

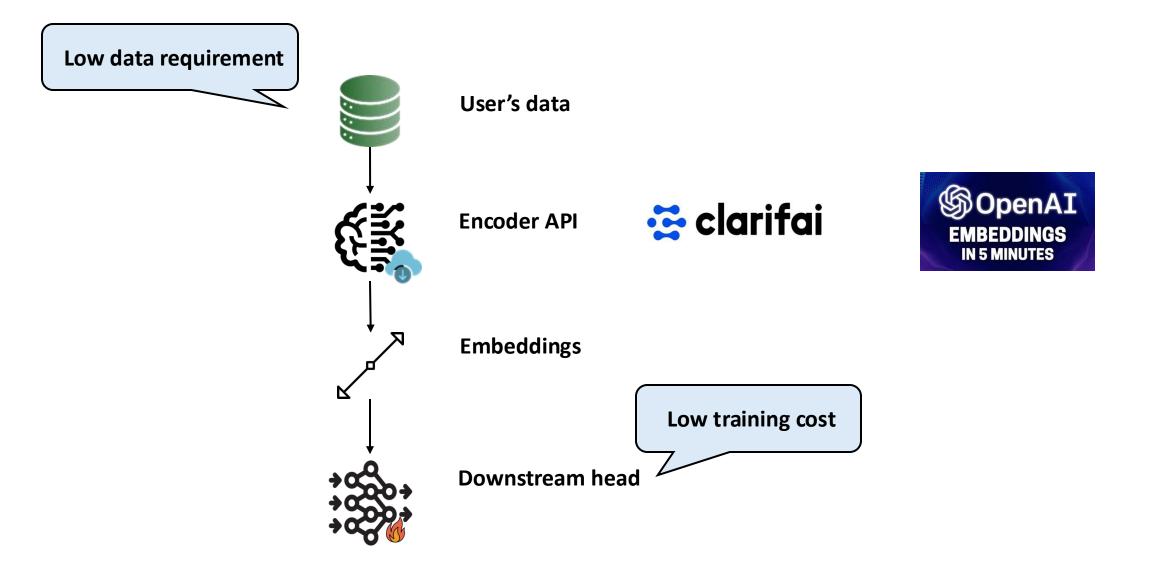
Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing

Ruyi Ding, Tong Zhou, Lili Su, Aidong Adam Ding, Xiaolin Xu, Yunsi Fei Northeastern University

Acknowledgement:

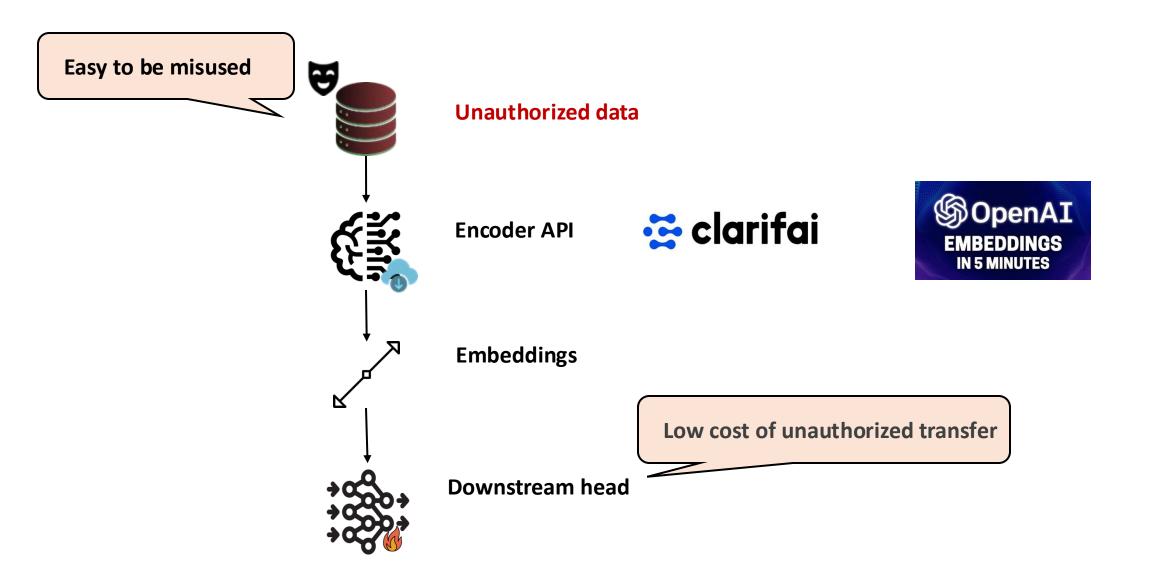
This work was supported in part by National Science Foundation under grants CNS-2212010, SaTC-1929300, IUCRC-1916762, CNS-2239672, CNS-2326597, and CCF-2340482.

Train DNNs with Pre-trained Models



Northeaste University

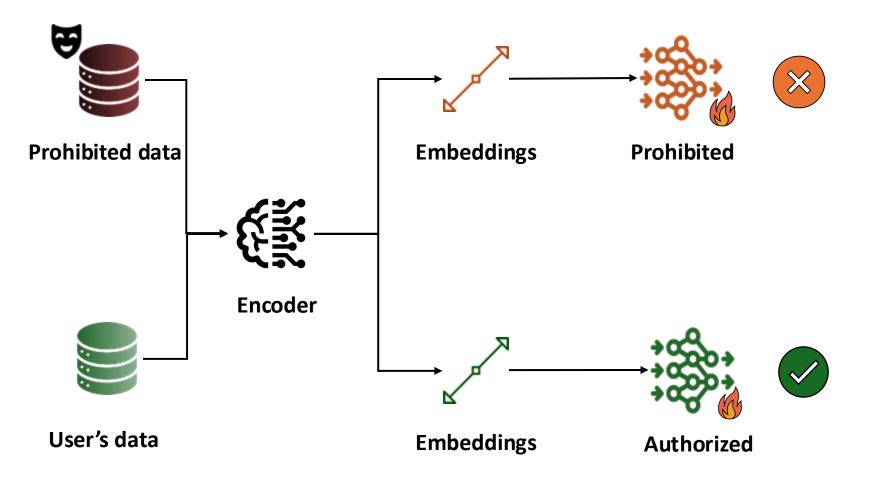
Train DNNs with Pre-trained Models



Northeast University

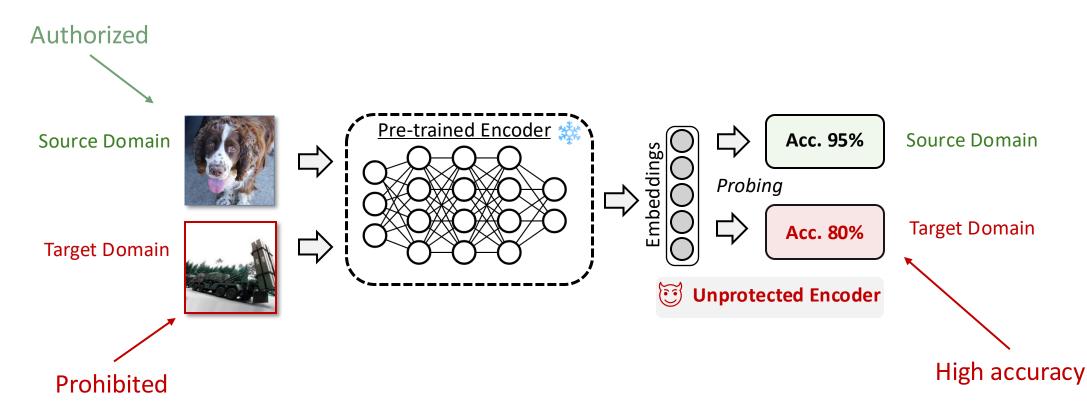
Applicability Authorization

- Northeastern University
- Prevent pre-trained models from being misused by proactively restricting their transferability for harmful tasks.



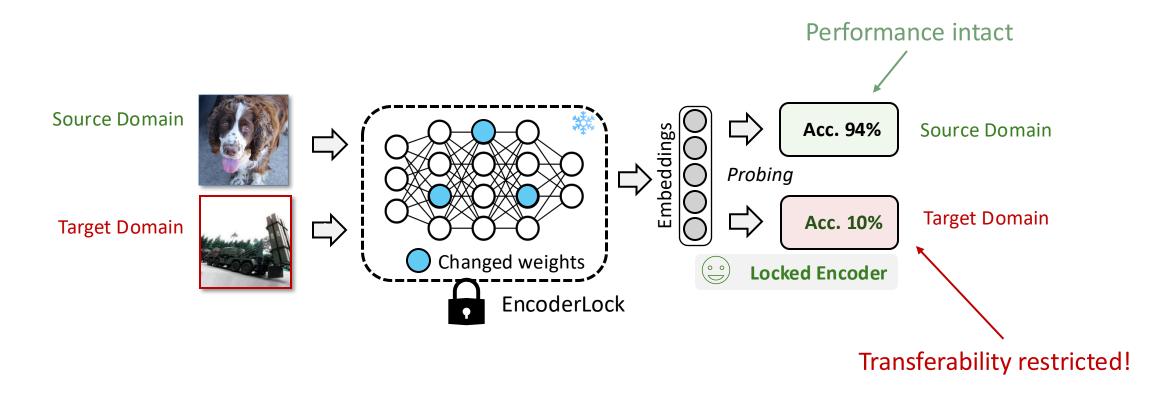
Malicious Probing

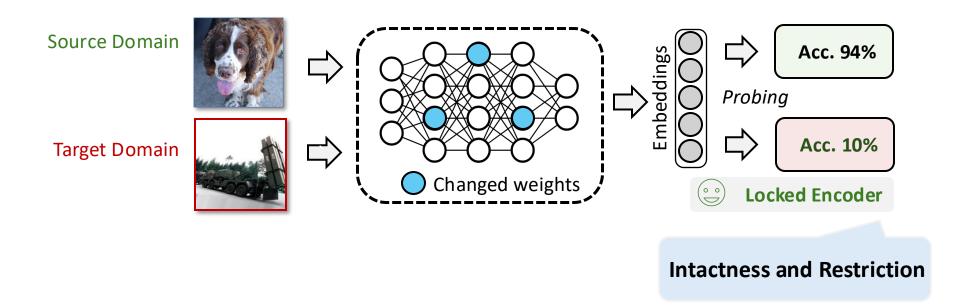
• Unauthorized transfer learning on pre-trained encoders



EncoderLock for Applicability Authorization

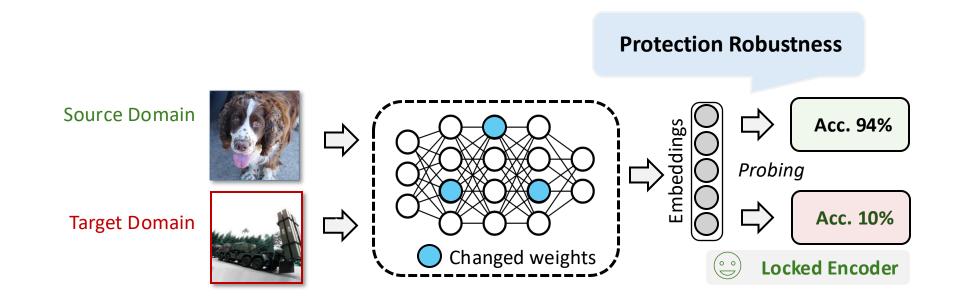
• Protecting the model's applicability





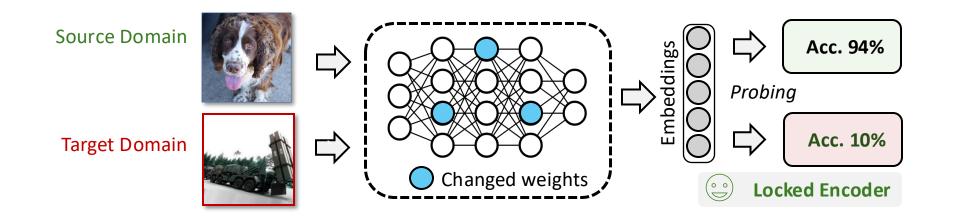
Northeastern University

Intactness and Restriction



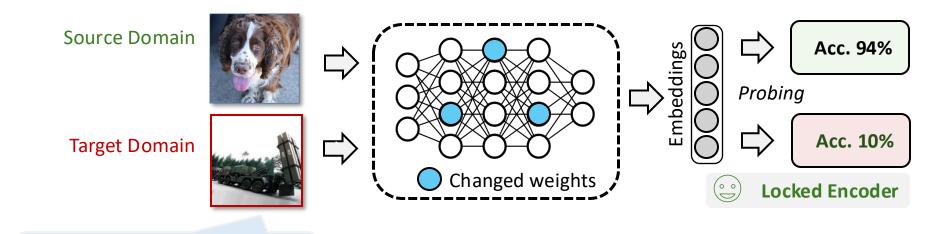
Intactness and Restriction

Protection Robustness

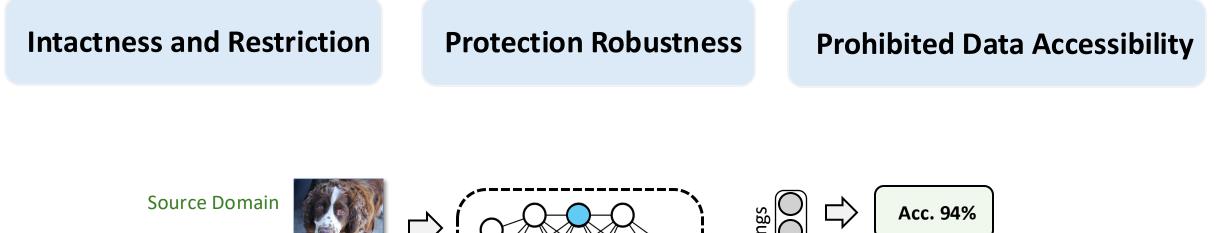


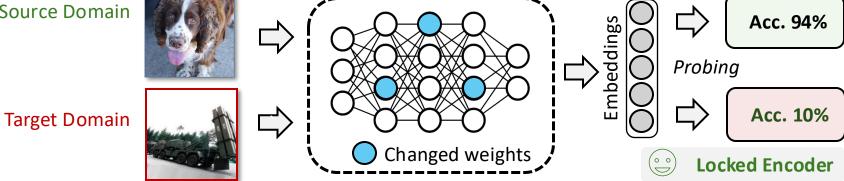
Intactness and Restriction

Protection Robustness



Prohibited Data Accessibility



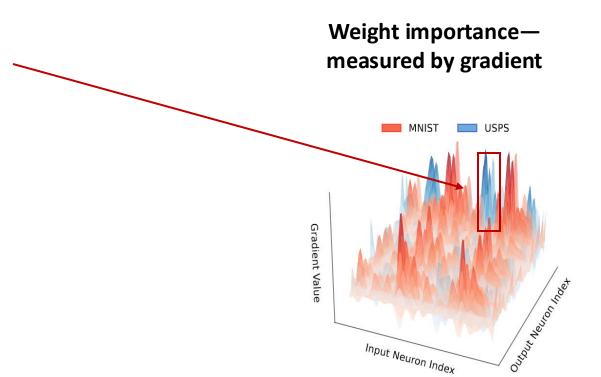


Domain-aware Weight Optimization

O1: Intactness and Restriction

• What to optimize:

critical to the target domain
not important to the source domain



Target domain loss 💉

Domain-aware Weight Optimization

O1: Intactness and Restriction

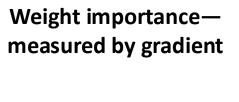
• What to optimize:

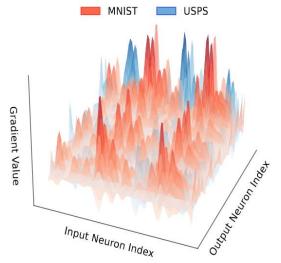
critical to the target domain
not important to the source domain

- How to optimize:
 - $\circ \operatorname{EncoderLock} \operatorname{loss}$

Source domain loss 📉

For optimization continuity $L_{el} = L_{S} + R_{T}$, where $R_{T} = \log(1 + \alpha \frac{L_{S}}{L_{T}})$



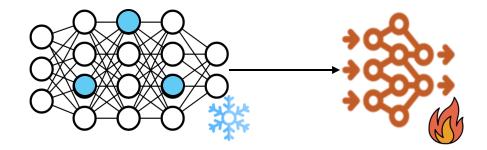


Self-Challenging Training Scheme

O2: Protection Robustness

 $L_{el} = L_{\mathcal{S}} + R_{\mathcal{T}}, \text{ where } R_{\mathcal{T}} = \log(1 + \alpha \frac{L_{\mathcal{S}}}{L_{\mathcal{T}}})$

• How to ensure EncoderLock's protection on different downstream heads?

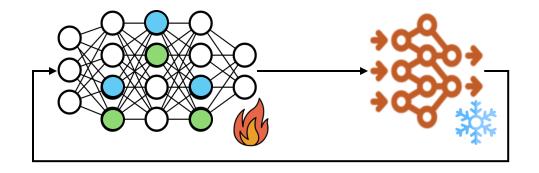


Self-Challenging Training Scheme

O2: Protection Robustness

 $L_{el} = L_{\mathcal{S}} + R_{\mathcal{T}}, \text{ where } R_{\mathcal{T}} = \log(1 + \alpha \frac{L_{\mathcal{S}}}{L_{\mathcal{T}}})$

• How to ensure EncoderLock's protection on different downstream heads?

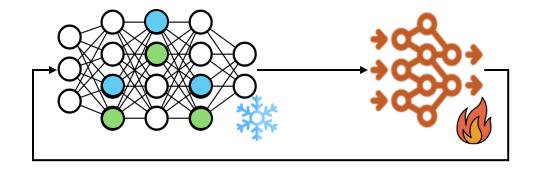


Self-Challenging Training Scheme

O2: Protection Robustness

 $L_{el} = L_{\mathcal{S}} + R_{\mathcal{T}}, \text{ where } R_{\mathcal{T}} = \log(1 + \alpha \frac{L_{\mathcal{S}}}{L_{\mathcal{T}}})$

• How to ensure EncoderLock's protection on different downstream heads?



 $\begin{array}{ll} \phi \sim encoder; & target head \\ \theta_T \sim downstream head T; & \phi^* = \arg\min_{\phi} \max_{\theta_T} L_{el}(\phi, \theta_S, \theta_T) & \text{s.t. } \|\phi^* - \phi\|_0 \leq M \\ \theta_S \sim downstream head S; & Encoder \end{array}$

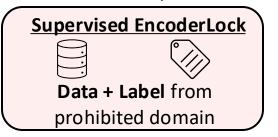
Adapting Learning Methods to Data Accessibility

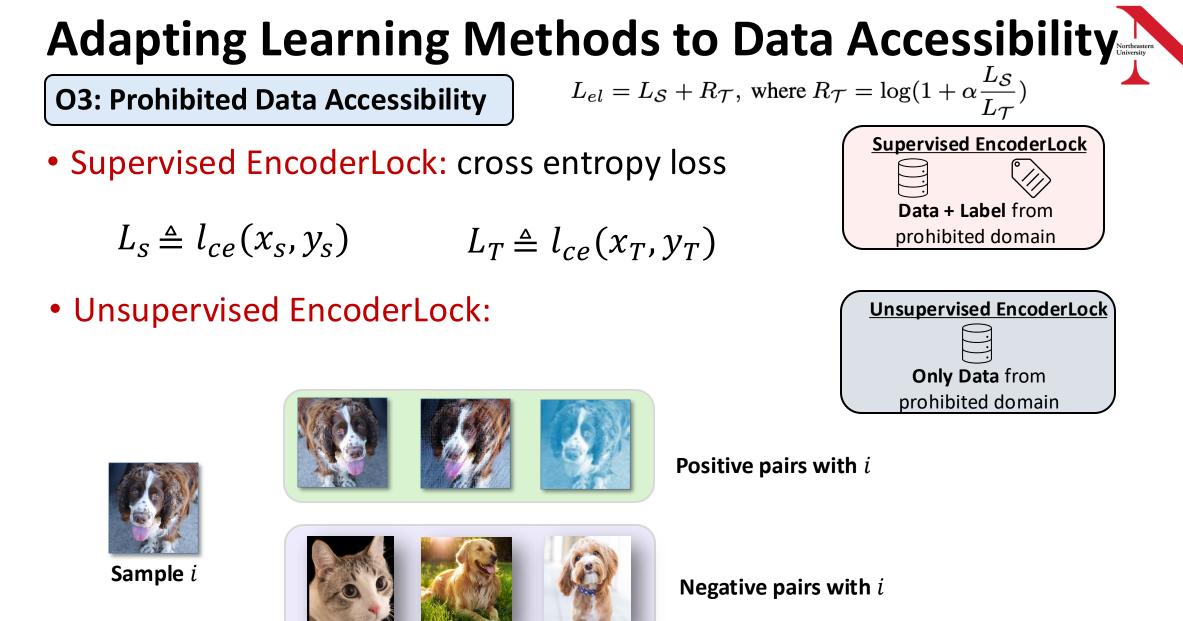
O3: Prohibited Data Accessibility

$$L_{el} = L_{\mathcal{S}} + R_{\mathcal{T}}, \text{ where } R_{\mathcal{T}} = \log(1 + \alpha \frac{L_{\mathcal{S}}}{L_{\mathcal{T}}})$$

Supervised EncoderLock: cross entropy loss

$$L_s \triangleq l_{ce}(x_s, y_s) \qquad \qquad L_T \triangleq l_{ce}(x_T, y_T)$$





Adapting Learning Methods to Data Accessibility

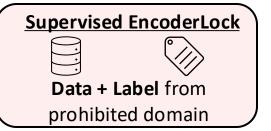
O3: Prohibited Data Accessibility

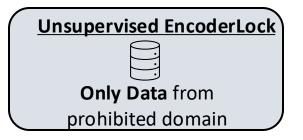
- $L_{el} = L_{\mathcal{S}} + R_{\mathcal{T}}$, where $R_{\mathcal{T}} = \log(1 + \alpha \frac{L_{\mathcal{S}}}{L_{\mathcal{T}}})$
- Supervised EncoderLock: cross entropy loss

$$L_s \triangleq l_{ce}(x_s, y_s)$$
 $L_T \triangleq l_{ce}(x_T, y_T)$

Unsupervised EncoderLock: contrastive loss

$$L^{\text{cont}} := -\frac{1}{N_B} \sum_{i=1}^{N_B} \log\left(\frac{\sin(z_i, \tilde{z}_i)}{\sum_{j=1}^{N_B} \sin(z_i, \tilde{z}_j)}\right)$$





Adapting Learning Methods to Data Accessibility $L_{el} = L_{\mathcal{S}} + R_{\mathcal{T}}$, where $R_{\mathcal{T}} = \log(1 + \alpha \frac{L_{\mathcal{S}}}{r})$

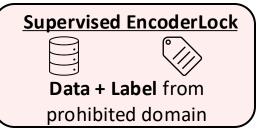
O3: Prohibited Data Accessibility

Supervised EncoderLock: cross entropy loss

$$L_s \triangleq l_{ce}(x_s, y_s)$$
 $L_T \triangleq l_{ce}(x_T, y_T)$

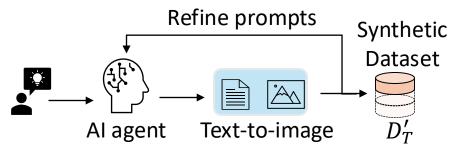
• Unsupervised EncoderLock: contrastive loss

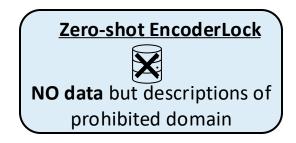
$$L^{\text{cont}} := -\frac{1}{N_B} \sum_{i=1}^{N_B} \log\left(\frac{\sin(z_i, \tilde{z}_i)}{\sum_{j=1}^{N_B} \sin(z_i, \tilde{z}_j)}\right)$$

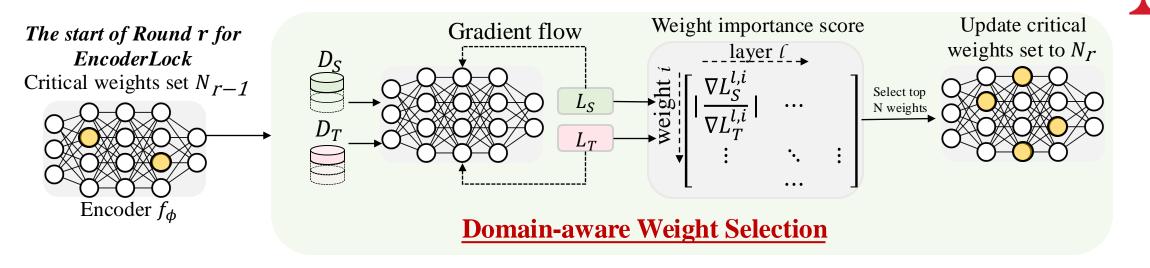


Unsupervised EncoderLock
Only Data from
prohibited domain

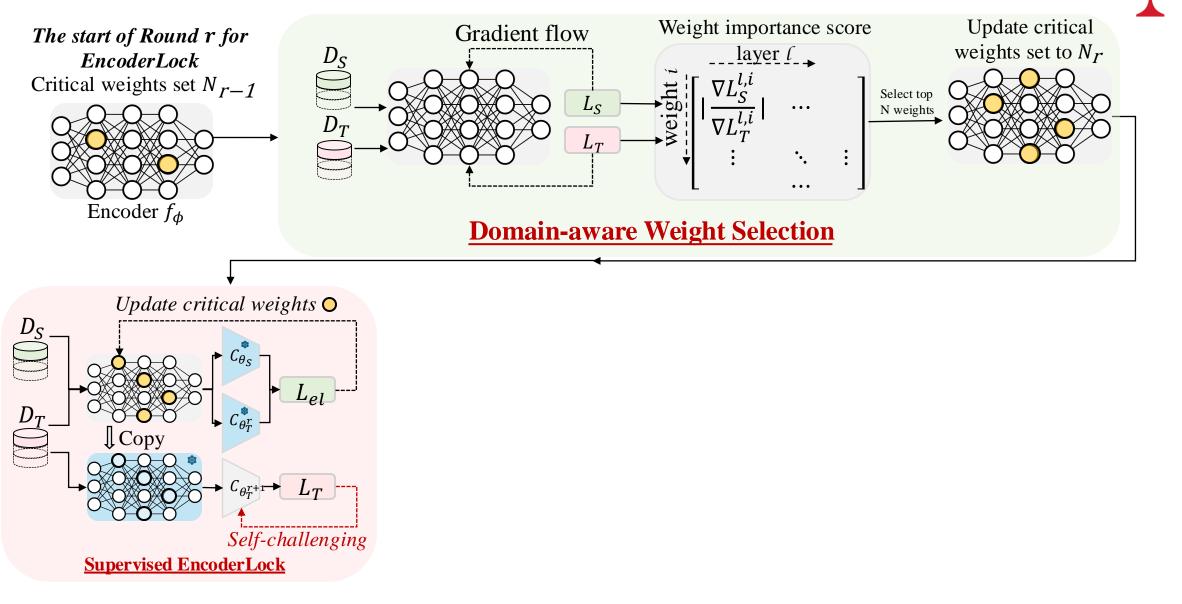
Zero-shot EncoderLock: no data, no label

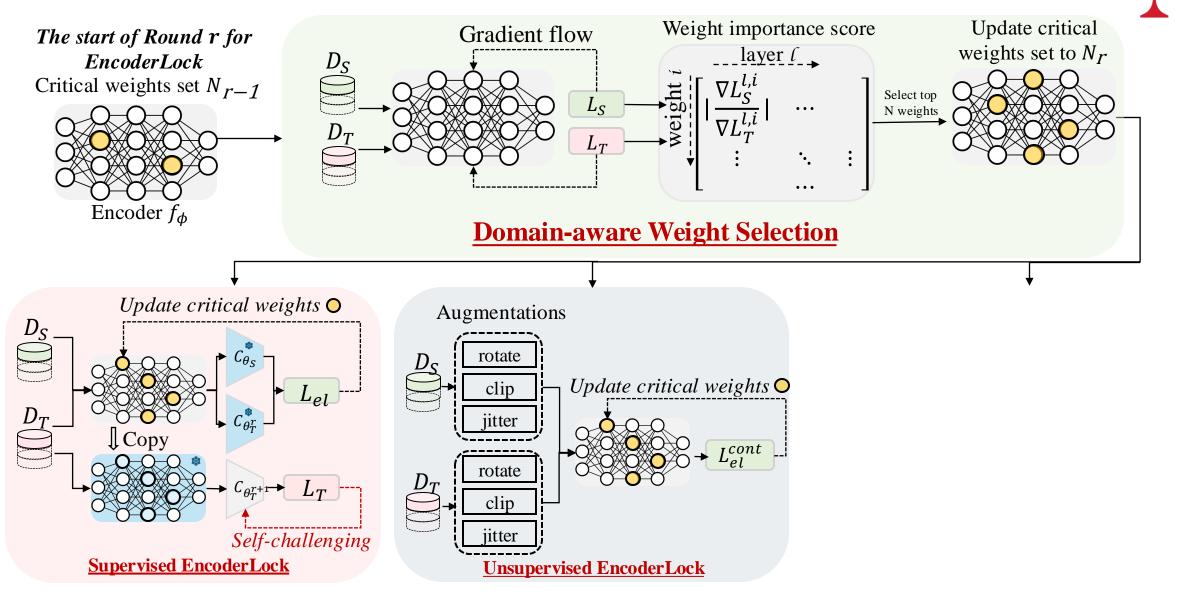


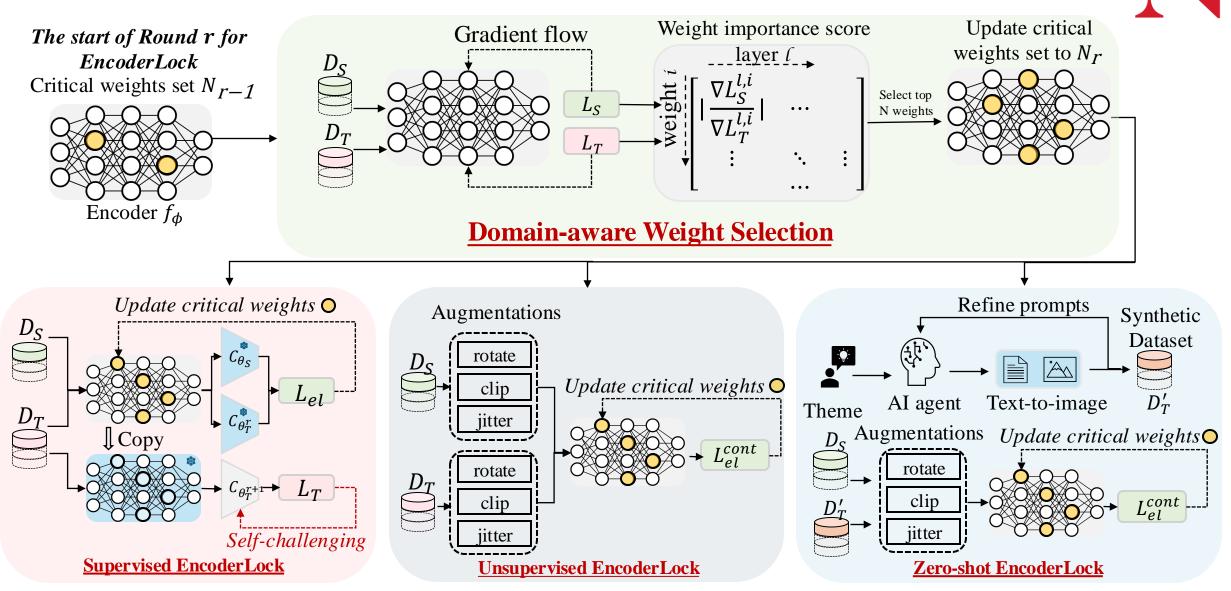




Northeast University

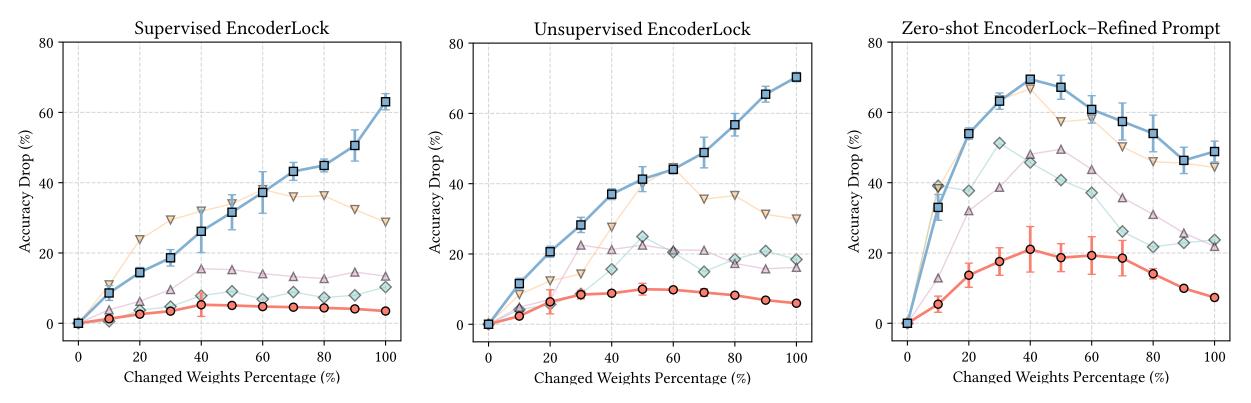




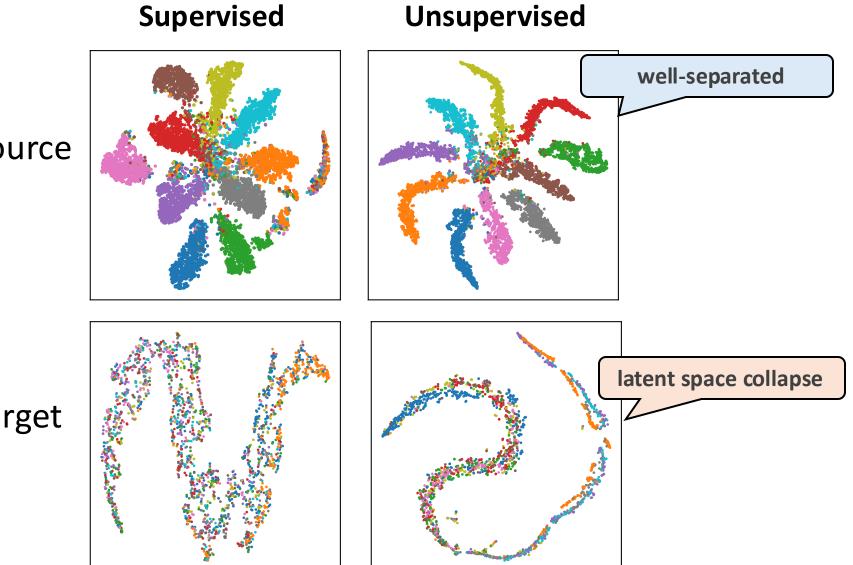


EncoderLock Evaluation: Accuracy Drop

- Red: drop on source (imagenette)
- Blue: drop on target (military vehicle)
- Other: military weapon, ordinary vehicle, animal



EncoderLock Evaluation: Latent Space



Source

Target

Northeaste University

Visualization the Focus on Encoder

Tank (Prohibited)

Supervised

Unprotected

Unsupervised

Focus on the tank gun for prohibited domain

Zero-shot

Thank you for listening!

Q&A

Ruyi Ding

Northeastern University

ding.ruy@northeastern.edu

rollinding.github.io