
Compiled Models, Built-In Exploits: 
Uncovering Pervasive Bit-Flip Attack 

Surfaces in DNN Executables
Yanzuo Chen†, Zhibo Liu†, Yuanyuan Yuan†, Sihang Hu‡, Tianxiang Li‡, Shuai Wang†

†The Hong Kong University of Science and Technology,
‡Huawei Technologies



This Talk, Distilled

2

DNN Models DNN Executables

Compile



This Talk, Distilled

2

😈

DNN Models DNN Executables

Compile



This Talk, Distilled

3

😈
DNN Executables



This Talk, Distilled

3

😈
DNN Executables

Ninja in camouflage 95%
Spooky ghost 4%

Professional chef 1%



This Talk, Distilled

3

😈
DNN Executables

Ninja in camouflage 95%
Spooky ghost 4%

Professional chef 1%

• Bit flips via hardware fault injection
• e.g., Rowhammer



This Talk, Distilled

3

😈
DNN Executables

Ninja in camouflage 95%
Spooky ghost 4%

Professional chef 1%

• Bit flips via hardware fault injection
• e.g., Rowhammer

• Pervasive in DNN executables



This Talk, Distilled

3

😈
DNN Executables

Ninja in camouflage 95%
Spooky ghost 4%

Professional chef 1%

• Bit flips via hardware fault injection
• e.g., Rowhammer

• Pervasive in DNN executables
• Gray-box, restricted attacker



This Talk, Distilled

3

😈
DNN Executables

Ninja in camouflage 95%
Spooky ghost 4%

Professional chef 1%

• Bit flips via hardware fault injection
• e.g., Rowhammer

• Pervasive in DNN executables
• Gray-box, restricted attacker
• 70% confidence; ~1.4 flips to succeed



Preliminaries

4



DNN Executables

5



DNN Executables

• Compiled from DNN models
• By “deep learning (DL) compilers”

5



DNN Executables

• Compiled from DNN models
• By “deep learning (DL) compilers”

•Wanted for their performance
• Optimised at the computational graph level
• Optimised for the target hardware platform

5



Bit-Flip Attacks (BFAs)

• Flipping data bits in the memory (DRAM)

• Rowhammer: “Hardware fault injection” attack
• Software-triggered hardware bug: Special access patterns
• Current leakage between DRAM cells
• DDR3✓ DDR4✓ ECC✓ DDR5✓…

6

0 → 1
1 → 0



BFAs on DNNs: Existing Work

7



BFAs on DNNs: Existing Work

• Yes, researchers have done this
• Flip bits in model weights
• ⇒ A type of white-box attack

7

🔨
0 → 1



BFAs on DNNs: Existing Work

• Yes, researchers have done this
• Flip bits in model weights
• ⇒ A type of white-box attack

• Few flips for full-precision models
• 12~24 flips for quantised models
• (Not anymore!)

7

🔨
0 → 1



Threat Model & Motivation

8



Attacker Objectives

•Model intelligence depletion

• Classification models (most frequently targeted)
• Before attack: well-trained models, normal accuracy
• After attack: random guessers (acc → 1/#classes)

9



Attack Flow

10

📄⚙

Local (attacker)
environment

😈🔍Locally generated 
model/executable



Attack Flow

10

📄⚙

Local (attacker)
environment

😈🔍Locally generated 
model/executable

Knowledge
↓

Bits to flip



Attack Flow

10

📄⚙

Local (attacker)
environment

😈🔍Locally generated 
model/executable

Remote (victim)
environment

📄⚙

😈

🔨

Knowledge
↓

Bits to flip



A More Restricted Attacker

11



A More Restricted Attacker

• Recall: White-box attackers in previous works
• Model structures, weights (→ gradients), runtime setup…
• Problem: Weights are often confidential

11



A More Restricted Attacker

• Recall: White-box attackers in previous works
• Model structures, weights (→ gradients), runtime setup…
• Problem: Weights are often confidential

• Our attacker: Weights ⇒ No gradient-based search
• How to identify which bits to flip?

11



DNN “Executables”

12



DNN “Executables”

• DNN executables are compiled code
• We can flip bits in the code (.text section)
• (Which are compiled DNN operators)

13

🔨



The Random Baseline

Knowledge: Offset of victim’s .text
↓

Bits to flip: Randomly choose in range

14



The Random Baseline (It was Bad)

15



The Random Baseline (It was Bad)

• Attack success rate (ASR): ~2%

15



The Random Baseline (It was Bad)

• Attack success rate (ASR): ~2%
•What happened in the remaining 98% of time?
• Crash / no effect

15

Function already returned



Scan Survey Results

• Pervasive attack surface does exist
• Different models / datasets / compilers

• How to identify vulnerable bits?
• Do they change with training data? Yes
• Do attackers have training data? No

16



Do vulnerable bits overlap?

17



Common Vulnerable Bits

• Trying to find recurring vulnerable bits

• Same model structure, trained on two datasets
• ~45% vulnerable bits shared

18



💡
Transferable Vulnerable Bits

45% vulnerable bits transferable, despite different training sets

19



Building an Attack: In Seek of “Superbits”

• Using more local executables for profiling

20

📄⚙
😈🔍Locally generated 

model/executable



Building More Local Executables

• Train them on datasets of random noise!
• Regulate weights
• Unbiased choice

21



Attack Success Rate: 70%

22

We are now here



Real World Examples on DDR4

23



Real World Examples on DDR4

24
Avg = ~1.4 flips



What Does That Mean Exactly?

• Compare with DeepHammer, a SOTA method
• Same attack objectives
• Applicable to quantised models (“harder to attack”)
• ~12 flips were needed on average vs. ~1.4
• White-box attacker was required vs. gray-box

25



Conclusion

• DNN executables have large bit-flip attack surfaces

•We achieve 70% confidence in vulnerable bits identification, 
~1.4 flips to ruin model intelligence

•More security research on DNN executables please!

26



Thank You!

• PDF, source code, other materials
• Visit yanzuo.ch/debfa

• Contact me
• Yanzuo Chen: ychenjo@cse.ust.hk
• Homepage: yanzuo.ch

27

Compiled Models, Built-In Exploits: Uncovering Pervasive Bit-Flip Attack Surfaces in DNN Executables.
By Yanzuo Chen, Zhibo Liu, Yuanyuan Yuan, Sihang Hu, Tianxiang Li, and Shuai Wang.

😈🔨

mailto:ychenjo@cse.ust.hk


Different Effects on GAN

28



Comparison with Existing Methods

29



Case Study Example: Control Flow Broken

30


