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Ninja in camouflage 95%
Spooky ghost 4%

Professional chef 1%

• Bit flips via hardware fault injection
• e.g., Rowhammer

• Pervasive in DNN executables
• Gray-box, restricted attacker
• 70% confidence; ~1.4 flips to succeed
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DNN Executables

• Compiled from DNN models
• By “deep learning (DL) compilers”

•Wanted for their performance
• Optimised at the computational graph level
• Optimised for the target hardware platform
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Bit-Flip Attacks (BFAs)

• Flipping data bits in the memory (DRAM)

• Rowhammer: “Hardware fault injection” attack
• Software-triggered hardware bug: Special access patterns
• Current leakage between DRAM cells
• DDR3✓ DDR4✓ ECC✓ DDR5✓…
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BFAs on DNNs: Existing Work

• Yes, researchers have done this
• Flip bits in model weights
• ⇒ A type of white-box attack

• Few flips for full-precision models
• 12~24 flips for quantised models
• (Not anymore!)
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Threat Model & Motivation
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Attacker Objectives

•Model intelligence depletion

• Classification models (most frequently targeted)
• Before attack: well-trained models, normal accuracy
• After attack: random guessers (acc → 1/#classes)
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A More Restricted Attacker

• Recall: White-box attackers in previous works
• Model structures, weights (→ gradients), runtime setup…
• Problem: Weights are often confidential

• Our attacker: Weights ⇒ No gradient-based search
• How to identify which bits to flip?
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DNN “Executables”
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DNN “Executables”

• DNN executables are compiled code
• We can flip bits in the code (.text section)
• (Which are compiled DNN operators)
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The Random Baseline

Knowledge: Offset of victim’s .text
↓

Bits to flip: Randomly choose in range
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The Random Baseline (It was Bad)
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The Random Baseline (It was Bad)

• Attack success rate (ASR): ~2%
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The Random Baseline (It was Bad)

• Attack success rate (ASR): ~2%
•What happened in the remaining 98% of time?
• Crash / no effect

15
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Scan Survey Results

• Pervasive attack surface does exist
• Different models / datasets / compilers

• How to identify vulnerable bits?
• Do they change with training data? Yes
• Do attackers have training data? No
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Do vulnerable bits overlap?
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Common Vulnerable Bits

• Trying to find recurring vulnerable bits

• Same model structure, trained on two datasets
• ~45% vulnerable bits shared
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💡
Transferable Vulnerable Bits

45% vulnerable bits transferable, despite different training sets
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Building an Attack: In Seek of “Superbits”

• Using more local executables for profiling
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Building More Local Executables

• Train them on datasets of random noise!
• Regulate weights
• Unbiased choice
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Attack Success Rate: 70%
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Real World Examples on DDR4
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Real World Examples on DDR4
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What Does That Mean Exactly?

• Compare with DeepHammer, a SOTA method
• Same attack objectives
• Applicable to quantised models (“harder to attack”)
• ~12 flips were needed on average vs. ~1.4
• White-box attacker was required vs. gray-box
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Conclusion

• DNN executables have large bit-flip attack surfaces

•We achieve 70% confidence in vulnerable bits identification, 
~1.4 flips to ruin model intelligence

•More security research on DNN executables please!
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Thank You!

• PDF, source code, other materials
• Visit yanzuo.ch/debfa

• Contact me
• Yanzuo Chen: ychenjo@cse.ust.hk
• Homepage: yanzuo.ch
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Different Effects on GAN

28



Comparison with Existing Methods
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Case Study Example: Control Flow Broken
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