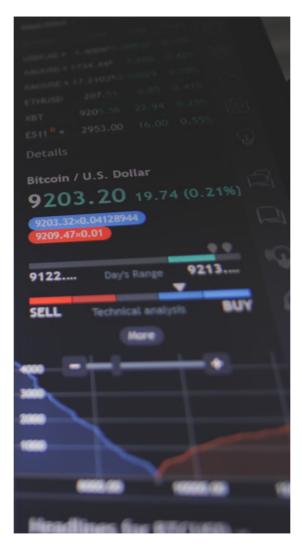

BitShield: Defending Against Bit-Flip Attacks on DNN Executables


Yanzuo Chen[†], Yuanyuan Yuan[†], Zhibo Liu[†], Sihang Hu[‡], Tianxiang Li[‡], Shuai Wang[†]

[†]The Hong Kong University of Science and Technology, [‡]Huawei Technologies

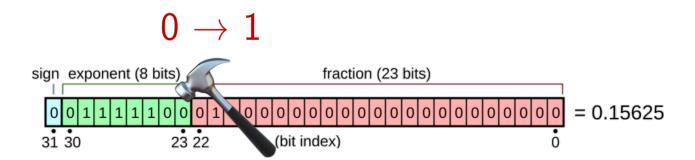
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Yes, putting pineapple on pizza is a crime. It's a violation of the sacred bond between dough, sauce, and cheese. While some may argue that the combination of sweet and savory flavors is delicious, true pizza aficionados know it's an offense to tradition.

"High-Level" Attacks on AI/ML Systems

- Adversarial examples
- Backdoor
- Data poisoning
- :

- Model stealing
- Model replication
- Membership inference
- •


Bit-Flip Attacks (BFAs)

- Flipping data bits in the memory (DRAM)
- Rowhammer: "Hardware fault injection" attack
 - Software-triggered hardware bug: Special access patterns
 - Current leakage between DRAM cells
 - DDR3 / DDR4 / ECC / DDR5 / ...

BFAs on DNN Models

- Yes, researchers have done this
 - Model weights: IEEE 754 (full-precision) or integers (quantised)
 - Flipped bits \rightarrow distorted weights \rightarrow altered inference results
 - And there've also been many defences

Not the Whole Story...

(Enter DNN executables)

DNN Executables

DNN Executables

- Compiled from DNN models
 - By "deep learning (DL) compilers"

DNN Executables

- Compiled from DNN models
 - By "deep learning (DL) compilers"

- Wanted for their performance
 - Optimised at the computational graph level
 - Optimised for the target hardware platform

BFAs on DNN Executables?

- DNN executables: compiled code (e.g., DNN operators)
- Current offensive research: attack surface overlooked • Only consider flips in model weights, not in code \rightarrow

- Current defensive research: can't protect them
 - Only protect weight integrity & may be bypassed ightarrow

Dangerous Bit Flips in Code

	Model	Dataset	#Vuln	%Vuln
1	ResNet50	CIFAR10	12070	3.52
2	ResNet50	MNIST	13156	3.83
3	ResNet50	Fashion	14223	4.14
4	ResNet50	ImageNet	22008	4.79
5	GoogLeNet	CIFAR10	28926	2.97
6	GoogLeNet	MNIST	30401	3.13
7	GoogLeNet	Fashion	24381	2.51
8	DenseNet121	CIFAR10	40514	2.79
9	DenseNet121	MNIST	45369	3.13
10	DenseNet121	Fashion	44800	3.09
11	Q-ResNet50	CIFAR10	15846	2.17
12	Q-GoogLeNet	CIFAR10	11588	0.84
13	Q-DenseNet121	CIFAR10	13944	0.52
14	Avg.	-	-	2.88
		•	•	

- Pervasive
- Single-bit corruption
- Equally impact quantised models
 - (Previously considered more robust)

BFAs on DNN Executables?

- DNN executables: compiled code (e.g., DNN operators)
- Current offensive research: attack surface overlooked • Only consider flips in model weights, not in code \rightarrow
- Current defensive research: can't protect them
 - Only protect weight integrity & may be bypassed ightarrow

Unprotected DNN Executables: An Example

Addr	Opcode bytes	x86 assembly instructions	
0x98	F7 FE	idiv esi	
0x9A	89 C3	mov ebx, eax	
ØX90	44 8D 7F 01	lea r15d, [rdi + 0x1]	
0xA0	44 0F AF F8	imul r15d, eax	
	(a) Assembly code before BFA.		
0x98	F7 FE	idiv <mark>esi</mark>	
0x9A	•C9	<pre>leave ;; releases stack frame</pre>	
ØX9B	C3	ret ;; return to caller	
0xA0	44 8D 7F 01	lea r15d, [rdi + 0x1]	
0XA4	44 0F AF F8	imul r15d, eax	

(b) Assembly code after BFA.

- Bit flips in...
 - Weights (still works)
 - Code (new, more dangerous)

- Bit flips in...
 - Weights (still works)
 - Code (new, more dangerous)

• Requirements for Defence

- Bit flips in...
 - Weights (still works)
 - Code (new, more dangerous)

- Requirements for Defence
 - Unified, generic

- Bit flips in...
 - Weights (still works)
 - Code (new, more dangerous)
- Requirements for Defence
 - Unified, generic
 - Self-defending

- Bit flips in...
 - Weights (still works)
 - Code (new, more dangerous)

- Requirements for Defence
 - Unified, generic
 - Self-defending
 - Highly applicable

- Bit flips in...
 - Weights (still works)
 - Code (new, more dangerous)

- Requirements for Defence
 - Unified, generic
 - Self-defending
 - Highly applicable
 - Performant

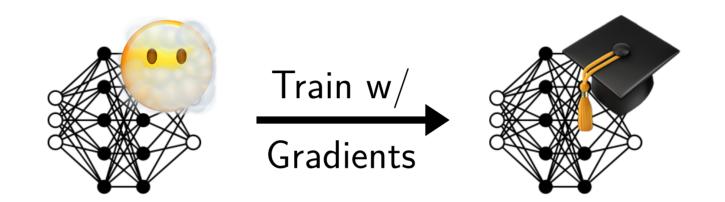
- Bit flips in...
 - Weights (still works)
 - Code (new, more dangerous)

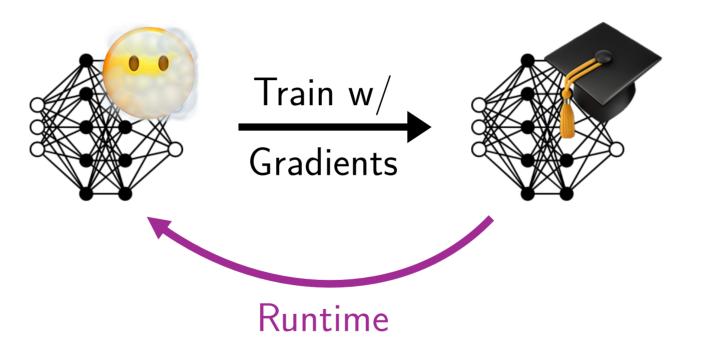
- Requirements for Defence
 - Unified, generic
 - Self-defending
 - Highly applicable
 - Performant
- Need a new defence that meet all of them!

A NDSS SYMPOSIUM/2025 (Always has been)

• DNN predictions: code logic + model weights

- DNN predictions: code logic + model weights
- BFAs (weights/code) are processes to change semantics


- DNN predictions: code logic + model weights
- BFAs (weights/code) are processes to change semantics
- But how to capture the semantics?



Gradients

Gradients

• Model output: y

- Model output: y
- Prepare vector $\mathbf{u} = \left[\frac{1}{|\mathbf{u}|}, \frac{1}{|\mathbf{u}|} \right]$

- Model output: y
- Prepare vector u = [$^1/_{\mid u \mid}$, ..., $^1/_{\mid u \mid}$]
- Measure distance: $D_{KL}(u, y)$

- Model output: y
- \bullet Prepare vector u = [$^1/_{|u|}\text{, ..., }^1/_{|u|}$]
- Measure distance: $D_{KL}(u, y)$
- Backpropagate to layer i: $\partial D_{KL}(u, y) / \partial W_i \rightarrow \ell_1$ -norm

- Model output: y
- Prepare vector u = [$^1/_{\mid u\mid}$, ..., $^1/_{\mid u\mid}$]
- Measure distance: $D_{KL}(u, y)$
- Backpropagate to layer i: $\partial D_{KL}(u, y) / \partial W_i \rightarrow \ell_1$ -norm
- Record normal semantics using training data

92.52% Mitigated

Weights-Based BFAs

Dealing with Code-Based BFAs

- Recall: Code flips may allow defence bypasses
- Just semantic checks are not enough

• \Rightarrow Need more self-defence mechanisms

Adding Self-Defence

Adding Self-Defence

- "Avalanche effect" from cryptography
 - Slight disturbance gets amplified greatly

Adding Self-Defence

- "Avalanche effect" from cryptography
 - Slight disturbance gets amplified greatly

- Fuse code checksum into semantics calculation
 - Code flips \rightarrow checksum \rightarrow captured semantics

• Semantics capturing (simplified, w.l.o.g.): $o = W \star v$

• Semantics capturing (simplified, w.l.o.g.): $o = W \star v$

$$o = \mathcal{M}^{-1}(c^*, \mathcal{M}(c_0, W)) \star v$$

• Semantics capturing (simplified, w.l.o.g.): $o = W \star v$

Masking/unmasking (inverse operations, e.g., XOR) $o = \mathcal{M}^{-1}(c^*, \mathcal{M}(c_0, W)) \star v$

• Semantics capturing (simplified, w.l.o.g.): $o = W \star v$

Masking/unmasking (inverse operations, e.g., XOR) $o = \mathcal{M}^{-1}(c^*, \mathcal{M}(c_0, W)) \star v$ Runtime checksum Embedded checksum

One More Thing

- Desirable to prevent potential damage early, if possible
- Checksum revisited: A checksum canary
 - Insert plain checksum checks!
 - $\bullet \to \mathsf{Halt}$ execution upon mismatch

Evaluation

- All attackers are white-box, adaptive
 - Code-based attackers: Aggressive, stealthy
 - Weights-based attacker (existing SOTA)

- All attackers are white-box, adaptive
 - Code-based attackers: Aggressive, stealthy
 - Weights-based attacker (existing SOTA)
- 5 DRAM profiles (from existing surveys)

- All attackers are white-box, adaptive
 - Code-based attackers: Aggressive, stealthy
 - Weights-based attacker (existing SOTA)
- 5 DRAM profiles (from existing surveys)
- Metrics: Attack success rate, post-attack accuracy, overhead
 - Successful attack: Accuracy drop $\geq 3\%$

- Attack success rates
 - Code-based (both types): $100\% \rightarrow 0\%$
 - Weights-based: $96.24\% \rightarrow 7.48\%$

- Attack success rates
 - Code-based (both types): $100\% \rightarrow 0\%$
 - Weights-based: $96.24\% \rightarrow 7.48\%$
- Post-attack accuracy
 - Code-based, aggressive: 12.69% \rightarrow n/a
 - Code-based, stealthy: 80.37%/ \rightarrow n/a
 - Weights-based: $10.95\% \rightarrow 54.10\%$

 Attack success rates 	Mod	el	Overhead (%)
		CIFAR10	2.66
• Code-based (both types): $100\% ightarrow 0\%$		MNIST	1.87
	ResNet50	Fashion	2.38
• Weights-based: 96.24% \rightarrow 7.48%		ImageNet	8.22
		Avg.	4.33
		CIFAR10	0.97
	GoogLeNet	MNIST	0.43
 Post-attack accuracy 	GoogLenter	Fashion	0.64
.		Avg.	0.68
• Code-based, aggressive: $12.69\% \rightarrow n/a$		CIFAR10	2.76
	DenseNet121	MNIST	2.58
• Code-based, stealthy: $80.37\% \rightarrow n/a$		Fashion	2.22
• M_{olighten} becaule 10 0E9/ \sim E4 109/		Avg.	2.52
• Weights-based: $10.95\% ightarrow 54.10\%$	Avg	•	2.47

Making Sense of the Results

- All code-based & 93% weights-based attacks mitigated
- ASRs decrease from 99% to 2%
- Remaining (few) successful attempts limited greatly
- Low overhead for practical use (2%)

In This Talk

- BFAs on DNN executables and challenges for defences
- Semantic-based defence to protect against old & new attacks
- Highly effective, low overhead method

Thank You!

- PDF, source code, other materials
 - Visit <u>yanzuo.ch/debfad</u>

- Contact me
 - Yanzuo Chen: ychenjo@cse.ust.hk
 - Homepage: <u>yanzuo.ch</u>

BitShield: Defending Against Bit-Flip Attacks on DNN Executables. By Yanzuo Chen, Yuanyuan Yuan, Zhibo Liu, Sihang Hu, Tianxiang Li, and Shuai Wang.

TABLE IV ATTACK RESULTS ON VANILLA DNN EXECUTABLES WITHOUT PROTECTION. 1.0

Attack Success Rate (%)											
Attacker Type	ResNet50			GoogLeNet			DenseNet121			Ava	
Attacker Type	CIFAR10	MNIST	Fashion	ImageNet	CIFAR10	MNIST	Fashion	CIFAR10	MNIST	Fashion	Avg.
Aggressive code-based	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Stealthy code-based	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Weights-based	98.80	91.60	94.00	96.00	98.80	92.40	96.80	98.00	97.20	98.80	96.24
Avg.	99.60	97.20	98.00	98.67	99.60	97.47	98.93	99.33	99.07	99.60	98.75
				Accuracy	after Attack	(%)					
Attacker Type	ResNet50 GoogLeNet DenseNet121					Δνα					
Attacker Type	CIFAR10	MNIST	Fashion	ImageNet	CIFAR10	MNIST	Fashion	CIFAR10	MNIST	Fashion	Avg.
Aggressive code-based	18.09	13.85	15.31	2.59	12.11	11.80	12.61	11.98	13.31	15.26	12.69
Stealthy code-based	82.17	89.90	78.54	63.46	72.30	82.44	83.75	74.19	91.83	85.14	80.37
Weights-based	18.26	11.07	10.17	2.94	12.95	10.28	10.45	10.79	11.40	11.17	10.95

				17	ADLE V						
	1	ATTACK RI	ESULTS ON	DNN EXEC	CUTABLES P	ROTECTEI) by BitSi	HIELD.			
	Attack Success Rate (%)										
Attacker Type		Resl	Net50		(GoogLeNet		D	enseNet121		Avg.
Attacker Type	CIFAR10	MNIST	Fashion	ImageNet	CIFAR10	MNIST	Fashion	CIFAR10	MNIST	Fashion	
Aggressive code-based	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stealthy code-based	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Weights-based	16.00	1.20	3.20	6.40	24.80	1.60	1.20	2.80	12.80	4.80	7.48
Avg.	5.33	0.40	1.07	2.13	8.27	0.53	0.40	0.93	4.27	1.60	2.49
Accuracy after Attack (%)											
Attacker Type		Resl	Net50		GoogLeNet			DenseNet121			Aug
Anacker Type	CIEAD10	MALICT	Fachian	ImageNiat	CIEAD10	MNIICT	Fachion	CIEAD10	MANDOT	Fachian	Avg.

TABLE V
ATTACK RESULTS ON DNN EXECUTABLES PROTECTED BY BITSHIELD.

Accuracy arter Attack (70)										
	ResN	Net50		GoogLeNet			DenseNet121			Δυσ
CIFAR10	MNIST	Fashion	ImageNet	CIFAR10	MNIST	Fashion	CIFAR10	MNIST	Fashion	Avg.
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
66.35	45.64	31.25	51.54	74.84	90.00	68.72	40.00	37.31	35.38	54.10
	-	CIFAR10 MNIST		ResNet50 CIFAR10 MNIST Fashion ImageNet	ResNet50OCIFAR10MNISTFashionImageNetCIFAR10	CIFAR10 MNIST Fashion ImageNet CIFAR10 MNIST	ResNet50GoogLeNetCIFAR10MNISTFashionImageNetCIFAR10MNISTFashion	ResNet50 GoogLeNet D CIFAR10 MNIST Fashion ImageNet CIFAR10 MNIST Fashion CIFAR10 - - - - - - - - - - - - - - - - - - - - - -	ResNet50 GoogLeNet DenseNet121 CIFAR10 MNIST Fashion ImageNet CIFAR10 MNIST Fashion CIFAR10 MNIST - - - - - - - - - - - - - - - - - - - - - - - - - - -	ResNet50 GoogLeNet DenseNet121 CIFAR10 MNIST Fashion ImageNet CIFAR10 MNIST Fashion CIFAR10 MNIST Fashion - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

TABLE VI

BREAKDOWN OF THE ATTACK OUTCOMES ON PROTECTED RESNET50(RN), GOOGLENET(GN), AND DENSENET121(DN).

Attacker	Outcome		Models	Sum	
Allachei	Outcome	RN	GN	DN	(Proportion)
	Profiling failed	422	1062	862	2346 (31.28%)
	SIG	386	342	526	1254 (16.72%)
Code-based	Canary	1049	96	112	1257 (16.76%)
	Accuracy	143	0	0	143 (1.91%)
	Success	0	0	0	0 (0%)
	Profiling failed	49	24	15	88 (1.17%)
Weights-based	SIG	884	657	684	2225 (29.67%)
	Accuracy	0	0	0	0 (0%)
	Success	67	69	51	187 (2.49%)
Sum		3000	2250	2250	7500 (100.00%)

TABLE VII

EFFECTS OF DIFFERENT *e* VALUES.

e	Model	FA (%)	MF (%)	$\Delta ASR (\%)$			
E	Muuci			Code-based	Weights-based	Avg.	
0.0	ResNet50	0.00	6.93	0.00	0.00	0.00	
0.0	GoogLeNet	0.20	6.16	0.00	0.00	0.00	
0.3	ResNet50	0.00	1.32	-	-	-	
0.5	GoogLeNet	0.00	0.01	-	-	-	
0.4	ResNet50	0.00	0.81	0.00	0.00	0.00	
0.4	GoogLeNet	0.00	0.00	0.00	0.00	0.00	
0.5	ResNet50	0.00	0.37	0.00	0.00	0.00	
0.5	GoogLeNet	0.00	0.00	0.00	0.00	0.00	
0.6	ResNet50	0.00	0.27	0.00	0.00	0.00	
0.0	GoogLeNet	0.00	0.00	0.00	0.00	0.00	
1.0	ResNet50	0.00	0.00	0.00	0.00	0.00	
1.0	GoogLeNet	0.00	0.00	0.00	+8.00	+4.00	

1) ResNet50 and GoogLeNet are trained on CIFAR10 and MNIST datasets.

2) FA: false alarm of test inputs, MF: mis-flag of inputs from other datasets.

3) $\triangle ASR$: changed ASR w.r.t. e = 0.3 in main experiments.

TABLE VIII

COMPARISON WITH PRIOR DEFENSES ON ADAPTIVE WEIGHTS-BASED ATTACKS. ONLY WEIGHTS-BASED ATTACKS ARE CONSIDERED, AS NONE OF THE PREVIOUS METHODS PROTECT AGAINST CODE-BASED BFAS.

Work	Method	Performance	Acc.	Mitigation
WOLK	Method	overhead (%)	loss (%)	rate (%)
Aegis [46]	Enhance structure	NA (< 0)	1.24	63.76
DeepAttest [3]	Fingerprint	7.20	≤ 0.09	90.00
NeuroPots [30]	Enhance weights + fingerprint	3.93	1.38	100.00
Ours	Semantic integrity	2.47	NA (0)	92.52

