
CCTAG: Configurable and 
Combinable Tagged Architecture

Zhanpeng Liu, Yi Rong, Chenyang Li, Wende Tan, Yuan Li, 
Xinhui Han, Songtao Yang, Chao Zhang

1

lydorazoe@gmail.com, hanxinhui@pku.edu.cn

mailto:hanxinhui@pku.edu


2

Memory Safety Vulnerabilities Are Prevalent

Chrome’s critical severity
security bugs’ distribution

(#912, From 2015)

CVE Distribution from CVEdetails
(From 2015 – 02/2025)

And they tend to be critically severe

Origin: https://www.chromium.org/Home/chromium-security/memory-safety/

Image Credit: Yuan Li

Origin: https://www.cvedetails.com/vulnerabilities-by-types.php



3

Defensive Mechanisms

Can never find all vulnerabilities (Rice’s Theorem)

Might not be able to fix vulnerabilities in time

Need defensive mechanisms to mitigate Unknown Vulnerabilities

Security
Guarantees

Performance
Overhead

Software
Compatibility

Have to trade-off

Most of the previous works only
target specific vulnerability types or 
prevent certain exploitation steps



4

Attack Model from SoK: Eternal War in Memory [1]

Horizontal Integration:
provide comprehensive protection

Vertical Integration:
defense in depth; better trade-off

Other defensive mechanisms:
NX, CFI, DFI, DIFT, etc.

[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in memory,” in Proceedings of the 2013 IEEE 
Symposium on Security and Privacy, ser. SP ’13.

(Partial) Attack model demonstrating four exploiting types



5

Challenges

Simply stacking defenses will accumulate performance 
penalties, especially for pure-software solutions.

Trends: Hardware-Software Co-design

PAMTE MPKCETTrustZone MPX

Research works: HDFI [2], CHERI [3], PUMP [4, 5], etc.

Achieve both configurability and combinability with rigid hardware constraints

ARM Intel

Maintain a low-complexity and more practical design

[2] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in 2016 IEEE Symposium on 
Security and Privacy (SP), 2016.
[3] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M. 
Roe, S. Son, and M. Vadera, “CHERI: A hybrid 15 capability-system architecture for scalable software compartmentalization,” in 2015 IEEE Symposium 
on Security and Privacy, 2015.
[4] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Architectural support for software-
defined metadata processing,” in Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and 
Operating Systems, ser. ASPLOS ’15.
[5] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Pump: A programmable unit for metadata 
processing,” in Proceedings of the Third Workshop on Hardware and Architectural Support for Security and Privacy, ser. HASP ’14.



6

Our Proposal: CCTAG

Tagged Architecture
Add security metadata to registers and memory granula

Tag verification
rules

Tag modification
rules

Memory 
safety policy 0

Configure to
build Memory 

safety policy 1

Memory 
safety policy 2

……

Co-exist without
conflicts

Combined
Protection

Applied at different
threads, pages, and 
variable granularity 

within cache line



7

Configurable: Towards Versatility

Fine-grained Permissions

Memory Coloring

Data Integrity

Information Flow Tracking

Taint Analysis



8

Configurable: Towards Versatility

Adaptable to different granularities



9

Combinable: Avoid Conflicts

Policy-Centric Mask Design
Instead of per tag bit configuration

Tag Policy: policy mask, granularity, and rules for tag checking and updating

Different pages can enforce different policies



10

Combinable: Avoid Conflicts

The checking and updating values of different policies
can be masked and then ORed together 

More details



11

Prototype Implementation

Based on Rocket Core (RISC-V ISA)

16 bits tag / 64 bytes
(the same ratio as ARM MTE)

Support 4 policies

The required hardware resources are minimal (~8%)
compared to CHERI (> 50%) and PUMP (> 100%)



12

Ported Defense Applications

Ported three other defense applications
Function Pointer & VTable Pointer Integrity
ARM MTE-like Heap Memory Coloring
Dangling Pointer Sweeping

Verified with real world CVEs



13

Performance Evaluation

7.93% on SPEC CINT2017

Fig. 4: Relative runtime overhead of CCTAG on SPEC CINT2006

Overhead of integrated protection (6.68%) < the sum of the individuals (13.98%)

Drops to ~4.8% with 8KB cache, lower than PUMP (~8.8%) and CHERI (~30.5%)



14

Conclusion

A Configurable and Combinable Tagged Architecture

Lightweight and of low complexity, comparable to ARM MTE
yet much more versatile and powerful

Evaluated with FPGA prototype and four ported defense applications 

Support various memory safety policies
and allow them to co-exist without conflicts

Slightly weaker capabilities compared to PUMP and CHERI, but

Easier and more cost-effective to implement in hardware
Fully compatible with existing software
More efficient at runtime



Thanks for listening!

15


