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“High-Level” Attacks on AI/ML Systems

• Adversarial examples
• Backdoor
• Data poisoning
• ⋮

• Model stealing
• Model replication
• Membership inference
• ⋮
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🔨
Bit-Flip Attacks (BFAs)
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Bit-Flip Attacks (BFAs)

• Flipping data bits in the memory (DRAM)

• Rowhammer: “Hardware fault injection” attack
• Software-triggered hardware bug: Special access patterns
• Current leakage between DRAM cells
• DDR3✓ DDR4✓ ECC✓ DDR5✓…
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BFAs on DNN Models

• Yes, researchers have done this
• Model weights: IEEE 754 (full-precision) or integers (quantised)
• Flipped bits → distorted weights → altered inference results
• And there’ve also been many defences
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Not the Whole Story…
(Enter DNN executables)

8



DNN Executables
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DNN Executables

• Compiled from DNN models
• By “deep learning (DL) compilers”
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DNN Executables

• Compiled from DNN models
• By “deep learning (DL) compilers”

• Wanted for their performance
• Optimised at the computational graph level
• Optimised for the target hardware platform
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BFAs on DNN Executables?

• DNN executables: compiled code (e.g., DNN operators)

• Current offensive research: attack surface overlooked
• Only consider flips in model weights, not in code →

• Current defensive research: can’t protect them
• Only protect weight integrity & may be bypassed →

10

Note: We published the first offensive paper to close the gap also at NDSS 2025.



Dangerous Bit Flips in Code

• Pervasive
• Single-bit corruption
• Equally impact quantised models
• (Previously considered more robust)
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Unprotected DNN Executables: An Example
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DNN Exe’s: A More Demanding Case

• Bit flips in…
• Weights (still works)
• Code (new, more dangerous)
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DNN Exe’s: A More Demanding Case

• Bit flips in…
• Weights (still works)
• Code (new, more dangerous)

• Requirements for Defence
• Unified, generic
• Self-defending
• Highly applicable
• Performant

• Need a new defence that 
meet all of them!
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(Always has been)

Wait, it’s all yourecuriousilikethat?semantics?



A Perspective of Semantics
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A Perspective of Semantics

• DNN predictions: code logic + model weights

• BFAs (weights/code) are processes to change semantics

• But how to capture the semantics?
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💡
Gradients
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Gradients
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Gradients



Gradients
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😶🌫 🎓Train w/

Gradients

Runtime



Capturing DNN Semantics
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Capturing DNN Semantics

• Model output: y
• Prepare vector u = [ 1/|u|, …, 1/|u| ]
• Measure distance: DKL(u, y)
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Capturing DNN Semantics

• Model output: y
• Prepare vector u = [ 1/|u|, …, 1/|u| ]
• Measure distance: DKL(u, y)
• Backpropagate to layer i: ∂DKL(u, y)/∂Wi →  ℓ1-norm

• Record normal semantics using training data

19



92.52% Mitigated
Weights-Based BFAs
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Dealing with Code-Based BFAs

• Recall: Code flips may allow defence bypasses
• Just semantic checks are not enough

•⇒ Need more self-defence mechanisms
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Adding Self-Defence
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Adding Self-Defence

• “Avalanche effect” from cryptography
• Slight disturbance gets amplified greatly
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Adding Self-Defence

• “Avalanche effect” from cryptography
• Slight disturbance gets amplified greatly

• Fuse code checksum into semantics calculation
• Code flips → checksum → captured semantics
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Fusing Code Checksum into Semantics

• Semantics capturing (simplified, w.l.o.g.):
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Fusing Code Checksum into Semantics

• Semantics capturing (simplified, w.l.o.g.):
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Masking/unmasking (inverse operations, e.g., XOR)

Runtime checksum Embedded checksum



One More Thing

• Desirable to prevent potential damage early, if possible

• Checksum revisited: A checksum canary
• Insert plain checksum checks!
• → Halt execution upon mismatch
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Evaluation
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Threat Model & Setup
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Threat Model & Setup

• All attackers are white-box, adaptive
• Code-based attackers: Aggressive, stealthy
• Weights-based attacker (existing SOTA)

• 5 DRAM profiles (from existing surveys)

• Metrics: Attack success rate, post-attack accuracy, overhead
• Successful attack: Accuracy drop ≥ 3%
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Results
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Results

• Attack success rates
• Code-based (both types): 100% → 0%
• Weights-based: 96.24% → 7.48%
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Making Sense of the Results

• All code-based & 93% weights-based attacks mitigated
• ASRs decrease from 99% to 2%
• Remaining (few) successful attempts limited greatly
• Low overhead for practical use (2%)
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In This Talk

• BFAs on DNN executables and challenges for defences

• Semantic-based defence to protect against old & new attacks

• Highly effective, low overhead method
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Thank You!

• PDF, source code, other materials
• Visit yanzuo.ch/debfad

• Contact me
• Yanzuo Chen: ychenjo@cse.ust.hk
• Homepage: yanzuo.ch
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