CCTAG: Configurable and
Combinable Tagged Architecture

Zhanpeng Liu, Yi Rong, Chenyang Li, Wende Tan, Yuan Li,
Xinhul Han, Songtao Yang, Chao Zhang

lydorazoe@gmail.com, hanxinhui@pku.edu.cn

mailto:hanxinhui@pku.edu

Memory Safety Vulnerabllities Are Prevalent

And they tend to be critically severe

High+, impacting stable

Security-related assert
7.1%

Memory Corruption

Overflow

Use-after-free
36.1%

Other
23.9%

SQL Injection

Input Validation

) Open Redirect
29.5% e et
. 1.1%
5.1% XXE

CSRF Other memory unsafety
32.9%

Xss File Inclusion
Directory Traversal

Origin: https://www.cvedetails.com/vulnerabilities-by-types.php Origin: https://www.chromium.org/Home/chromium-security/memory-safety/

Image Credit: Yuan Li

T . Chrome’s critical severity
CVE Distribution from CVEdetails security bugs’ distribution

Defensive Mechanisms

Can never find all vulnerabilities (Rice’s Theorem)

Might not be able to fix vulnerabilities in time

Need defensive mechanisms to mitigate Unknown Vulnerabilities

Have to trade-off

Most of the previous works only
target specific vulnerability types or
prevent certain exploitation steps

Security

Guarantees

Software

Compatibility

Performance
Overhead

Attack Model from SoK: Eternal War in Memory [1]

Memory Safety
« Make a pointer Make a pointer
(“ go out of bounds 3 become dangling
<
Use pointer to Use pointer to
write (or free) élé read . .
e pm— Other defensive mechanisms:
Data Integrity i NX, CFl, DFI, DIFT, etc.
N N \) \)
Modify a data Modifv cod Modify a code Modify a data Outoutdat
pomter A | erable R Horizontal Integration:
—]

provide comprehensive protection

Vertical Integration:
Corruption hijacking attack leak defense in depth, bettel‘ trade'Off

Code Control flow Data-only Information

(Partial) Attack model demonstrating four exploiting types

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in memory,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, ser. SP " 13.

Challenges

Simply stacking defenses will accumulate performance
penalties, especially for pure-software solutions.

Trends: Hardware-Software Co-design

TrustZone | MTE | PA MPX CET MPK

Research works: HDFI [2], CHERI [3], PUMP [4, 5], etc.

Achieve both configurability and combinability with rigid hardware constraints

Maintain a low-complexity and more practical design

[2] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in 2016 IEEE Symposium on
Security and Privacy (SP), 2016.

[3] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M.

Roe, S. Son, and M. Vadera, “"CHERI: A hybrid 15 capability-system architecture for scalable software compartmentalization,” in 2015 IEEE Symposium

on Security and Privacy, 2015.

[4] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Architectural support for software-
defined metadata processing,” in Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS "15.

[5] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Pump: A programmable unit for metadata
processing,” in Proceedings of the Third Workshop on Hardware and Architectural Support for Security and Privacy, ser. HASP '14. 5

Our Proposal: CCTAG

Tagged Architecture
Add security metadata to registers and memory granula

Memory Applied at different
. . safetv policv 0 threads, pages, and
Tag verification Configure to y POticy variable granularity
build within cache line :
rules Memory Combined
| > safety policy 1 | > Protection
Tag modification L
les Memory Co-eX|s;tc|W|thout
ru . conflicts
safety policy 2

Configurable: Towards Versatility

TABLE III: Supported tag checking & updating rules.

Constant

Description

MT_CHECK_NONE

MT_CHECK_EQUAL

MT_CHECK_UNCOND

MT_CHECK_COND

L_PROP

S_NONE

S_SET

S_UNSET

S_PROP

On load/store, do not check

On load/store, check if
the memory tag matches with tag in pointer

On load/store, check if
the memory tag is 1(or 0), subject to MT_CHECK_VAL

On load/store, if the tag in pointer is 1, check if
the memory tag is 1 (or 0), subject to L_MT_CHECK_VAL

On load, propagate the memory tag to the register tag
On store, do not change the memory tag

On store, set the memory tag to 1

On store, set the memory tag to 0

On store, propagate the register tag to the memory tag

Fine-grained Permissions
Memory Coloring
Data Integrity
Information Flow Tracking

Taint Analysis

Configurable: Towards Versatility

Adaptable to different granularities

16 bits for 64 bytes

— T

64 bytes

" X< J o
\ g blts for 32 bytes //

1 bit for 4 bytes

Figure 1: Memory tag partition.

Combinable: Avoid Conflicts

Policy-Centric Mask Design
Instead of per tag bit configuration

Tag Policy: policy mask, granularity, and rules for tag checking and updating

Different pages can enforce different policies

Policy 0 Policy 1
4 bits per 32 B 1 bit per 8 B
Apply to Heap Apply to Stack
i i i i i i i QT
(I I (R (I I I (I (I
L = L= L= L =1 L L= L= [RS |
C T F Policy2 |
: 1 bit per 8 B ,
I I

Apply to All Data

Figure 3: Distinct policies coexist without interference.

Combinable: Avoid Conflicts

Policy 0 . Policy Mask:
Config ’ 0601010101
Granular: 3
(4 bits for 8 bytes)
L > Combinational — ot s Final Mask:
> Logic 0b01010000
[.
Mem addr: 0x0 Access Mask:
Mem granularity: 3 0b11110000

—

Access 0x0 (8 bytes) 16 bytes

The checking and updating values of different policies

can be masked and then ORed together ;

Prototype Implementation

Based on Rocket Core (RISC-V ISA) | 125 || pata (B Tag

16 bits tag / 64 bytes Tag J|_Data Data
(the same ratio as ARM MTE) Tag | Data

Support 4 policies L1 DCache Main Memory

TABLE IV: Hardware resource cost of the baseline and CCTAG when synthesized on an FPGA.

RISC-V Rocket Cores Whole Systems
#LUT % #FF %o #BRAM #LUT %o #FF % #BRAM Worst Neg Slack (ns)

baseline | 34,039 _ 14,939 _ 20 57,298 _ 48,448 _ 115 0.50
CCTAG | 36,342 +6.77% 16,137 +8.02% 30 59,616 +4.05% 49,701 +2.59% 125 0.53

The required hardware resources are minimal (~8%)
compared to CHERI (> 50%) and PUMP (> 100%)

11

Ported Defense Applications

0o Ret Addr

Attacker can not X
control ret addr

0

0

0

Seta"1"tagto
protect the ret addr

0

Ret Addr

1

Before function return
clearthe "1" tag

Ret Addr

Ported three other defense applications

0

0

0

0

O oo ~ (=2} w » w (3% —

Listing 1: Return address protection.

1090c:
1090e:
10910:
10912:
10914:
10916:
10950:
10952
10956:
10958:

1095a:
1095c:

01
06
22
00
09
2b

09
2b
e2
42
05
82

11
ec
e8
10
45
6cC

45
78
60
64
61
80

al

al

addi
sd
sd
addi
L
00 mtsd

L
00 mtcd
1d
1d
addi
ret

sp,
ra,

S0,
s0,
ao,
ao,

ao,
ao,
ra,
s0,
Sp,

sp, =32

24(sp)
16(sp)
sp, 32
2

24(sp)

2
24(sp)
24(sp)
16(sp)
sp, 32

Function Pointer & VTable Pointer Integrity

ARM MTE-like Heap Memory Coloring
Dangling Pointer Sweeping

Verified with real world CVEs

12

Execution Time Overheads (%)

w
o

N
w

N
o

o)
w

[y
o
s

w
L

o
L

|
(o]
L

Performance Evaluation

| mmm Return Address Protection

| 77 Heap Memory Coloring

| =2 RA + VTP & CP + Heap

No protection
@ Vtable Pointer & Code Pointer Integrity
wz Dangling Pointer Sweeping

#% RA + VTP & CP + Heap (8KB tag cache)

2 v
o i i II
4] 2
. . : . : . : .
~ %} Y ~ [o N o [~ c
a O 9] c [c £ o o © [©
= o £ £ @ 2 < < 7])
. Q iy -~ (7] Qo
a m o © c a = 9 c T] £
o~ <3 9 o0, < 0 =] < £ 0 & S
g) © Q g < S < r_u o
n o o
3 Q 2 3 o)
= < ~ el
) & ®
<

Fig. 4: Relative runtime overhead of CCTAG on SPEC CINT2006

Overhead of integrated protection (6.68%) < the sum of the individuals (13.98%)
Drops to ~4.8% with 8KB cache, lower than PUMP (~8.8%) and CHERI (~30.5%)

7.93% on SPEC CINT2017

13

Conclusion

A Configurable and Combinable Tagged Architecture
Support various memory safety policies
and allow them to co-exist without conflicts
Evaluated with FPGA prototype and four ported defense applications

Lightweight and of low complexity, comparable to ARM MTE
yet much more versatile and powerful

Slightly weaker capabilities compared to PUMP and CHERI, but

Easier and more cost-effective to implement in hardware
Fully compatible with existing software
More efficient at runtime

14

Thanks for listening!

