

ReThink: Reveal the Threat of Electromagnetic Interference on Power Inverters

Fengchen Yang, Zihao Dan, Kaikai Pan, Chen Yan, Xiaoyu Ji, Wenyuan Xu

Zhejiang University, ZJU QI-ANXIN IoT Security Joint Lab

Power inverter

 Renewable energy has gradually replaced traditional energy and will expand at a compound annual growth rate (CAGR) of 17.20%.^[1]

Global climate challenge

Power inverter

 Renewable energy has gradually replaced traditional energy and will expand at a compound annual growth rate (CAGR) of 17.20%.^[1]

Global climate challenge

Renewable energy

Power inverter

 Renewable energy has gradually replaced traditional energy and will expand at a compound annual growth rate (CAGR) of 17.20%.^[1]

Most renewable energy (RES) cannot be directly fed into the grid

Power Inverter

DC

Transform the DC power from renewable energy to the AC power on the grid

Chemical energy

Renewable energy

Power inverter

Power grid

Power Inverter

Transform the DC power from renewable energy to the AC power on the grid

Renewable energy

Power inverter

Power grid

Motivation and Threat model

• Attack goal: Shut down, power reduction, or even burnout

Motivation and Threat model

• Attack goal: Shut down, power reduction, or even burnout

• Non-contact Access: No touch or physical damage

Motivation and Threat model

• Attack goal: Shut down, power reduction, or even burnout

• Non-contact Access: No touch or physical damage

• Prior Knowledge: Prior knowledge of the target inverter

How does power inverter work?

11

How does power inverter work?

How does power inverter work?

How does power inverter work?

Input control

Input control

Whether EMI can impact sensors?

Frequency sweep test

Whether EMI can impact sensors?

Frequency sweep test

EMI can cause positive or negative offset on both voltage and current sensors

• Q1: Why does the injected **AC** noise induce a **DC** offset ?

- Q1: Why does the injected **AC** noise induce a **DC** offset ?
- Q2: Why does the offset can be **positive** or **negative** ?

- Q1: Why does the injected **AC** noise induce a **DC** offset ?
- Q2: Why does the offset can be **positive** or **negative** ?
- Q3: How to achieve **controllable** manipulation ?

Voltage sensor

The operational amplifier converts the AC noise into DC offset !

Operational amplifier

The **asymmetric layout** enables the offset to be positive or negative!

Q3: How to control sensors?

Amplitude modulation

Amplitude modulation

Sensor manipulation experiment

Amplitude modulation

$$s_{AM}(t) = A_c [1 + s_m(t)] cos 2\pi f_c t$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
Amplitude Modulated Carrier frequency

Sensor manipulation experiment

Amplitude modulation

$$s_{AM}(t) = A_c [1 + s_m(t)] cos 2\pi f_c t$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
Amplitude Modulated Carrier frequency

Sensor manipulation experiment

Amplitude modulation

$$s_{AM}(t) = A_c [1 + s_m(t)] cos 2\pi f_c t$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
Amplitude Modulated Carrier frequency

Sensor manipulation experiment

The **AM** can achieve controllable manipulation on sensors!

Design of DoS Attack

Design of Damage Attack

Design of Damping Attack

Design of DoS Attack DC side

Design of **DoS Attack**

Design of **DoS Attack**

Design of **DoS Attack**

DC side

AC side

Design of **DoS Attack**

DC side

AC side

Design of **DoS Attack**

> Design of DoS Attack

Design of Damage Attack

Design of Damping Attack

Design of Damage Attack

Design of Damage Attack

Design of Damage Attack

Design of Damage Attack

Design of Damage Attack

Design of DoS Attack

Design of Damage Attack

Design of Damping Attack

 Design of Damping Attack
 Analysis
 Without Attack

60

Attack design

Design of Damping Attack

Design of Damping Attack

1. Evaluation on sensors

1. Evaluation on sensors

1. Evaluation on sensors

Sensor	Sensor	Output	Measure-	Test parameters		Output				
type	model	type	ment	Freq.(MHz) ³	$\mathbf{D}_{\mathrm{OW}}(\mathbf{W})^{3}$	Original	Pos.	Pos.	Neg.	Neg.
			span	(Pos. /Neg.) ³	Pow.(w)	value	dev. ^{1,3}	dev. rate	dev. ^{1,3}	dev. rate
Current	WCS1800 (Wire)	Analog	0~30A	685/1030	10	5 A	15.7 A	+214.00%	-6.1 A	-222.00%
Current	WCS1800 (Wireless)	Analog	0∼35 A	1000/876	10	5 A	31.5 A	+530.00%	-7.6 A	-252.00%
Current	ACS712 (20 A)	Analog	0∼20 A	779/1223	10	5 A	13.2 A	+164.00%	-13.2 A	-364.00%
Current	ACS712 (5 A)	Analog	0~5 A	627/1212	10	2.5 A	5.1 A	+104.00%	-7.75 A	-410.00%
Speed	3144	Digital	0/1	677	10	0/1	bit-flap ²	+100.00%	bit-flap	-100.00%
North pole	3144	Digital	0/1	724	10	0/1	bit-flap	+100.00%	bit-flap	-100.00%
Water flow	YF-S401	Digital	0/1	1322	10	0/1	bit-flap	+100.00%	bit-flap	-100.00%

1. Evaluation on sensors

Sensor	Sensor	Output	Measure-	Test parameters		Output				
type	model	type	ment	Freq.(MHz) ³	$\mathbf{D}_{\mathrm{OW}}(\mathbf{W})^3$	Original	Pos.	Pos.	Neg.	Neg.
			span	(Pos. /Neg.) ³	Pow.(w)	value	dev. ^{1,3}	dev. rate	dev. ^{1,3}	dev. rate
Current	WCS1800 (Wire)	Analog	0~30A	685/1030	10	5 A	15.7 A	+214.00%	-6.1 A	-222.00%
Current	WCS1800 (Wireless)	Analog	0∼35 A	1000/876	10	5 A	31.5 A	+530.00%	-7.6 A	-252.00%
Current	ACS712 (20 A)	Analog	0∼20 A	779/1223	10	5 A	13.2 A	+164.00%	-13.2 A	-364.00%
Current	ACS712 (5 A)	Analog	0~5 A	627/1212	10	2.5 A	5.1 A	+104.00%	-7.75 A	-410.00%
Speed	3144	Digital	0/1	677	10	0/1	bit-flap ²	+100.00%	bit-flap	-100.00%
North pole	3144	Digital	0/1	724	10	0/1	bit-flap	+100.00%	bit-flap	-100.00%
Water flow	YF-S401	Digital	0/1	1322	10	0/1	bit-flap	+100.00%	bit-flap	-100.00%

Both analog and digital Hall sensors can be attacked by EMI

2. Evaluation on inverters --- DoS

Before Attack

2. Evaluation on inverters --- DoS

Before Attack

After Attack

2. Evaluation on inverters --- Damping

Before Attack (35 kW)

2. Evaluation on inverters --- Damping

Before Attack (35 kW)

After Attack (2 kW)

2. Evaluation on inverters --- Damage

Before Attack

2. Evaluation on inverters --- Damage

Before Attack

After Attack

2. Evaluation on inverters

2. Evaluation on inverters

	Single-phase	solar inverter	s
Ti C2000 solar micro inverter	Ginlong G6- GR1P3K-M solar inverter	Kstar BluE-G 500D solar inverter	Huawei SUN2000 solar inverter

Three-phase solar inverter and Grid simulator

SMA: STP6.0-3SE-40 6kW solar inverter

2. Evaluation on inverters

solar inverter solar inverter solar inverter

Three-phase solar inverter and Grid simulator

SMA: STP6.0-3SE-40 6kW solar inverter

	DoS				Damage			Damping					
Inverter	On DC side			On AC side		Pow.	Freq.	Pogult	Freq.	Pow.(W)	Pow.(W)	Pow.	
	Pow.	Freq.	Success	Pow.	Freq.(MHz)	Success	(W)	(MHz)	Result	(MHz)	before	after	dev. rate
	(W)	(MHz)	$rate^1$	(W)	Pos./Neg. ⁴	$rate^1$					Damping	$Damping^2$	
Ti C2000	5	735	100%	5	1036/1490	100%	10	1000	100%	760	80	25	68.75%
Ginlong	10	916	100%	10	625/1210	80%	_3	-	-	1192	1980	1390	29.8%
Kstar	10	749	100%	10	990/810	90%	-	-	-	998	1995	1560	21.8%
Huawei ⁵	10	1150	100%	10	980/1020	80%	-	-	-	1330	1960	1420	27.6%
SMA	10	675	100%	10	1125	100%	-	-	-	753	2950	2660	9.8%
GW(LCD,50kW)	20	920	100%	-	_		-	-	-	960	35.6k	2k	94.3%
GW(LED,60kW) ⁶	20	945	100%	-	-	-	-	-	-	-	-	-	-

All tested PV inverters can be attacked

50

40

Evaluation

3. Distance and power

3. Distance and power

The attack ability can be further improved with larger attack power

4. Real-world grid

Attack on a 400 kVA microgrid in real world

4. Real-world grid

Attack on a 400 kVA microgrid in real world

Experiment and simulation result

4. Real-world grid

Attack on a 400 kVA microgrid in real world

Experiment and simulation result

Countermeasures

(1) Filtering Leakage and Multi-stage filter

- (2) Shielding
- (3) Detection

Countermeasures

(1) Filtering Leakage and Multi-stage filter

- (2) Shielding
- (3) Detection

Countermeasures

(1) Filtering Leakage and Multi-stage filter

- (2) Shielding
- (3) Detection

Discussion

Portable attack device

Portable attack device

Experiment

See demo video at https://tinyurl.com/ReThinkDemoVideos

□ We systematically analyze the security of power inverters.

■ We propose 3 impacts that can cause the victim PV inverter to shut down, physically burn out, and reduce output power, respectively.

We successfully evaluate on an inverter development kit, 5 off-the-shelf PV inverters and a real-world microgrid.

Questions & Answer

Demo website:

https://tinyurl.com/ReThinkDemoVideos

Thanks Q&A

