A NDSS

BitShield: Defending Against Bit-Flip
Attacks on DNN Executables

Yanzuo Chen', Yuanyuan Yuan', Zhibo Liuf, Sihang Huf, Tianxiang Li¥, Shuai Wang!

"The Hong Kong University of Science and Technology,
"Huawei Technologies

® THE HONG KONG

(U UNIVERSIY OF SCIENCE | cOMPUTER SCIENCE & ENGINEERING

i B

S NDss

Zs Crime Detector

Yes, putting pineapple on pizza is a crime. It's a violation
of the sacred bond between dough, sauce, and cheese.
While some may argue that the combination of sweet and
savory flavors is delicious, true pizza aficionados know it's

an offense to tradition.

A NDSSs

“High-Level” Attacks on Al/ML Systems

* Adversarial examples * Model stealing
* Backdoor * Model replication
* Data poisoning * Membership inference

A NDSS

{-{\
Bit-Flip Attacks (BFAs)

A NDSS

Bit-Flip Attacks (BFAs)

* Flipping data bits in the memory (DRAM)

* Rowhammer: “Hardware fault injection” attack
* Software-triggered hardware bug: Special access patterns

* Current leakage between DRAM cells
« DDR3v DDR4v ECCY DDR5V..

A NDSS

BFAs on DNN Models

* Yes, researchers have done this
* Model weights: IEEE 754 (full-precision) or integers (quantised)
* Flipped bits — distorted weights — altered inference results
* And there've also been many defences

0—1

sign exponent (8 bits) ¢ A fraction (23 bits)
|1

|
olof1|1(2]|1|2]|0|0]lo|1]oO[0|0[0|0|0O|O|O|O|O|O|OfO|O|O|0O|O|O|0O|O] = 0.15625

31 30 23 22 (bit index) 0

A NDSS

Not the Whole Story...

(Enter DNN executables)

A NDSS

DNN Executables

A NDSS

DNN Executables

e Compiled from DNN models
* By “deep learning (DL) compilers” Bvm Oclow

A NDSSs

DNN Executables

e Compiled from DNN models
* By “deep learning (DL) compilers” Bvm Oclow

dWs$s

Qualcomm

* Wanted for their performance
* Optimised at the computational graph level
* Optimised for the target hardware platform

IFI' MARVELL

A NDSSs

BFAs on DNN Executables?

* DNN executables: compiled code (e.g., DNN operators)

* Current offensive research: attack surface overlooked
* Only consider flips in model weights, not in code —

Note: We published the first offensive paper to close the gap also at NDSS 2025.

A NDSSs N

Dangerous Bit Flips in Code

el el e
mE o 0O U WN

A NDSS

Model Dataset | #Vuln || % Vuln
ResNet50 CIFARI10 | 12070 3.52
ResNet50 MNIST | 13156 3.83
ResNet50 Fashion | 14223 4.14
ResNet50 ImageNet | 22008 4.79
GoogleNet CIFARI10 | 28926 2.97
GoogLeNet MNIST | 30401 3.13
GooglLeNet Fashion | 24381 2.51
DenseNet121 CIFARI10 | 40514 2.79
DenseNet121 MNIST | 45369 3.13
DenseNet121 Fashion | 44800 3.09
Q-ResNet50 CIFAR10 | 15846 2.17
Q-GoogLeNet | CIFAR10 | 11588 0.84
Q-DenseNet121 | CIFAR10 | 13944 0.52
Avg. - - 2.88

* Pervasive
* Single-bit corruption

* Equally impact quantised models
* (Previously considered more robust)

11

BFAs on DNN Executables?

* DNN executables: compiled code (e.g., DNN operators)

* Current defensive research: can't protect them
* Only protect weight integrity & may be bypassed —

Note: We published the first offensive paper to close the gap also at NDSS 2025.

A NDSSs -

Unprotected DNN Executables: An Example

A NDSSs

Addr | Opcode bytes x86 assembly instructions
Ox98| F7 FE idiv esi
Ox9A189|C3 mov ebx, eax
0X9(Q| 44 8D 7F o1 lea r15d, [rdi + Ox1]
OxAQ| 44 OF AF F8 imul ri15d, eax

(a) Assembly code before BFA.
Ox98| F7 FE idiv esi
0X9A{§§: leave ;; releases stack frame
0X9B| C3 ret ;; return to caller
OxAQ| 44 8D 7F o1 lea r15d, [rdi + Ox1]
OXA4| 44 OF AF F8 imul ri15d, eax

(b) Assembly code after BFA.

13

fa

)

DNN Exe's: A More Demanding Case

* Bit flips in..
* Weights (still works)
* Code (new, more dangerous)

14

fa

)

DNN Exe's: A More Demanding Case

* Bit flips in.. * Requirements for Defence
* Weights (still works)
* Code (new, more dangerous)

14

fa

)

DNN Exe's: A More Demanding Case

* Bit flips in.. * Requirements for Defence
* Weights (still works) * Unified, generic
* Code (new, more dangerous)

14

fa

)

DNN Exe's: A More Demanding Case

* Bit flips in.. * Requirements for Defence
* Weights (still works) * Unified, generic
* Code (new, more dangerous) * Self-defending

14

fa

)

DNN Exe's: A More Demanding Case

* Bit flips in.. * Requirements for Defence
* Weights (still works) * Unified, generic
* Code (new, more dangerous) * Self-defending

* Highly applicable

14

DNN Exe's: A More Demanding Case

* Bit flips in.. * Requirements for Defence
* Weights (still works) * Unified, generic
* Code (new, more dangerous) * Self-defending

* Highly applicable
* Performant

A NDSS

14

DNN Exe's: A More Demanding Case

* Bit flips in.. * Requirements for Defence
* Weights (still works) * Unified, generic
* Code (new, more dangerous) * Self-defending

* Highly applicable
* Performant

* Need a new defence that
meet all of them!

A NDSS

14

(Always has been)

A NDSSs N

fa

&)

A Perspective of Semantics

16

fa

)

A Perspective of Semantics

* DNN predictions: code logic + model weights

16

fa

)

A Perspective of Semantics

* DNN predictions: code logic + model weights

* BFAs (weights/code) are processes to change semantics

16

fa

)

A Perspective of Semantics

* DNN predictions: code logic + model weights
* BFAs (weights/code) are processes to change semantics

* But how to capture the semantics?

16

Gradients

A NDSS

Gradients

Train w/ .4 o

—_—
Gradients

(\/)
A
\ AIX S
Y @
SN
N\

A\ AvZ

A NDSSs

Gradients

o 0
Train w/ s
' ﬁ .;:A :\.l ‘
\‘,’rl{{l/” Gradients \\y

Runtime

A NDSSs

Capturing DNN Semantics

A NDSS

fa

)

Capturing DNN Semantics

* Model output: y

19

fa

)

Capturing DNN Semantics

* Model output: y

o Prepare vector u = [1/\u\v i 1/IU\]

19

fa

)

Capturing DNN Semantics

* Model output: y
° Prepare vector u = [1/\u\v e 1/IU\]

* Measure distance: Dy, (u, y)

19

fa

)

Capturing DNN Semantics

* Model output: y

o Prepare vector u = [1/\u\v o 1/IU\]

* Measure distance: Dy (u, y)

* Backpropagate to layer i: 9Dy (u, y)/0W; — £;-norm

19

fa

)

Capturing DNN Semantics

* Model output: y

* Prepare vector u = | 1/\u\, 1/|u\ |

* Measure distance: Dy (u, y)

* Backpropagate to layer i: 9Dy (u, y)/0W; — £;-norm

* Record normal semantics using training data

19

02.52% Mitigated

Weights-Based BFAs

A NDSS

fa

1)

Dealing with Code-Based BFAs

* Recall: Code flips may allow defence bypasses

* Just semantic checks are not enough

* = Need more self-defence mechanisms

21

Adding Self-Defence

SSSSSSSSSSSSSS

22

Adding Self-Defence

* “Avalanche effect” from cryptography
e Slight disturbance gets amplified greatly

SSSSSSSSSSSSSS

22

Adding Self-Defence

* “Avalanche effect” from cryptography
e Slight disturbance gets amplified greatly

* Fuse code checksum into semantics calculation
* Code flips — checksum — captured semantics

A NDSS 2

SYMPOSIUM/2025

fa

)

Fusing Code Checksum into Semantics

* Semantics capturing (simplified, w.l.o.g.):0

W % v

23

fa

)

Fusing Code Checksum into Semantics

* Semantics capturing (simplified, w.l.o.g)o = W % v

o = M~ (c*, M(co, W)) % v

23

Fusing Code Checksum into Semantics
* Semantics capturing (simplified, w.l.o.g)o = W % v

Masking /unmasking (inverse operations, e.g., XOR)
0 = M_l‘(C*vM(C(LW)) *x U

A NDSSs

Fusing Code Checksum into Semantics

* Semantics capturing (simplified, w.l.o.g)o = W % v

Masking /unmasking (inverse operations, e.g., XOR)

O

Runtime checksum

A NDSSs

M=,

M

(co, W)) % v

Embedded checksum

23

fa

)

One More Thing

* Desirable to prevent potential damage early, if possible

* Checksum revisited: A checksum canary
* Insert plain checksum checks!
* — Halt execution upon mismatch

24

Evaluation

A NDSS

Threat Model & Setup

A NDSS

fa

)

Threat Model & Setup

 All attackers are white-box, adaptive

* Code-based attackers: Aggressive, stealthy
* Weights-based attacker (existing SOTA)

26

fa

)

Threat Model & Setup

 All attackers are white-box, adaptive

* Code-based attackers: Aggressive, stealthy
* Weights-based attacker (existing SOTA)

* 5 DRAM profiles (from existing surveys)

26

fa

)

Threat Model & Setup

 All attackers are white-box, adaptive

* Code-based attackers: Aggressive, stealthy
* Weights-based attacker (existing SOTA)

* 5 DRAM profiles (from existing surveys)

* Metrics: Attack success rate, post-attack accuracy, overhead
* Successful attack: Accuracy drop = 3%

26

fa

1)

Results

27

a
|

)

Results

* Attack success rates
* Code-based (both types): 100% — 0%
* Weights-based: 96.24% — 7.48%

27

fa)
A

way

Results

* Attack success rates
* Code-based (both types): 100% — 0%
* Weights-based: 96.24% — 7.48%

* Post-attack accuracy
* Code-based, aggressive: 12.69% — n/a
* Code-based, stealthy: 80.37%% — n/a
* Weights-based: 10.95% — 54.10%

27

Results

e Attack success rates Model Overhead (%)
CIFAR10 2.66
* Code-based (both types): 100% — 0% MNIST 187
. ResNet50 Fashi 2.38
* Weights-based: 96.24% — 7.48% o ImageNet 822
Avg. 4.33
CIFARI10 0.97
MNIST 0.43
* Post-attack accuracy GoogheNet | Fashion 0.64
_ Avg. 0.68
* Code-based, aggressive: 12.69% — n/a CIFARIO 276
* Code-based, stealthy: 80.37%% — n/a DenseNetI2l | g hion 222
] Avg. 2.52
* Weights-based: 10.95% — 54.10% Ave. - 2.47

A NDSSs

fa

)

Making Sense of the Results

* All code-based & 93% weights-based attacks mitigated

* ASRs decrease from 99% to 2%
* Remaining (few) successful attempts limited greatly

* Low overhead for practical use (2%)

28

fa

)

In This Talk

* BFAs on DNN executables and challenges for defences
* Semantic-based defence to protect against old & new attacks

* Highly effective, low overhead method

29

Thank You!

* PDF, source code, other materials
* Visit yanzuo.ch/debfad

* Contact me
* Yanzuo Chen: ychenjo@cse.ust.hk
* Homepage: yanzuo.ch

BitShield: Defending Against Bit-Flip Attacks on DNN Executables.
By Yanzuo Chen, Yuanyuan Yuan, Zhibo Liu, Sihang Hu, Tianxiang Li, and Shuai Wang.

A NDSSs o

mailto:ychenjo@cse.ust.hk

TABLE IV

ATTACK RESULTS ON VANILLA DNN EXECUTABLES WITHOUT PROTECTION.

Attack Success Rate (%)

Attacker Type ResNet50 . GooglLeNet _ DenseNet121 . Avg

CIFAR10 MNIST Fashion ImageNet | CIFAR10 MNIST Fashion | CIFAR10 MNIST Fashion ’
Aggressive code-based 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 | 100.00
Stealthy code-based 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 | 100.00
Weights-based 98.80 91.60 94.00 96.00 98.80 92.40 96.80 98.00 97.20 98.80 96.24
Avg. 99.60 97.20 98.00 98.67 99.60 97.47 98.93 99.33 99.07 99.60 98.75

Accuracy after Attack (%)
Attacker Type ResNet50 . GooglLeNet ' DenseNet121 . Ave.
CIFARIO MNIST Fashion ImageNet | CIFAR10 MNIST Fashion | CIFAR10 MNIST Fashion
Aggressive code-based 18.09 13.85 15.31 2.59 12.11 11.80 12.61 11.98 13.31 15.26 12.69
Stealthy code-based 82.17 89.90 78.54 63.46 72.30 82.44 83.75 74.19 91.83 85.14 80.37
Weights-based 18.26 11.07 10.17 2.94 12.95 10.28 10.45 10.79 11.40 11.17 10.95
TABLE V
ATTACK RESULTS ON DNN EXECUTABLES PROTECTED BY BITSHIELD.
Attack Success Rate (%)

Attacker Type ResNet50 . GoogLeNet ' DenseNet121 . Avg
CIFARIO0O MNIST Fashion ImageNet | CIFAR1I0 MNIST Fashion | CIFAR10 MNIST Fashion ’
Aggressive code-based 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Stealthy code-based 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Weights-based 16.00 1.20 3.20 6.40 24.80 1.60 1.20 2.80 12.80 4.80 7.48
Avg. 5.33 0.40 1.07 2.13 8.27 0.53 0.40 0.93 4.27 1.60 2.49

Accuracy after Attack (%)

Attacker Type ResNet50 GoogLeNet DenseNet121 Avg
CIFARIO MNIST Fashion ImageNet | CIFAR1I0 MNIST Fashion | CIFAR10 MNIST Fashion ’
Aggressive code-based - - - - - - - - - - -
Stealthy code-based - - - - - - - - - - -
Weights-based 66.35 45.64 31.25 51.54 74.84 90.00 68.72 40.00 37.31 35.38 | 54.10

A NDSSs

31

TABLE VI
BREAKDOWN OF THE ATTACK OUTCOMES ON PROTECTED
RESNETS50(RN), GOOGLENET(GN), AND DENSENET121(DN).

Models Sum
Attacker Outcome RN GN DN (Proportion)
Profiling failed 422 1062 862 2346 (31.28%)
SIG 386 342 526 1254 (16.72%)
Code-based Canary 1049 96 112 1257 (16.76%)
Accuracy 143 0 0 143 (1.91%)
Success 0 0 0 0 (0%)
Profiling failed 49 24 15 88 (1.17%)
. SIG 884 657 684 2225 (29.67%)
Weights-based | 4 racy 0 0 0 0 (0%)
Success 67 69 51 187 (2.49%)
Sum 3000 | 2250 | 2250 | 7500 (100.00%)

A NDSSs

32

TABLE VII
EFFECTS OF DIFFERENT e VALUES.

AASR (%)

€ Model FA (%) | MF (%) Code-based | Weights-based | Avg.
0.0 ResNet50 0.00 6.93 0.00 0.00 0.00

" | GoogLeNet | 0.20 6.16 0.00 0.00 0.00
0.3 ResNet50 0.00 1.32 - - -

"~ | GoogLeNet | 0.00 0.01 - - -
0.4 ResNet50 0.00 0.81 0.00 0.00 0.00

" | GoogLeNet | 0.00 0.00 0.00 0.00 0.00
0.5 ResNet50 0.00 0.37 0.00 0.00 0.00

"~ | GoogLeNet | 0.00 0.00 0.00 0.00 0.00
0.6 ResNet50 0.00 0.27 0.00 0.00 0.00

" | GoogLeNet | 0.00 0.00 0.00 0.00 0.00
1.0 ResNet50 0.00 0.00 0.00 0.00 0.00

" | GoogLeNet | 0.00 0.00 0.00 +8.00 +4.00

1) ResNet50 and GoogleNet are trained on CIFAR10 and MNIST datasets.
2) FA: false alarm of test inputs, MF: mis-flag of inputs from other datasets.
3) AASR: changed ASR w.r.t. e = 0.3 in main experiments.

A NDSSs

a
|

)

TABLE VIII
COMPARISON WITH PRIOR DEFENSES ON ADAPTIVE WEIGHTS-BASED
ATTACKS. ONLY WEIGHTS-BASED ATTACKS ARE CONSIDERED, AS NONE
OF THE PREVIOUS METHODS PROTECT AGAINST CODE-BASED BFAS.

Performance | Acc. |Mitigation
Work Method overhead (%) |loss (%) | rate (%)
Aegis [46] Enhance structure NA (< 0) 1.24 63.76
DeepAttest [3] Fingerprint 7.20 < 0.09 90.00
NeuroPots [30] | Enhance weights + fingerprint 3.93 1.38 100.00
Ours Semantic integrity 2.47 NA (0) 92.52

34

