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Understanding Data Importance in
Machine Learning Attacks:

Does Valuable Data Pose Greater
Harm?

Rui Wen, Michael Backes, Yang Zhang
CISPA



. _ Machine learning models are widely deployed
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_ Data serves as the bedrock for training models
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Not all data is created equal
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.’ Quantitatively measure the contribution
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. _ High importance data contributes much more
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| _ Does variation in data impact their vulnerabilitiy?




o . Existing research mainly focuses on models
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. _ Data shows different levels of vulnerability
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Are high importance samples more vulnerable?
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. This question has real-world implications
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.’ This question has real-world implications
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~ Membership Inference Attack (MIA)
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_ Vulnerability increases for high importance samples
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., . There is a strong connection
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One threshold for all
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. Low importance samples are harder to learn
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.’ It's hard to identify low-importance members
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. Compare samples with similar importance
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Set sample-specific threshold
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Calibrate membership metric by sample importance
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Take away: high-importance data is more
vulnerable to membership inference attacks

Setting sample-specific thresholds based on
Importance can make attacks even stronger.
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Privacy onion effect
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Removing the “layer” of outlier points that are most vulnerable to a privacy attack
exposes a new layer of previously-safe points to the same attack.

[1] The Privacy Onion Effect: Memorization is Relative
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. Privacy onion effect for importance
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- _ Privacy onion effect for importance
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- _ Privacy onion effect for importance
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Increase vulnerability for target samples
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Increase vulnerability for target samples
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Increase vulnerability for target samples

2 00
1.75
1.50
1.25
1.00
O O 75
0.50
0.25
0.00

ensity

| ||||.| “ll.
4.0

.___L_oy’




Activately modify importance
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Activately modify importance




Activately modify importance
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. Activately modify importance
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., . Activately modify importance can lead to stronger

attack
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[1] Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
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Take away: “privacy onion effect” holds for data
Importance.

Actively manipulating sample importance can be
a potent strategy for developing stronger attacks.
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