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Train DNNs with Pre-trained Models
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Train DNNs with Pre-trained Models
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Unauthorized data
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Downstream head
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Easy to be misused

Low cost of unauthorized transfer 



Applicability Authorization
• Prevent pre-trained models from being misused by proactively 

restricting their transferability for harmful tasks.
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Malicious Probing 

• Unauthorized transfer learning on pre-trained encoders
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EncoderLock for Applicability Authorization

• Protecting the model’s applicability
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EncoderLock

Performance intact

Transferability restricted!
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Protection Objectives
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Protection Objectives
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Protection Robustness
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Protection Objectives
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Protection Objectives
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Prohibited Data Accessibility
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Protection Objectives
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Intactness and Restriction Protection Robustness Prohibited Data Accessibility

Source Domain

Target Domain

Probing

Acc. 94%

Acc. 10%E
m

b
ed

d
in

gs

Locked Encoder
Changed weights

`



Domain-aware Weight Optimization

• What to optimize:
o critical to the target domain

onot important to the source domain

2/14/2025 Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing 12

Weight importance—
measured by gradient

O1: Intactness and Restriction



Domain-aware Weight Optimization

• What to optimize:
o critical to the target domain

onot important to the source domain

• How to optimize:
o EncoderLock loss
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Weight importance—
measured by gradient

Source domain loss
Target domain loss 

For optimization continuity

O1: Intactness and Restriction



Self-Challenging Training Scheme

• How to ensure EncoderLock’s protection on different downstream heads? 
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O2: Protection Robustness
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O2: Protection Robustness



Self-Challenging Training Scheme

• How to ensure EncoderLock’s protection on different downstream heads? 
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O2: Protection Robustness

𝜙~𝑒𝑛𝑐𝑜𝑑𝑒𝑟;
𝜃𝑇~𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 ℎ𝑒𝑎𝑑 𝑇;
𝜃𝑆~𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 ℎ𝑒𝑎𝑑 S;

𝑀~max # 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡𝑠;

𝑡𝑎𝑟𝑔𝑒𝑡 ℎ𝑒𝑎𝑑

𝐸𝑛𝑐𝑜𝑑𝑒𝑟



Adapting Learning Methods to Data Accessibility

• Supervised EncoderLock: cross entropy loss
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Supervised EncoderLock

Data + Label from 
prohibited domain

O3: Prohibited Data Accessibility

𝐿𝑠  ≜ 𝑙𝑐𝑒(𝑥𝑠, 𝑦𝑠) 𝐿𝑇  ≜ 𝑙𝑐𝑒(𝑥𝑇 , 𝑦𝑇)
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Supervised EncoderLock

Data + Label from 
prohibited domain𝐿𝑠  ≜ 𝑙𝑐𝑒(𝑥𝑠, 𝑦𝑠) 𝐿𝑇  ≜ 𝑙𝑐𝑒(𝑥𝑇 , 𝑦𝑇)

• Unsupervised EncoderLock: Unsupervised EncoderLock
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O3: Prohibited Data Accessibility



Adapting Learning Methods to Data Accessibility

• Supervised EncoderLock: cross entropy loss
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Supervised EncoderLock
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Only Data from 
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O3: Prohibited Data Accessibility



Adapting Learning Methods to Data Accessibility

• Supervised EncoderLock: cross entropy loss
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Supervised EncoderLock

Data + Label from 
prohibited domain𝐿𝑠  ≜ 𝑙𝑐𝑒(𝑥𝑠, 𝑦𝑠) 𝐿𝑇  ≜ 𝑙𝑐𝑒(𝑥𝑇 , 𝑦𝑇)

• Unsupervised EncoderLock: contrastive loss Unsupervised EncoderLock

Only Data from 
prohibited domain

• Zero-shot EncoderLock: no data, no label Zero-shot EncoderLock

NO data but descriptions of 
prohibited domain

AI agent Text-to-image 𝐷𝑇
′

Refine prompts Synthetic 
Dataset

O3: Prohibited Data Accessibility



EncoderLock: Summary
The start of Round 𝒓 for 

EncoderLock

Encoder 𝑓𝜙 

Critical weights set 𝑁r−1 
𝐿𝑆

𝐿𝑇

Gradient flow
layer l

w
e
ig

h
t 
i

|
∇𝐿𝑆

𝑙,𝑖

∇𝐿𝑇
𝑙,𝑖

| ⋯

⋮ ⋱ ⋮
⋯

Weight importance score Update critical 

weights set to 𝑁r 

Select top 

N weights

𝐷𝑆 

 𝐷𝑇 

 

Domain-aware Weight Selection
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EncoderLock: Summary
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Zero-shot EncoderLock
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Domain-aware Weight Selection
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Theme

𝐷𝑇
′



EncoderLock Evaluation: Accuracy Drop
• Red: drop on source (imagenette)

• Blue: drop on target (military vehicle)

• Other: military weapon, ordinary vehicle, animal
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EncoderLock Evaluation: Latent Space

Source

Target 

2/14/2025 Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing 26

Supervised Unsupervised

well-separated

latent space collapse



Unprotected 

Supervised

Visualization the Focus on Encoder
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Focus on the tank gun 
for prohibited domain

Tank (Prohibited)

Unsupervised Zero-shot

Out of focus
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Thank you for listening!

Q&A

Ruyi Ding

Northeastern University

ding.ruy@northeastern.edu 

rollinding.github.io
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