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Memory Safety Vulnerabllities Are Prevalent

And they tend to be critically severe
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Defensive Mechanisms

Can never find all vulnerabilities (Rice’s Theorem)

Might not be able to fix vulnerabilities in time

Need defensive mechanisms to mitigate Unknown Vulnerabilities

Have to trade-off

Most of the previous works only
target specific vulnerability types or
prevent certain exploitation steps
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Attack Model from SoK: Eternal War in Memory [1]
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[1] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in memory,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, ser. SP " 13.



Challenges

Simply stacking defenses will accumulate performance
penalties, especially for pure-software solutions.

Trends: Hardware-Software Co-design

TrustZone | MTE | PA MPX CET MPK

Research works: HDFI [2], CHERI [3], PUMP [4, 5], etc.

Achieve both configurability and combinability with rigid hardware constraints

Maintain a low-complexity and more practical design

[2] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in 2016 IEEE Symposium on
Security and Privacy (SP), 2016.

[3] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton, M.

Roe, S. Son, and M. Vadera, “"CHERI: A hybrid 15 capability-system architecture for scalable software compartmentalization,” in 2015 IEEE Symposium

on Security and Privacy, 2015.

[4] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M. Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Architectural support for software-
defined metadata processing,” in Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS "15.

[5] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Pump: A programmable unit for metadata
processing,” in Proceedings of the Third Workshop on Hardware and Architectural Support for Security and Privacy, ser. HASP '14. 5



Our Proposal: CCTAG

Tagged Architecture
Add security metadata to registers and memory granula
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Configurable: Towards Versatility

TABLE III: Supported tag checking & updating rules.

Constant

Description

MT_CHECK_NONE

MT_CHECK_EQUAL

MT_CHECK_UNCOND

MT_CHECK_COND

L_PROP

S_NONE

S_SET

S_UNSET

S_PROP

On load/store, do not check

On load/store, check if
the memory tag matches with tag in pointer

On load/store, check if
the memory tag is 1( or 0), subject to MT_CHECK_VAL

On load/store, if the tag in pointer is 1, check if
the memory tag is 1 (or 0), subject to L_MT_CHECK_VAL

On load, propagate the memory tag to the register tag
On store, do not change the memory tag

On store, set the memory tag to 1

On store, set the memory tag to 0

On store, propagate the register tag to the memory tag

Fine-grained Permissions
Memory Coloring
Data Integrity
Information Flow Tracking

Taint Analysis



Configurable: Towards Versatility

Adaptable to different granularities
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Figure 1: Memory tag partition.



Combinable: Avoid Conflicts

Policy-Centric Mask Design
Instead of per tag bit configuration

Tag Policy: policy mask, granularity, and rules for tag checking and updating

Different pages can enforce different policies
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Figure 3: Distinct policies coexist without interference.



Combinable: Avoid Conflicts

Policy 0 . Policy Mask:
Config ’ 0601010101
Granular: 3
(4 bits for 8 bytes)
L > Combinational — ot s Final Mask:
> Logic 0b01010000
[ .
Mem addr: 0x0 Access Mask:
Mem granularity: 3 0b11110000

—

Access 0x0 (8 bytes) 16 bytes

The checking and updating values of different policies

can be masked and then ORed together ;



Prototype Implementation

Based on Rocket Core (RISC-V ISA) | 125 || pata (B Tag

16 bits tag / 64 bytes Tag J|_Data Data
(the same ratio as ARM MTE) Tag | Data

Support 4 policies L1 DCache Main Memory

TABLE IV: Hardware resource cost of the baseline and CCTAG when synthesized on an FPGA.

RISC-V Rocket Cores Whole Systems
#LUT % #FF %o #BRAM #LUT %o #FF % #BRAM  Worst Neg Slack (ns)

baseline | 34,039 _ 14,939 _ 20 57,298 _ 48,448 _ 115 0.50
CCTAG | 36,342 +6.77% 16,137 +8.02% 30 59,616 +4.05% 49,701 +2.59% 125 0.53

The required hardware resources are minimal (~8%)
compared to CHERI (> 50%) and PUMP (> 100%)

11



Ported Defense Applications
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Listing 1: Return address protection.
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Function Pointer & VTable Pointer Integrity

ARM MTE-like Heap Memory Coloring
Dangling Pointer Sweeping

Verified with real world CVEs
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Execution Time Overheads (%)
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Fig. 4: Relative runtime overhead of CCTAG on SPEC CINT2006

Overhead of integrated protection (6.68%) < the sum of the individuals (13.98%)
Drops to ~4.8% with 8KB cache, lower than PUMP (~8.8%) and CHERI (~30.5%)

7.93% on SPEC CINT2017
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Conclusion

A Configurable and Combinable Tagged Architecture
Support various memory safety policies
and allow them to co-exist without conflicts
Evaluated with FPGA prototype and four ported defense applications

Lightweight and of low complexity, comparable to ARM MTE
yet much more versatile and powerful

Slightly weaker capabilities compared to PUMP and CHERI, but

Easier and more cost-effective to implement in hardware
Fully compatible with existing software
More efficient at runtime
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Thanks for listening!



