
ASGARD:
Protecting On-Device Deep Neural Networks with

Virtualization-Based Trusted Execution Environments

Myungsuk Moon, Minhee Kim, Joonkyo Jung, Dokyung Song

Problem: On-Device DNN Protection from Device Owners

2

On-device AI protects user data
by not sending it

1

Problem: On-Device DNN Protection from Device Owners

3

Malicious
Device Owners

On-device AI protects user data
by not sending it

1

But on-device DNNs must be protected
because they are sent to user devices

2

Prior Approaches with Arm TrustZone

4

Hypervisor

Secure WorldSecure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Normal World

Linux Kernel Linux Kernel

Memory

Prior Approaches with Arm TrustZone

5

Hypervisor

Secure WorldSecure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Normal World

Accelerator

Linux Kernel Linux Kernel

Assigning to SW1

Memory

Prior Approaches with Arm TrustZone

6

Hypervisor

Secure WorldSecure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Normal World

Accelerator

Linux Kernel Linux Kernel

Assigning to SW1
Accelerator

Assigning to NW2

Memory

Prior Approach #1: Assigning Accelerator to Secure World

7

Hypervisor

Secure WorldSecure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Normal World

Linux Kernel Linux Kernel

Accelerator

Static memory partitioning
~16 MB

Memory

Prior Approach #1: Assigning Accelerator to Secure World

8

Hypervisor

Secure WorldSecure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Normal World

Linux Kernel Linux Kernel

Accelerator

Original DriverOriginal Driver

Low driver compatibility

Static memory partitioning
~16 MB

Memory

Prior Approach #1: Assigning Accelerator to Secure World

9

Hypervisor

Secure WorldSecure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Normal World

Accelerator

Linux Kernel Linux Kernel
Custom Driver

[1] Park and Lin, “GPUReplay: A 50-kb GPU stack for client ML,” ASPLOS '22
[2] Guo and Lin, “Minimum viable device drivers for ARM TrustZone,” EuroSys '22

Low driver compatibility

Memory

Prior Approach #1: Assigning Accelerator to Secure World

10

Hypervisor

Secure WorldSecure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Normal World

Accelerator

Linux Kernel Linux Kernel

Custom Runtime

Modifies most priviledged component

[3] Deng et al., “StrongBox: A GPU TEE on Arm endpoints,” CCS '22

Memory

Prior Approach #2: Assigning Accelerator to Normal World

11

Hypervisor

Secure WorldSecure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Normal World

Linux Kernel Linux Kernel

Accelerator
Assigning to NW2

Prior Approach #2: Assigning Accelerator to Normal World

12

Softmax

Accelerator

Normal World

[4] Mo et al., “DarkneTZ: Towards model privacy at the edge using trusted execution environments,” MobiSys '20

Conv
ReLU

Conv
ReLU

Conv
ReLU

…
CPU

Secure World

Input

Output

Cost

Prior Approach #2: Assigning Accelerator to Normal World

13

Softmax

Accelerator

Normal World

ReLU
…

CPU

Secure World

Input

Output

Cost

Conv
ReLU

Conv
ReLU

…

Offload

Offload

Less-sensitive
operators

Sensitive operators

Conv

[4] Mo et al., “DarkneTZ: Towards model privacy at the edge using trusted execution environments,” MobiSys '20

Prior Approach #2: Assigning Accelerator to Normal World

14

Softmax

Accelerator

Normal World

ReLU
CPU

Secure World

Input

Output

Cost

Conv
ReLU

Conv
ReLU

…

Less-sensitive
operators

Sensitive operators

ConvNo full model protection

[4] Mo et al., “DarkneTZ: Towards model privacy at the edge using trusted execution environments,” MobiSys '20

Prior Approach #2: Assigning Accelerator to Normal World

15

Conv

ReLU

Conv

ReLU

Conv

…

Linear operator
w/ obfuscated weights

CPU

Secure World

[5] Sun et al., “ShadowNet: A secure and efficient on-device model inference system for convolutional neural networks,” IEEE S&P '23

Accelerator

Normal World

Input

ReLU

ReLU

Prior Approach #2: Assigning Accelerator to Normal World

16

Conv

Conv

Conv

…

CPU

Secure World

Accelerator

Normal World

Input

Additional runtime overhead

Deobfuscate tensor

Obfuscate tensor

[5] Sun et al., “ShadowNet: A secure and efficient on-device model inference system for convolutional neural networks,” IEEE S&P '23

Linear operator
w/ obfuscated weights

Memory

Our Approach: Protection with Virtualization-Based TEE

17

Hypervisor

Apps Apps

EL1

EL2

EL3

EL0

Linux Kernel

Secure Monitor

Vendor-Specialized
Trusted OS

Trusted Apps

Linux Kernel

TEE

REE

Hypervisor

Memory

Our Approach: Protection with Virtualization-Based TEE

18

Hypervisor

Apps Apps

EL1

EL2

EL3

EL0

Linux Kernel

Secure Monitor

Vendor-Specialized
Trusted OS

Trusted Apps

Linux Kernel

Enforces isolation

Virtual machine

TEE

REE

Hypervisor

Hypervisor

Memory

Our Approach: Protection with Virtualization-Based TEE

19

Apps Apps

EL1

EL2

EL3

EL0

Linux Kernel Linux Kernel

Direct & dynamic assignment

Secure Monitor

Vendor-Specialized
Trusted OS

Trusted Apps

Accelerator

Reassign
TEE

REE

Hypervisor

Hypervisor

Memory

Our Approach: Advantages

20

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Linux Kernel Linux Kernel

Accelerator

Original Driver Good driver compatibility1

Secure Monitor TEE

REE

Hypervisor

Hypervisor

Memory

Our Approach: Advantages

21

Secure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Linux Kernel Linux Kernel

Accelerator

Original Driver Good driver compatibility1

No modification to the
most privileged monitor

2

TEE

REE

Hypervisor

Hypervisor

Memory

Our Approach: Advantages

22

Secure Monitor

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Linux Kernel Linux Kernel

Accelerator

Original Driver Good driver compatibility1

No modification to the
most privileged monitor

2

Full model protection3

TEE

REE

Hypervisor

Hypervisor

Secure Monitor

Memory

Our Approach: Challenges

23

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Linux Kernel Linux Kernel

Accelerator

Original Driver

Run-time overhead1

TEE

REE

Hypervisor

Hypervisor

Secure Monitor

Memory

24

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Linux Kernel Linux Kernel

Accelerator

Original Driver

Run-time overhead1

TCB overhead2

Our Approach: Challenges

TEE

REE

Hypervisor

Hypervisor

Secure Monitor

Memory

Our Approach: Challenges

25

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Linux Kernel Linux Kernel

Accelerator

Original Driver

Run-time overhead1

TCB overhead2

• from interrupt delivery
• from reassignment

• from using commodity OS
• from securely supporting accelerator

TEE

REE

Hypervisor

Hypervisor

Secure Monitor

Memory

Our Approach: Challenges

26

Apps

Vendor-Specialized
Trusted OS

Apps Trusted Apps

EL1

EL2

EL3

EL0

Linux Kernel Linux Kernel

Accelerator

Original Driver

Run-time overhead1

TCB overhead2

• from interrupt delivery
• from reassignment

• from using commodity OS
• from securely supporting accelerator

TEE

REE

Hypervisor

We address these with our own system & application-level optimizations!

Memory

System-level Optimization: Fast & Secure Reassignment

27

Apps Apps

EL1

EL2

EL0

Linux Kernel Linux Kernel

Accelerator

DMA

Hypervisor

TEE

REE

Hypervisor

Hypervisor

Memory

System-level Optimization: Fast & Secure Reassignment

28

Apps Apps

EL1

EL2

EL0

Linux Kernel Linux Kernel

Accelerator

IOMMU
Exclusive DMA

PT
E

IOMMU Driver

TEE

REE

Hypervisor
(& hyp-owned)

Hypervisor

Memory

System-level Optimization: Fast & Secure Reassignment

29

Apps Apps

EL1

EL2

EL0

Linux Kernel Linux Kernel

Accelerator

IOMMU
Exclusive DMA

PT
E

Trusted
IOMMU Driver

Untrusted
IOMMU Driver

Out of TCB:
Resource management

TEE

REE

Hypervisor
(& hyp-owned)

IOMMU

Hypervisor

Memory

System-level Optimization: Fast & Secure Reassignment

30

Apps Apps

EL1

EL2

EL0

Linux Kernel Linux Kernel

Accelerator

PT
E

Trusted
IOMMU Driver

Untrusted
IOMMU Driver

Linux Kernel

Apps

TEE #1

REE

TEE #2

Hypervisor
(& hyp-owned)

IOMMU

Hypervisor

Memory

31

Apps Apps

EL1

EL2

EL0

Linux Kernel Linux Kernel

Accelerator

Trusted
IOMMU Driver

Untrusted
IOMMU Driver

Linux Kernel

Apps

PT
E

Unmap & map

Reassigned

System-level Optimization: Fast & Secure Reassignment

TEE #1

REE

TEE #2

Hypervisor
(& hyp-owned)

IOMMU

Hypervisor

Memory

32

Apps Apps

EL1

EL2

EL0

Linux Kernel Linux Kernel

Accelerator

Trusted
IOMMU Driver

Untrusted
IOMMU Driver

Linux Kernel

Apps

PT
E

Reuse existing PTEs

Reassigned

PT
E

System-level Optimization: Fast & Secure Reassignment

TEE #1

REE

TEE #2

Hypervisor
(& hyp-owned)

IOMMU

Hypervisor

Memory

33

Apps Apps

EL1

EL2

EL0

Linux Kernel Linux Kernel

Accelerator

Trusted
IOMMU Driver

Untrusted
IOMMU Driver

Linux Kernel

Apps

PT
E

PT
E

Reset Control

Full reset2

Restore access3Remove access1

System-level Optimization: Fast & Secure Reassignment

TEE #1

REE

TEE #2

Hypervisor
(& hyp-owned)

IOMMU

Hypervisor

Memory

Challenge: Run-time Overhead from Interrupt Delivery

34

Apps Apps

EL1

EL2

EL0

Linux Kernel Linux Kernel

Accelerator

Linux Kernel

Apps

PT
E

PT
E

Virtual IRQ
1

3
2Out of TCB:

IRQ management

Physical IRQ

TEE #1

REE

TEE #2

Hypervisor
(& hyp-owned)

App-level Optimization: Exit-Coalescing Execution Planning

35

1

Input

Output

9

5 8

4

7

63

2

10

NPU

CPU

App-level Optimization: Exit-Coalescing Execution Planning

36

1

Input

Output

9

5 8

4

7

63

2

10

NPU

CPU

IRQs are delivered

App-level Optimization: Exit-Coalescing Execution Planning

37

3

1, 2 4, 5

6

7, 8

9

10NPU

CPU

Time

Default Planning

1

Input

Output

9

5 8

4

7

63

2

10

NPU

CPU

Expensive VM entry & exits

App-level Optimization: Exit-Coalescing Execution Planning

38

3

1, 2 4, 5

6

7, 8

9

10NPU

CPU

1, 2, 4, 5, 7, 8 10NPU

CPU 3, 6, 9

Time

Time

Exit-Coalescing Planning

Default Planning

Coalesced CPU-fallback operators

1

Input

Output

9

5 8

4

7

63

2

10

NPU

CPU

Expensive VM entry & exits

Solution #2: Exit-Coalescing DNN Execution Planning

39

3

1, 2 4, 5

6

7, 8

9

10NPU

CPU

1, 2, 4, 5, 7, 8 10NPU

CPU 3, 6, 9

Time

Time

Exit-Coalescing Planning

Default Planning

Coalesced CPU-fallback operators

1

Input

Output

9

5 8

4

7

63

2

10

NPU

CPU

Expensive VM entry & exits

We discuss how we address other challenges in the paper!

Prototype Implementation

40

Armv8.2-A Legacy SoC w/ Integrated NPU
(RK3588S, 2021)

Android 13 pKVM + Google CROSVM

Prototype Implementation

41

Armv8.2-A Legacy SoC w/ Integrated NPU
(RK3588S, 2021)

Android 13 pKVM + Google CROSVM

We implemented our prototype on a legacy SoC!

Evaluation #1: DNN Inference Latency with MobileNetV1

42

REE

TEE

Deobfuscate DNN Inference Obfuscate

Prior Approach #2: Assigning Accelerator to NW

[5] Sun et al., “ShadowNet: A secure and efficient on-device model inference system for convolutional neural networks,” IEEE S&P '23

Evaluation #1: DNN Inference Latency with MobileNetV1

43

Prior Approach #2: Assigning Accelerator to NW

Ours

REE

TEE

Latency (ms)

TEE

REE

4.33x faster w/ MobileNetV1!

Deobfuscate DNN Inference Obfuscate

NPU Reassignment IRQ Delivery

[5] Sun et al., “ShadowNet: A secure and efficient on-device model inference system for convolutional neural networks,” IEEE S&P '23

Evaluation #2: Exit-Coalescing DNN Execution Planning

44

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

18 26 38Number of exits: 13

Evaluation #2: Exit-Coalescing DNN Execution Planning

45

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

18 26 38Number of exits: 13 CPU-fallback ops.

*Only part of the model is shown

Evaluation #2: Exit-Coalescing DNN Execution Planning

46

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

18 26 38Number of exits: 13*Only part of the model is shown

Evaluation #2: Exit-Coalescing DNN Execution Planning

47

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

18 26 38Number of exits: 13

Evaluation #2: Exit-Coalescing DNN Execution Planning

48

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

w/
Exit-Coal.

Number of exits: 13 → 2 18 → 10 26 → 16 38 → 20

Evaluation #2: Exit-Coalescing DNN Execution Planning

49

SSD-
MobileNetV1

SSD-
InceptionV2

Lite Transformer
Encoder

Lite Transformer
Decoder

REE w/o
Exit-Coal.

w/
Exit-Coal.

Number of exits: 13 → 2 18 → 10 26 → 16 38 → 20

More evaluation results are available in the paper!
(E.g., security analysis, TCB size, IRQ delivery latency, NPU reassignment latency, memory usage, etc.)

Conclusion

• The first system that protects on-device DNNs with virtualization-
based TEEs in legacy SoCs.

• The virtualization overheads could be contained with our system &
application-level optimizations.

• Check our paper for many more details!

50

Thank you!

Myungsuk Moon
myungsuk@yonsei.ac.kr

Artifact: https://github.com/yonsei-sslab/asgard

https://github.com/yonsei-sslab/asgard

