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Machine learning models are widely deployed
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Data serves as the bedrock for training models
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Not all data is created equal
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Model

25% Contribution

3% Contribution



Quantitatively measure the contribution



High importance data contributes much more
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4.4x



Does variation in data impact their vulnerabilitiy?
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Data



Existing research mainly focuses on models
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ModelData



Data shows different levels of vulnerability
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Are high importance samples more vulnerable?
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High vulnerability?



This question has real-world implications
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records with rare but 
crucial symptoms high-importance



12

PremiumsDiscrimination

This question has real-world implications



Membership Inference Attack (MIA)
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Training Data Target ModelIn? Out?



Vulnerability increases for high importance samples
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There is a strong connection
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High vulnerability!



Loss-based MIA
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One threshold for all
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Low importance samples are harder to learn
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It‘s hard to identify low-importance members

19



Compare samples with similar importance
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Set sample-specific threshold
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Calibrate membership metric by sample importance
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Take away: high-importance data is more 
vulnerable to membership inference attacks
 
Setting sample-specific thresholds based on 
importance can make attacks even stronger.



Privacy onion effect
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[1] The Privacy Onion Effect: Memorization is Relative
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[1] Some Results on Privacy and Machine Unlearning, Matthew Jagielski

Privacy onion effect: an example
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Privacy onion effect for importance



Privacy onion effect for importance
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More important

Evaluated part



Privacy onion effect for importance
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More important

Evaluated part



Privacy onion effect holds for importance value
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Increase vulnerability for target samples
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Increase vulnerability for target samples
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Increase vulnerability for target samples
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Activately modify importance
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Target sample
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Activately modify importance
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Activately modify importance
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Activately modify importance
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[1] Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets

Activately modify importance can lead to stronger
attack



Take away: “privacy onion effect” holds for data 
importance.
 
Actively manipulating sample importance can be 
a potent strategy for developing stronger attacks.



Thank you!

39


	Slide 1: Understanding Data Importance in Machine Learning Attacks:  Does Valuable Data Pose Greater Harm? 
	Slide 2: Machine learning models are widely deployed
	Slide 3: Data serves as the bedrock for training models
	Slide 4: Not all data is created equal 
	Slide 5: Quantitatively measure the contribution
	Slide 6: High importance data contributes much more
	Slide 7: Does variation in data impact their vulnerabilitiy?
	Slide 8: Existing research mainly focuses on models
	Slide 9: Data shows different levels of vulnerability
	Slide 10: Are high importance samples more vulnerable?
	Slide 11: This question has real-world implications
	Slide 12
	Slide 13: Membership Inference Attack (MIA)
	Slide 14: Vulnerability increases for high importance samples
	Slide 15: There is a strong connection
	Slide 16: Loss-based MIA
	Slide 17: One threshold for all
	Slide 18: Low importance samples are harder to learn
	Slide 19: It‘s hard to identify low-importance members
	Slide 20: Compare samples with similar importance
	Slide 21: Set sample-specific threshold
	Slide 22: Calibrate membership metric by sample importance
	Slide 23
	Slide 24: Privacy onion effect
	Slide 25
	Slide 26
	Slide 27: Privacy onion effect for importance
	Slide 28: Privacy onion effect for importance
	Slide 29: Privacy onion effect holds for importance value
	Slide 30: Increase vulnerability for target samples
	Slide 31: Increase vulnerability for target samples
	Slide 32: Increase vulnerability for target samples
	Slide 33: Activately modify importance
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Thank you!

