 𝑥 , output 𝑦 where 𝑦 = 1{𝑥 < 𝑘}

• Problem: an overflowed 𝑘 + 𝑟 lead to incorrect result!

• Solution: Check if 𝑘 > 𝑘 + 𝑟 at offline stage.

0 2𝑙 − 1𝑘

DPF: 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟

0 2𝑙 − 1𝑘 𝑘 + 𝑟𝑟 0 2𝑙 − 1𝑘𝑘 + 𝑟 𝑟

No overflow Overflow

Correct interval Correct interval Correct interval

Building Blocks

Building Blocks

• Truncation-and-reduce: given 𝑥 , output 𝑦 where 𝑦 = 𝑥 ≫ 𝑠 ∈ ℤ2𝑙−𝑠

Building Blocks

• Truncation-and-reduce: given 𝑥 , output 𝑦 where 𝑦 = 𝑥 ≫ 𝑠 ∈ ℤ2𝑙−𝑠

• Drop the lower bit, check potential overflow.

MSB LSB𝑠

MSB LSB𝑠

𝑥 0

𝑥 1

Building Blocks

• Truncation-and-reduce: given 𝑥 , output 𝑦 where 𝑦 = 𝑥 ≫ 𝑠 ∈ ℤ2𝑙−𝑠

• Drop the lower bit, check potential overflow.

MSB LSB𝑠

MSB LSB𝑠

𝑥 0

𝑥 1

CMP: 2𝑠 − 1

Building Blocks

• Truncation-and-reduce: given 𝑥 , output 𝑦 where 𝑦 = 𝑥 ≫ 𝑠 ∈ ℤ2𝑙−𝑠

• Drop the lower bit, check potential overflow.

• Interval containment: given 𝑥 , output 𝑦 where 𝑦[𝑖] = 1 𝑥 ∈ 𝐼𝑖

MSB LSB𝑠

MSB LSB𝑠

𝑥 0

𝑥 1

CMP: 2𝑠 − 1

Building Blocks

• Truncation-and-reduce: given 𝑥 , output 𝑦 where 𝑦 = 𝑥 ≫ 𝑠 ∈ ℤ2𝑙−𝑠

• Drop the lower bit, check potential overflow.

• Interval containment: given 𝑥 , output 𝑦 where 𝑦[𝑖] = 1 𝑥 ∈ 𝐼𝑖
• For each interval, check compare with the endpoints.

0 2𝑙 − 1𝑘1 𝑘𝑛𝑘0

CMP: 𝑘𝑛CMP: 𝑘0 CMP: 𝑘1

MSB LSB𝑠

MSB LSB𝑠

𝑥 0

𝑥 1

CMP: 2𝑠 − 1

Building Blocks (cont.)

• Digit Decomposition: given 𝑥 , output 𝑥𝑘−1, … , 𝑥0 satisfying 𝑥 = 𝑥𝑘−1|| … ||𝑥0

Building Blocks (cont.)

• Digit Decomposition: given 𝑥 , output 𝑥𝑘−1, … , 𝑥0 satisfying 𝑥 = 𝑥𝑘−1|| … ||𝑥0
• Local decompose, check potential overflow.

Building Blocks (cont.)

• Digit Decomposition: given 𝑥 , output 𝑥𝑘−1, … , 𝑥0 satisfying 𝑥 = 𝑥𝑘−1|| … ||𝑥0
• Local decompose, check potential overflow.

• Overflow incurred by:

• Current segment overflow.

• Carryover from preceding segment.

Building Blocks (cont.)

• Digit Decomposition: given 𝑥 , output 𝑥𝑘−1, … , 𝑥0 satisfying 𝑥 = 𝑥𝑘−1|| … ||𝑥0
• Local decompose, check potential overflow.

• Overflow incurred by:

• Current segment overflow.

• Carryover from preceding segment.

𝑥 0

𝑥 1

MSB LSB𝑠2𝑠𝑛𝑠

MSB LSB𝑠2𝑠𝑛𝑠

Building Blocks (cont.)

• Digit Decomposition: given 𝑥 , output 𝑥𝑘−1, … , 𝑥0 satisfying 𝑥 = 𝑥𝑘−1|| … ||𝑥0
• Local decompose, check potential overflow.

• Overflow incurred by:

• Current segment overflow.

• Carryover from preceding segment.

𝑥 0

𝑥 1

CMP: 2𝑠 − 1
EQ: 2𝑠 − 1

MSB LSB𝑠2𝑠𝑛𝑠

MSB LSB𝑠2𝑠𝑛𝑠

For each segment:

Applications in Scientific Computing

Applications in Scientific Computing

• Lookup Table

Applications in Scientific Computing

• Lookup Table

• Public table: Invoking equality test for every position.

• Private table: Generate equality test key with payload being the table entry.

Applications in Scientific Computing

• Lookup Table

• Public table: Invoking equality test for every position.

• Private table: Generate equality test key with payload being the table entry.

• Spline polynomial approximation

Applications in Scientific Computing

• Lookup Table

• Public table: Invoking equality test for every position.

• Private table: Generate equality test key with payload being the table entry.

• Spline polynomial approximation

• Generating coefficients from σ𝑎𝑖 ∙ 𝑥
𝑖 to σ𝑎𝑖 ∙ (𝑥 − 𝑟)𝑖 via secure multiplication.

Applications in Scientific Computing

• Lookup Table

• Public table: Invoking equality test for every position.

• Private table: Generate equality test key with payload being the table entry.

• Spline polynomial approximation

• Generating coefficients from σ𝑎𝑖 ∙ 𝑥
𝑖 to σ𝑎𝑖 ∙ (𝑥 − 𝑟)𝑖 via secure multiplication.

• Fetching the coefficient for the spline.

Applications in Scientific Computing

• Lookup Table

• Public table: Invoking equality test for every position.

• Private table: Generate equality test key with payload being the table entry.

• Spline polynomial approximation

• Generating coefficients from σ𝑎𝑖 ∙ 𝑥
𝑖 to σ𝑎𝑖 ∙ (𝑥 − 𝑟)𝑖 via secure multiplication.

• Fetching the coefficient for the spline.

• Optimization: We do not need costly interval containment here.

Applications in Scientific Computing

• Lookup Table

• Public table: Invoking equality test for every position.

• Private table: Generate equality test key with payload being the table entry.

• Spline polynomial approximation

• Generating coefficients from σ𝑎𝑖 ∙ 𝑥
𝑖 to σ𝑎𝑖 ∙ (𝑥 − 𝑟)𝑖 via secure multiplication.

• Fetching the coefficient for the spline.

• Optimization: We do not need costly interval containment here.

0 2𝑙 − 1𝑘1 𝑘2𝑛−2𝑘0

𝑥 Which interval?

𝐼1 𝐼2 𝐼… 𝐼2𝑛 𝑥=𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏

𝑛 bit

…

INDEX COEFS

…

Lookup

Fetch!

…

𝑎𝑎𝑎𝑎 𝑎𝑖…

Applications in Scientific Computing (cont.)

• Trigonometric evaluation

Applications in Scientific Computing (cont.)

• Trigonometric evaluation

• Observation-1: Leveraging periodic properties to reduce bit length.

• Range reduction: From full domain to one period.

• Periodic Reflection: From one period to ¼ period.

Applications in Scientific Computing (cont.)

• Trigonometric evaluation

• Observation-1: Leveraging periodic properties to reduce bit length.

• Range reduction: From full domain to one period.

• Periodic Reflection: From one period to ¼ period.

• Observation-2: Leveraging sum-to-product identity.

• Specialized Transformation: Digit decomposition applicable.

sin 𝑥 + 𝑦

sin 𝑥 cos 𝑦
+cos 𝑥 sin(𝑦)

01010 11110

01010
11110

01010
11110

Applications in Scientific Computing (cont.)

• Trigonometric evaluation

• Observation-1: Leveraging periodic properties to reduce bit length.

• Range reduction: From full domain to one period.

• Periodic Reflection: From one period to ¼ period.

• Observation-2: Leveraging sum-to-product identity.

• Specialized Transformation: Digit decomposition applicable.

sin 𝑥 + 𝑦

sin 𝑥 cos 𝑦
+cos 𝑥 sin(𝑦)

01010 11110

01010
11110

01010
11110

Target

Index

P0 P1

LUT-based

෍𝑎𝑖𝑥
𝑖

Approximation-based

Evaluation

• Experimental results of dealer-less DPF and DCF

Evaluation

• Experimental results of trigonometric evaluation

Evaluation

• Experimental results of case studies on proximity test and biometric authentication

Thank You

Pengzhi Xing, p.xing@std.uestc.edu.cn

