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Prior Approach #1: Assigning Accelerator to Secure World 
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[1] Park and Lin, “GPUReplay: A 50-kb GPU stack for client ML,” ASPLOS '22
[2] Guo and Lin, “Minimum viable device drivers for ARM TrustZone,” EuroSys '22

Low driver compatibility



Memory

Prior Approach #1: Assigning Accelerator to Secure World 

10

Hypervisor

Secure WorldSecure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Normal World

Accelerator

Linux Kernel Linux Kernel

Custom Runtime

Modifies most priviledged component

[3] Deng et al., “StrongBox: A GPU TEE on Arm endpoints,” CCS '22
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Prior Approach #2: Assigning Accelerator to Normal World 
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We address these with our own system & application-level optimizations!
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We discuss how we address other challenges in the paper!
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Prototype Implementation
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Armv8.2-A Legacy SoC w/ Integrated NPU
(RK3588S, 2021)

Android 13 pKVM + Google CROSVM

We implemented our prototype on a legacy SoC!
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Evaluation #2: Exit-Coalescing DNN Execution Planning

44

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

18 26 38Number of exits: 13



Evaluation #2: Exit-Coalescing DNN Execution Planning

45

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

18 26 38Number of exits: 13 CPU-fallback ops.

*Only part of the model is shown



Evaluation #2: Exit-Coalescing DNN Execution Planning

46

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

18 26 38Number of exits: 13*Only part of the model is shown



Evaluation #2: Exit-Coalescing DNN Execution Planning

47

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

18 26 38Number of exits: 13



Evaluation #2: Exit-Coalescing DNN Execution Planning

48

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

w/
Exit-Coal.

Number of exits: 13 → 2 18 → 10 26 → 16 38 → 20



Evaluation #2: Exit-Coalescing DNN Execution Planning

49

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

w/
Exit-Coal.

Number of exits: 13 → 2 18 → 10 26 → 16 38 → 20

More evaluation results are available in the paper!
(E.g., security analysis, TCB size, IRQ delivery latency, NPU reassignment latency, memory usage, etc.)



Conclusion

• The first system that protects on-device DNNs with virtualization-
based TEEs in legacy SoCs.

• The virtualization overheads could be contained with our system & 
application-level optimizations.

• Check our paper for many more details!
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Thank you!

Myungsuk Moon
myungsuk@yonsei.ac.kr

Artifact: https://github.com/yonsei-sslab/asgard

https://github.com/yonsei-sslab/asgard

