Corrupted Memories
of Memory Corruption

Offensive Security, Academia, and the Rest of the World

Herbert Bos

“VUSec

JIsc 20

*ﬂ

ISC Conference 2023 @isc conf - 16 nov. 2023

& Day 2 of #1SC23 kicks off with an intriguing keynote by Herbert Bos
@herbertbos @vubec "The Uselessness of Academic Researchers,"
sparking thought-provoking insights and discussions.

Those who can’t, teach.

On the uselessness of academic researchers

Herbert Bos

VUSec

Hajo Reijers @profBPM - 16 nov. 2023
He is an expert on this! Listen carefully

In the grander scheme of things
This talk is relatively unimportant

Temperature change in the last 50 years

ORI X
R
O

YA
'92.\@

2011-2021 average vs 1956-1976 baseline
—11.0 —Q.S —0|.2 +0|.2 +0|.5 +1.0 +2.0 +4.0°C

-1.8 -09 -04 +04 +09 +1.8 +36 +7.2°F

Thanks

Sergey Bratus Thomas Dullien Taddeus Grugq
(Halvar Flake) (The Grugq)

Memory corruption and me and you

A minor philosophical point: I'd suggest shifting the focus slightly from memory corruption as such to

harnessing emergent properties
of memory abstractions

What | hope to achieve

Honor those who got us here
Assess where we stand

Look forward

Memory Safety is So Simple

Stay inside your box

Memory Corruption is also Simple

Stay inside your box

Nothing new

[prot:
.int ©
code:
.quad 0
origin:
add %rsi, %rdx
L1
mov code(%rip), %rdi
inc %rdi
cmp %rdi, %rsi
cmova %rsi, %rdi
cmp %rdi, %rdx
cmovbe %rsi, %rdi
mov %rdi, code(%rip)
call *probe(%rsi)
cmp $my_id, %rax
je 11
test %rax, %rax
je 12
call *kill(%rsi)
12z
sub %rbx, %rcx
cmp $end - code, %rcx
JL; L1
mov %rbx, %rdi
call *claim(%rsi)
mov $end - code, %rcx
13:
lea code(%rip), %rax
mov (%rax, %rcx), %al
mov %al, (%rbx, %rcx)
Tloop 13
jmp 11
end:

protected bytes
prot:

.int 0, 1, 2, 3 #
code:

origin:
jmp origin

PROBE example
call *probe(%rsi)

KILL example
call *kill(%rsi))|

CLAIM example
call *claim(%rsi)

end:

herbertb@sleet: ~/laptop/src, X

E
R

it R

HHEFHHR R R R R R
ISR R R E R SRR s S
[# R R R R R R R R R R R R R R R R R HEHHHH R R R R R

[t

i
it R
R R
R

ittt
i HHEH R R i
R R
[R R R R HHHHHHHH
EEEERTE ST
[# R R R R R R R R R R R R R R R R R
HAHEHH R
HEHEH R R R R R R R R R R R BB R R R R R

arwin

1961

Victor Robert
Vyssotsky Morris Sr.

Douglas
Mcllroy

Nothing new

.int © prot:
code: .int 0, 1, 2, 3 # f
.quad 0 it R S R A
origin: code: R R R R R R R R R R R Y
add g,rs 1 9,1~dx [d R R R R R SRR R R R R R R
o I ° R [# R R R R R R R R R R R R R R R R R HEHHHH R R R R R
g il origin:
o % - & . . . [t
mov code(%rip), %rdi jmp origin
& & A
inc %rdi I
cmp %rd i %rsi # PROBE example A
o o3 2 1 * be(? £ A
cmova %rsi, %rdi ca probe(%srsi I
cmp %rdi, %rdx
cmovbe %rsi, %rdi # KILL example
mov %rdi, code(%rip) call #kill(%rsi)|
! & p i R R
call *probe(/ors 1) it S S S S
cmp $my_id, %rax # CLAIM example A
p y— 1 o .L.L % 1_ . il EEEEEEEEEE S S R HHHHHHHH
je 11 ca claim(%rsi) s
o [# R R R R R R R R R R R R R R R R R
test %rax , %drax S R R R R R S
je 12 end . HEHEH R R R R R R R R R R R BB R R R R R

call *kill(%rsi)
12z
sub %rbx, %rcx
cmp $end - code, %rcx
JL; L1
mov %rbx, %rdi
call *claim(%rsi)

. mov $end - code, %rcx DarWi n 1 96 1

lea code(%rip), %rax
mov (%rax, %rcx), %al
mov %al, (%rbx, %rcx)

T (Won definitely by Robert Morris) Victor Robert Douglas
Vyssotsky Morris Sr. Mcllroy

end:

ESD-TR-73-51, {Vol. 11

USAF Computer Security
Technology Planning Study (1972

James P, Anderson

October 1972

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Approved for public release;
distribution unlimited.

Wa rn I n g (Prepared under Contract No, FI9628-72-C-098 by Jomes P, Anderson & Co.,

Box 42, Fort Washington, Pa, 19034,)

Core War

Abstract assembly language (“Redcode”)

Still actively played

ADD #4, 3
MOV 2, @2
JMP -2

DAT #0, #0

Alexander
Dewdney

GH=STBUSTERS

GH=STBUSTERS

=
WHHO YOU GONNA CALL?
GHOSTBUSTERS!

CRACKED BY BABYSOFT

GH=STBUSTERS

-
HHO YOU GONNA CALL?

GHOUSTBUSTERS

CRACKED BY BABYSOFT KISSES ToO REl

1985 Phrack 01

How to: Acetylene balloon bomb

:: Introduction... ::.

3][4]1[S1[6]1[71[8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23]
[29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45]
I51][52][53][54][5?ég??é£?{;s?8][59][50][51][62][53][64][55][56][67]

Current issue : # | Release date : 1985-11-17 | Editor : Taran King

Issues: [1][2][
[24][25][26]
48]

[27][28]
[46][47][48][49][50]

Introduction... Taran King
Hacking SAM - A Description Of The Dial-Up Security System Spitfire Hacker
Boot Tracing Made Easy Cheap Shades
THE PHONE PHREAK'S FRY-UM GUIDE Iron Soldier
Using MCI Calling Cards Knight Lightning
How to Pick Master Locks Ninja NYC

Acetylene Balloon Bomb The Clashmaster & Gin Fizz

Schools and University Numbers Phantom Phreaker

1988 Morris Worm

fingerd
char 1line[512];

line[0] = “\0';

gets (line);

Go see Haroon’s BlackHat Talk!

Home Profile Find People Settings Help Sign o

Walking down memory lane, reading
old exploits from '9g -- can someone
write a history of code exec '95-2009 ?

halvarflake

Heap Overflows
--- Matt Conover
& wO0w00

CERT “How to Write Buffer
' Overflows” --Mudge

m i
Core Sec @ \ -- Aleph One -- Dildog
Zardoz

BugTraq
phfack . | H / / Format string bug

[85 [86 ['87 |88 89 [90 |‘91 [[92 193]94 [95 [96 |97 ['98 199 |/ -- Tymm Twyliman

o Overflow in NCSA httpd
;'_ Thomas StackGuard

FP overwrite

“Smashing the Stack” Heap Overflows --klog

Je
ﬁ' 5

%(Morris

Lopatic -- Crispin Cowan
@ Limitations -- Tim Newsham
! “Code reuse chaining” Wind BO
! - indows BOs
W “ret-2-libe -- Barnaby Jack

-- Solar Designer

Format string bug in gmail

-- Dan Bernstein ,3

%

W

y -
. ,&

kM
CERT “How to Write Buffer
' Overflows” --Mudge b

. g

m Heap Overflows
Core Sec a - AIeph One -- Dildog
BugTraq

. Zardoz /

| Format string bug
[85 ['86 [87 [88 ['89 |90 |‘91 [92 193 |94 [95 |‘96 |97 o so ~— -~ Tymm Twyliman

- Overﬂow in NCSA httpd
- Thomas StackGuard

Heap Overflows

M ﬁa --- Matt Conover
a‘ ‘

& wO0w00

FP overwrite
--klog

Lopatic -- Crispin Cowan
%' { Limitations -- Tim Newsham
) “Code reuse chaining” Wind BO
! . indows BOs
W “ret-2-ib -- Barnaby Jack

-- Solar Designer

Format string bug in gmail

-- Dan Bernstein 73

What about me?

“Non-Stack based exploitation” “Unsafe unlinking of the
-- David Litchfield lookaside list” -- shOk, Horovitz

ﬁ‘i “Geometry of Innocent

On the effectiveness of

N 31
s Vudo malloc tricks
: -- MaXxXX
b »ﬂ

Heap Spray

Bypassing StackGuard + ASLR -Shacham et al.

StackShield (GOT overwrite) ~eE¥e | Code Red ks / —, “_ & 2 Flesh’ — H. Shacham et al.
- ' EH handl e « »
Bulba & Kil3r S andler ";3*5 double free "Applica P peCiﬁC Attacks -

“FormahString |overwrite
Advanced
return-2-libc
-- nergal

aging the ActionScript VM"

44 =

“Smashing C++ VPTRS” /

-- rix :
\|‘00 ['01 ['02 ['03 ['04 [0O5 [06 [07 [08 09 [10 |

“Exploiting non-terminated ///ASLR

adjacent memory spaces” PaX W

eap Feng Shui in
JawaScript" -- A. Sotirov

-- twitch@vicar.org “Third Generation Exploits”) /)"Borrowed C e B ‘;f
. . CFI ey
~& ' \ --Halvar Flake Exploitation Techn - Mvadi. Budiu N,
PAGEEXEC _. —~ --Sebastian Krahmer Erlingssoq, Ligatti 1 e
MPROTECT \ - {
grsecurity Byl\aatStSMHl\lN DKE P Joh 2 .
- spender Integer Overflows —~—~- att Miller, ren Johnson f ’
B . » -- Mark Dowd, B
null pirderef in kernel , % »
: -- Chris Spencer, |qCRal 3
Bypassing PaX ASLR -- Neel Metha, -
Protection” -- Tyler Durden __ Nishad Herath |
“Advances in Format String Exploitation” —- Halvar Flake “zero allocation

vulnerabilities”
-- Julien Vanegue

“4 tricks to bypass StackGuard and StackShield

. "Application-Specific Attacks -
-- Gerardo Richarte (gera)

Leveraging the ActionScript VM"

What about me?

1978

| want to be a superhero

| want to be a superhero

2012

My lectures:

My lectures:

"Unfortunately, | ended up breaking up with my girlfriend towards the
end of the period, she said she felt like | did not prioritize her and that
| did not have enough time for her anymore... | guess 8 hours of only
Computer & Network Security per day has its price. But it is okay,
don't sweat it, | would do it all over again. Great course, | learned a
lot!"

My lectures:

"Unfortunately, | ended up breaking up with my girlfriend towards the
end of the period, she said she felt like | did not prioritize her and that
| did not have enough time for her anymore... | guess 8 hours of only
Computer & Network Security per day has its price. But it is okay,
don't sweat it, | would do it all over again. Great course, | learned a
lot!"

Memory Errors

Memory Errors
The Past, the Present, and the Future

Victor van der Veen!, Nitish dutt-Sharma!, Lorenzo Cavallaro! 2, and

* The Net
Royal Hollow

Abstract. Memory crror exploitations have been around for over
years and still rank among the top 3 most dangerous software errors
Why haven't we been abl op them? Given the host of securit
measures on modern machines, are we less vulnerable than before, and
can we expect to eradicate memory error problems in the near future?
In this paper, we present a quarter century worth of memory erro
attacks, defenses, and statistics. A historical overview provic

trends and developments, while an inves
vulnerabilities and exploits allows us to answer on the significance of
memory errors in the foresceable future

Introduction

Memory errors in C and C++ programs are among the oldest classes of soft-
ware vulnerabilities. To date, the research community has proposed and de-
veloped a number of different approaches to eradicate or mitigate memory er-
vors and their exploitation. From safe la s, which remove the vulnera-
bility entirely [53,72], and bounds checkers, which check for out-of-bounds ac-
cesses to countermeasures that prevent certain memory locations
to be overwritten [25,20], detect code injections at carly stag or prevent
attackers from finding [11,05], using], or executing [32,70] injected code,
ite more than two decades of independent, academic, and industry

related research, such flaws still undermine the security of our systems. Even
if we consider only classic buffer ove . this class of memory errors hias been
lodged in the top-3 of the CWE SANS top 25 most dangerous software errors
for years [7]. Experience shows that attackers, motivated nowads profit
vather than fun (7], have been effective at findin
tive measures [30,%3]. Many attacks today start with a memory corruption that
provides an initial foothold for further infection.

Even so, it is unclear how much of a threat these attacks remain if all our

De

defenses are up. In two separate dis °C members in

stly
solved as “dozens of commercial solutions exist” and research should focus on
other problems, while another questioned the usefulness of the research

Memory Errors

Memory Erro
he Past, the Present, and the Future

Victor van der Veen!, Nitish dutt-Sharma?, Lorenzo Cavallaro'?, and
- bert Bos'

ty Amsterdam

loitations havé been around for ove
© top 3 most, dangt
p them? Given tHeshost of
W vuln
error problem
e present a quarter
and statistics. A histor
while an investigation of re:
vulnerabilities and : o answer on the significance of
memory errors in the fo future

Introduction

Memory errors in C and C++ programs are among the oldest classes of soft-
wre vulnerabilitis. To date, the rescarch community has proposed and d
veloped a munber of different approaches to eradicate or mitigate mermory er-

vors and their exploitation. From saf
bility entirely [53,72], and bounds checke
sses], to county
to be overwritten
attackers from finding 11, executing [12,70] injected code.
Despite more than two decades of independent, academic, and industr
d research, such fla ill undermine the security of our systems. E
if we consider only classic buffer overflows, this class of memo

Bl Y SHIE s e = Memory Errors:

s |
ther than fun [07], have heen f ways to circumvent protec-

e The Past, the Present, and the Future

Even so, it is unclear how much of a threat these attac
are up. In two separate disc among PC members in t
in security, one expert suggested that the problem is mostly
and research should focus on
arch efforts.

n der Veen!, Nitish dutt-Sharmal, Lorenzo Cavallaro2, and
Herbert Bos!

1 The Network Institute, VU University Amsterdam
Royal Holloway, University of London

You forgot us!

)15
4
i : 3
) / .
2 ¢
i 1
- 1#
r
o

// el

Who are you?”

1T ///
////// /// /I ////// I

i

/

/]

David Litchfield ~ Michael Howard Alexander Anje;
i _ icar.org FAnisimoy |; rden
W IIAlex Sotirov 5 ,‘\,\,\,‘Ch@\l\G Bulba vV KilBr yler Du
(>] | P /N WOOW00 Sebastian Krahmer
Ben Hawk efd . - - O - . 96h @)
F\eie €' Tim Newsi?'on Blazakis __ e’ 127 Tilo Miller ~ A
yZa\var o) 2 R Barnaby Jack
Afgmagfa WmmTW‘\\\“‘a Zap Tt Miller dark spyrit’
amg/ o Julien
: : m
Thomas ; ria paxted Vanegue
. 2 DaveG
blexim -oPatic - 3 SoBelt
zolo . v , Elias Levy
Nerg?! - . “Aleph One”
. : B spender
Juan M. Bello Rivas . B, Vie
(Pe‘s\‘Ja}f’ iy) TTymm
aet ' . el ' . willma
P\\eﬂ\(\a(Des\g“ Crispin C Matt C e ”
«S0 owan) onover iefe.
MaXX DIDoY ‘ShOK” Gmg‘ci\\co\as callie

Mark Dowd Ken Johnson

But we tried!

[85].
escribing
]. Shortly

1ele ‘ed a p11 ate note on how to exploit the now
s [112]. So far, nobody really

discussed memory error 'mes aitox Mudge’s notes and the well-
known document by stack smashing [4], di
® (=3
/- on memory
) al The introduction of the non-
) i

3
4
&
3
i
-

-/

SN \\\‘\

»

7

reen stack variables and a function’s return address to
detect corruptions of the latter [29]. Further d re discussed in Section 2.2.
After the first stack-bas ; sures, researchers started exploring

them in Se
The idea of adding randomness t event exploits from working (e.g., in
StackGuard) was 1
Layout Ranc

roduction of ASLR, anothei
, NULL pointer dereference, a form of dangling pointer, w
umed that such dangling pointers were unlikely to
. In 2007 and 2008, hov

red that these vulnerabilities could v
rell [1,37]. Unfortunate
defenses against dangling pointers are still 1 7 research-driven efforts [2].
Due to space limitations, a number of historical details were omitted in this
paper. The interested reader can refer to [102] for more information.

“What just happened?”

¢« Plaatsen

Thomas H. Ptacek @tgbf - 7 jun. 2018
Paper link:

For double fetch background, Wang is good:

Q 2 n s Q 21

grsecurity @grsecurity - 7 jun. 2018

| mentioned this before, but everyone seems to have forgotten
sgrakkyu/twiz exploited "double fetch" before "double fetch" was a thing,
back in 2007: S (2.4.2), see also this from 2008:

O 2 0 17 Q 44

Halvar Flake @halvarflake - 9 jun. 2018
nobody has forgotten :)

O 1 n Q 2

grsecurity @grsecurity - 9 jun. 2018
| guess it's why those things were cited in that USENIX paper. Oh wait...

Q 1 n ihi

Halvar Flake
@halvarflake

My ability to get upset at academics not citing extraacademic sources
properly was exhausted ca. 2008, so kudos to you for still finding the

Dan Kaminsky @dakami - 18 nov. 2018
You should write it. We both should write more long form.

Q 1 o ! QO 18 ihi ok

thaddeus e. grugq thegrugq@infosec.exch... @thegr... - 18 nov. 2018 ---
| am and | have written long form. It is encouraging to see it show up as a
strong influence on other people’s pieces that get wide syndication and
give no credit to the OP ;)

No more free thoughts!

O 1 n Q 10 ihi ik

Dan Kaminsky @dakami - 18 nov. 2018
“Itis amazing what you can accomplish if you don’t care who gets credit” :)

Q 1 n 2 QO 22 ih Y

thaddeus e. grugq thegrugq@infosec.exch... @thegr... - 18 nov. 2018 ---
Is it? Must be why those academics are so lax about citation.

Q 3 13 1 £ 7 thi Bl

Halvar Flake @halvarflake - 18 nov. 2018

in my experience, they are not lax w citing academic pubs, everything else
is deemed as "not citeable"...

Q 4 0 Q 10 ihi A

thaddeus e. grugq thegrugq@infosec.exch... @thegr... - 18 nov. 2018 ---
The likely reason for this is they know the authors of the “not citeable”
content will never be on a review board. 82 //cc @St o)

DM > > @johnregehr

Q 4 T Q o I||| i

Mathias Payer @gannimo - 18 nov. 2018

Trust me, I've argued against papers that simply reimplement hacker work.
For example, if it is published as a phrack article, | consider this prior work
and, if your work is similar, it must be compared against the phrack article!

QO 4 m 5 Q 30 ihi &

Steven M. Bellovin @SteveBellovin - 18 nov. 2018
Strong agreement

QO 1 jn Q 1 ihi it

Dan Kaminsky @dakami - 18 nov. 2018

they just...copy the methods, rote, from outside their little island? people
do this? and it has to be argued against?

They at least add some analysis and context?

O 1 T_-l O |III 1¢1

Mathias Payer @gannimo - 18 nov. 2018

Yes, unfortunately. But | would not call it copy, it's more a reinvention. Don't
attribute to malice what can be explained by a reinvention of the same idea
and unawareness of the other side

C) Herbert Bos @herbertbos - 18 nov. 2018

Colour me naive, but i also think that in most cases the authors are simply
not aware of prior art in a different community.

O 3 1 Q 6 hi L

D Halvar Flake @halvarflake - 18 nov. 2018
| have seen both variants -- not being aware, and being aware and omitting
it, betting on the review committee not being aware. The latter was more

rare, but when | saw it it was more infuriating. :-) (and the people that did it
are on my very short permanent shitlist)

Q 1 T 1 2 7 I||| |1n

Mathias Payer
@gannimo

Hahaha, yeah, | had a recent issue with some systems researchers
whom | contacted 2-3 times and they continuously ignored our
(academic) work. Fun times...

12:44 p.m. - 18 nov. 2018 ROP

Make it concrete, please!

% Dave Aitel @daveaitel - 6 nov.
ROP?

@ () ¥ 7 i 583

Michael Brown
@MichaelBrownUC
Lol this is the most egregious example

Post vertalen

4:25 a.m. - 6 nov. 2023 - 106 Weergaven

Let’'s have a look

1996

.00 Phrack 49 Oo.
Volume Seven, Issue Forty-Nine File 14 of 16

p BugTraq, rO0t, and Underground.Org

)) bring you

Smashing The Stack For Fun And Profit

Aleph One

alephl @underground.org

ROP: Memory is now \WA

$ cat /proc/self/maps

55¢c684a1a000-55¢c684a1b000
55¢684a1b000-55¢c684a1c000
55¢c6852¢c9000-55c6852ea000
T£2£££97b000-7£2£££c5a000

T£2fffe41000-7£3000041000
7£3000041000-7£3000045000
7£3000045000-7£3000047000
7£3000047000-7£300004b000

7£3000239000-7£300025d000
7£3000274000-7£3000275000
7£3000275000-7£3000276000
7£3000276000-7£3000277000
T££c0ecd4000-7££c0ec£f5000
7££c0ed50000-7££c0ed53000

rw-p
r--p
rw-p
rw-p
rw-p
r--p

00007000
00008000
00000000
00000000

001e7000
001e7000
001eb000
00000000

00000000
00029000
0002a000
00000000
00000000
00000000

103:02 5505049
103:02 5505049
00:00 O

103:02 21497232

103:02 19661405
103:02 19661405
103:02 19661405
00:00 O

00:00 O
103:02 19660823
103:02 19660823
00:00 O
00:00 O
00:00 O

/bin/cat

/bin/cat

[heap]
/usr/lib/locale/locale-archive

/1lib/x86 64-linux-gnu/libc-2.27.so
/1lib/x86 64-linux-gnu/libc-2.27.so
/1ib/x86 64-linux-gnu/libc-2.27.so

/1lib/x86 64-linux-gnu/1d-2.27.so
/1ib/x86 64-linux-gnu/ld-2.27.so

[stack]
[vvar]

Solution: reuse code already present

“Return Oriented Programming”

B

(PoP
pop
mov | add | or | ...
ret

Return-oriented gadget

s —

&gadget 3
.
&gadget 2

]
)y &gadget 1

ROP

The geometry of innocent flesh on the bone: Return-into-libc without function calls

(on the x86)

Authors Hovav Shacham
Publication date 2007/10/28
Book Proceedings of the 14th ACM conference on Computer and communications security
Pages 552-561

Description We present new techniques that allow a return-into-libc attack to be mounted on x86
executables that calls no functions at all. Our attack combines a large number of short
instruction sequences to build gadgets that allow arbitrary computation. We show how to
discover such instruction sequences by means of static analysis. We make use, in an
essential way, of the properties of the x86 instruction set.

Total citations Cited by 1949

3 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

4 4

Scholar articles The geometry of innocent flesh on the bone: Return-into-libc without function calls (on
the x86)
H Shacham - Proceedings of the 14th ACM conference on Computer ..., 2007
Cited by 1949 Related articles All 55 versions

But was it the first?

Getting around non-executable stack (and fix)
From: solar () FALSE COM (Solar Designer)
Date: Sun, 10 Aug 1997 17:29:46 -0300

Hello!

I finally decided to post a return-into-libc overflow exploit.
This method has been discussed on linux-kernel list a few months
ago (special thanks to Pavel Machek), but there was still no
exploit. I'll start by speaking about the fix, you can find the
exploits (local only) below.

You can find the fixed version of my non-executable stack Linux
kernel patch at http://www.false.com/security/linux-stack/.

Actually, using this method it is possible to call two functions
in a row if the first one has exactly one parameter. The stack
should look like this:

pointer to "/bin/sh"
pointer to the UID (usually to 0)
pointer to system()

stack pointer -> pointer to setuid()

The ability to overwrite the stack with arbitrary data

is very powerful. Besides return addresses the stack

is also used to save register values and to hold variables.
Most programs have segments of code that look like:

restore some registers from the stack
return from subroutine

If an attacker knows the address of such code, he can
provide register contents on the stack and set the return
address to point to this code. When the next return
happens, registers are set with whatever values he put

on the stack, another return is done pulling another
address off the stack. Say the next return address on
the stack pointed to code that trapped to the system call
vector. We just put arbitrary values in registers and
then trapped to the system - we have the ability to

do arbitrary system calls. All the code that was executed
was from the code segment.

By controlling the stack, an attacker can cause execution

to thread through segments of existing code with a great
degree of freedom. The attacks have to accurately compute
the location of stack positions and code addresses so

the attack is definitely a lot harder than the cookie-cutter
stack overflows that you see today, but its still

"“just a simple matter of coding''.

Solar Designer 1997

Tim Newsham, Bugtraq, 1997

But was it the first?

2001 Nergal describes fully featured
ROP attack

The advanced return-into-lib(c)
exploits: PaX case study

Phrack Volume 0x0b, Issue 0x3a, Phile #0x04 of 0Ox0Oe

==Phrack Inc.==
Volume @x@b, Issue ©x3a, Phile #0x04 of @xe0e
e =[The advanced return-into-lib(c) exploits: J=------------ =

=[PaX case study]=

=[by Nergal <nergal@owl.openwall.com>]=

May this night carry my will

And may these old mountains forever remember this night

May the forest whisper my name

And may the storm bring these words to the end of all worlds

Ihsahn, "Alsvartr"

--[1 - Intro
1 - Intro

2 - Classical return-into-libc

3 - Chaining return-into-libc calls
3.1 - Problems with the classical approach
3.2 - "esp lifting" method
3.3 - frame faking
3.4 - Inserting null bytes
3.5 - Summary
3.6 - The sample code
4 - PaX features
4.1 - PaX basics
4.2 - PaX and return-into-lib exploits
4.3 - PaX and mmap base randomization
5 - The dynamic linker's dl-resolve() function
5.1 - A few ELF data types
5.2 - A few ELF data structures
5.3 - How dl-resolve() is called from PLT
5.4 - The conclusion
6 - Defeating PaX
6.1 - Requirements
6.2 - Building the exploit
7 - Misc
7.1 - Portability
7.2 - Other types of vulnerabilities
7.3 - Other non-exec solutions
7.4 - Improving existing non-exec schemes
7.5 - The versions used
8 - Referenced publications and projects

But was it the first?

2002, David Litcfield: “Non-Stack based exploitation” — essentially ret2libc on Win32

2002, Bulba and Kil3r: “Bypassing StackGuard and StackShield” (Phrack)
— used existing code to jump to shellcode on stack

2004, Jack and Nemo: “Jump Oriented Programming” on the SPARC architecture
(Phrack): use existing code to jump to arbitrary addresses.

-PHRACK MAGAZINE-
Volume Oxa Issue Ox38

05.01.2000
0x05[0x10]

----| Preface
"When a buffer overwrites a pointer... The story of a restless mind."
This article is an attempt to demonstrate that it is possible to exploit

stack overflow vulnerabilities on systems secured by StackGuard or StackShield
even in hostile environments (such as when the stack is non-executable).

But was it the first?

x86-64 buffer overflow exploits and the borrowed
code chunks exploitation technique

In 2005, Sebastian Krahmer published: e e P
“x86-64 buffer overflow exploits and —
the borrowed code chunks exploitation technique”

Abstract

The x86-64 CPU platform (i.e. AMD64 or Hammer) introduces new features to
protect against exploitation of buffer overflows, the so called No Execute (NX)
or Advanced Virus Protection (AVP). This non-executable enforcement of data
pages and the ELF64 SystemV ABI render common buffer overflow exploitation
techniques useless. This paper describes and analyzes the protection mechanisms
in depth. Research and target platform was a SUSE Linux 9.3 x86-64 system but
the results can be expanded to non-Linux systems as well.

search engine tag: SET-krahmer-bccet-2005.

Contents

1 Preface 2
2 Introduction 2
3 ELF64 layout and x86-64 execution mode 2
4 The borrowed code chunks technique 4
5 And does this really work?]
6 Single write exploits 8
7 Automated exploitation 12
8 Related work 17
9 Countermeasures 18
10 Conclusion 18

11 Credits 19

Were there any differences?

Yes.

The previous attacks used short sequences as glue in combining the invocations of
functions in libc or in jump-starting the execution of attacker-injected code. Our technique
shows that short code sequences, combined in appropriate ways, can express any
computation an attacker might want to carry out, without the use of any functions.

Of the previous uses discussed here, Krahmer’s borrowed code chunks exploitation
technique [15] is the closest to ours. Krahmer uses static analysis to look for register-pop
sequences. He describes a shellcode-building tool that combines these sequences to
allow arbitrary arguments to be passed to libc functions. However, exploits constructed
using Krahmer’s techniques are still straight-line limited and still rely on specific functions
in libc— like other traditional return-into-libc attacks, and unlike the new attack we
propose.

“framing (a certain kind of) exploitability as a
mathematical property that can be proved as a theorem.”

“It opened the floodgates”

“When non academics develop something [...], they use
an example implementation to demonstrate a broader
point that they're making. Only, they suck at making it
clear that “here is theory X, and a simple demonstration
of the theory is present here as X1”

Did Hovav mention the original work?

Yes.

1.2.4 Previous Uses of Short Sequences in Attacks

Some previous return-into-libc attacks have used short
code snippets from libc. Notably, code segments of the form
pop %reg; ret to set registers have been used to set func-
tion arguments on architectures where these are passed in
registers, such as SPARC [20] and x86-64 [15]. Other ex-
amples are Nergal’s “pop-ret” sequences [21] and the “regis-
ter spring” technique introduced by dark spyrit [6] and dis-
cussed by Crandall, Wu, and Chong [5]. Our attack differs

Meanwhile, everybody cites Hovav's paper...

... and nobody mentions Krahmer, Nergal, Newsham, or Solar Designer

Don't
attribute to malice what can be explained by a reinvention of the same idea
and unawareness of the other side

° Mathias Payer @gannimo - 18 nov. 2018

Rare?

Herbert Bos @herbertbos - 5 nov.

Hey Infosec twitter/X, | am looking for examples where academic
researchers did not credit hackers/non-academic security researcher, or

vice versa.

Just reply here, or DM me if you don't want do this in public.

- 6 noV.

Als antwoord op @

Let’s not forget the dude who pubhshed the fist academic research paper
on improving AFL and now everyone cites that work, instead of @lcamtuf

O 0 O N &

Als antwoord op @herbertbos

When | co- authored this paperM sithu \[“, the

academics on the project outright refused to include citations | wanted to
reverse engineering publications that had helped me because they were
"not academic enough".

Q 4 1 4 ¥ 2] &

Man, i got really angry last night

Just seeing it all again pissed me off
so much.

Haha. It’s stupid, since itisn’t like i
get anything if i was cited

Als antwoord op CdiEE s @halvarflake en @herbertbos

Yeah been there, on anything techmcal sources that are academic enough

are either so abstract that they are useless, or at worst technically
incorrect.

O] ¥ 3 N &

I o - 19 jun. 2022

The reality is that academics make the best trolls because even they
believe a lot of the BS they spout.

Why Professors Are Writing Crap That Nobody
Reads

Half of academic papers are never read by anyone other than their authors, peer
reviewers, and journal editors.

by Editor — April 15, 2022 in Around The World, Education, Offbeat
@ G127 31 AA

Reading Time: 2 mins read

aborsy on Aug 2, 2020 | prev [-]

The vast majority of academics are there for power and status. I rarely see a true
scholar, and nearly always bizarre characters and politicians to say the least.

Politics in academia is especially vicious.

Security Research: Non Academic < 7> Academic

What happened?

A hacker culture emerges

At MIT

The Tech Model
Railroad Club

The first computer wizards who called themselves hackers started
underneath a toy train layout at MIT’s Building 20

Marvin Minsky - champion of hackers

5 oo /2 MARVEL COMICS GROUP. 5
WL

Q M N
Hackers (%% =
WA
“These kids are like superheroes.” ' suatiegie g

“They have special abilities.”

e

' v |
s

,‘JL

“They often don't fit in.”

Yes.

Also for academics

Perhaps less cool

Independent ways

“Industry/gov” «—— “academics” «—— “Hackers/crackers’

Academic venues would not/rarely accept attacks

- |EEE S&P 1980
- ACSAC 1985
- USENIX Security 1988
- ACMCCS 1993
- NDSS 1993

Separate venues emerged for hackers community

- CCC 1984
- DEF CON 1993
- Black Hat 1997

Why the bad blood?

arrogance?
motives?
research culture?

lack of recognition?

The communities getting closer again

Hackers in academic communities
Offensive research recognized

Recognition from non academic security community (and vice versa?)

o Halvar Flake @halvarflake - 7 nov.
Als antwoord op @mboehme_@gannimo en 2 anderen

Yeah the situation is markedly better today, and the bad experiences were
also strongly correlated to certain individuals :-)

O n ¥:> N &

So... back to memory safety

“‘Meltdown: Reading Kernel Memory from User Space”
“Spectre Attacks: Exploiting Speculative Execution”

“Exploiting the DRAM Rowhammer -- Jan Horn, Werner Haas, Thomas
bug to gain kernel privileges” Prescher, Daniel Gruss, Moritz Lipp,
-- Mark Seaborn, Thomas Dullien Stefan Mangard, Michael Schwarz, Paul
_ Kocher, Daniel Genkin, Mik Hamburg,
 fZ] ' }/ Yuval Yarom
' “Dedup est machina” ,
“Flipping bits” -- Y. Kim, R. Daly, J.S. -- Erik Bosman et al. .
Kim, C. Fallin, J-H Lee, D. Lee, C.B. ' ’ g 3
Wilkerson, K. Lai, O. Mutlu \ /

(1 12 [43 [14 715 [116 [17 [18 |19 [20 [21 [22 [23 |24 |

UNIVERSITY OF
_
|muve~m'1

%

“Row Hammer Refresh
Command” (Patent)

-- K. S. Bains, J. B.
Halbert, C. P. Mozak,
T. Z. Schoenborn,

and Z. Greenfield

“‘Negative Result: Reading Kernel
Memory From User Mode”
-- Anders Fogh

: i -y
rowhammer.js -- D. Gruss, C.Maurice, S.Mangard

Memory (Un)Safety

==
=
_— o

Software Hardware

/

Traditional Side channels Hardware side Rowhammer Transient
exploits & artefacts channels execution

79

Memory (Un)Safety

==
=
_— o

Software Hardware

_— /l\

Traditional Side channels Hardware side Rowhammer Transient
exploits & artefacts channels execution

81

Traditional Side channels Hardware side Rowhammer Transient
exploits & artefacts channels execution

82

Traditional Side channels Hardware side Rowhammer Transient
exploits & artefacts channels execution

< T TN

COMBINATIONS

............

_A CO IO I T
O h,‘u}(o,‘u)c e

83

Traditional Side channels Hardware S|de “‘Rowhammer ,.-Transient

exploits & artefacts ~ channels 3 / execution

84

- Dedup est machina, S&P’16
- Flip Feng Shui, USENIX Security’16

;‘f“m "i

%k
Traditional Slde channels Hardware side Rowhammer ~ Transient

exploits /& artefacts \ channels / “‘c;xecution

85

- Speculative Probing (“BlindSide”), CCS’20

(slow—-condition) {

- PAC-MAN Attack, ISCA22 .
- [embargo], [embargo],24 e call [corrupt-ptr];

=
=
a
B
N
“‘Q_‘J .
- = e
% %
Vo ‘5‘5
T
s

“Traditional® Side channels Hardware side Rowhammer.~ Transient"
/ execution

exploits & artefacts channels

e

Y

86

Potential gadget:
if (index < bounds) { // not attacker-controlled

data = arrayl[index];

val = arrayZ[data]; ,
) SpecHammer, S&P’22
Usable gadget: e

if (index < bounds) { // attacker-controlled!

data = arrayl[index];
val = array?2[datal;

} .
I S\

j v" A’z:' W‘f{'}r

o 4

@

Traditional Side channels Hardware side -Rowhammer-_ Transient-,
exploits & artefacts channels / }“‘a%execution

87

Memory (Un)Safety: “All Things Under The Hood”

We should not need to be aware of them

Abstraction: Fundamental Tenet of Software Engineering

SEC. 11 ‘WHAT IS AN OPERATING SYSTEM? 5

MODERN e
This abstraction is the key to managing all this complexity. Good abstractions

Tanenbaum ; i | /Good abe

turn a nearly impossible task into two manageable ones. The first is defining and

Herbert implementing the abstractions. The second is using these abstractions to solve the

Bos problem at hand. One abstraction that almost every computer user understands is

SYS I E |\/| S the file, as mentioned above. It is a useful piece of information, such as a digital

photo, saved email message, song, or Web page. It is much easier to deal with pho-
tos, emails, songs, and Web pages than with the details of SATA (or other) disks.
‘The job of the operating system is o create good abstractions and then implement
and manage the abstract objects thus created. In this book, we will talk a lot about
abstractions. They are one of the keys to understanding operating systems.

‘This point is so important that it is worth repeating but in different words. With
all due respect (o the industrial engineers who so very carefully designed the Apple
Macintosh computers (now known simply as “Macs”), hardware is grotesque.
Real processors, memories, Flash drives, disks, and other devices are very compli- s
cated and present difficult, awkward, idiosyncratic, and inconsistent interfaces to -
the people who have to write software to use them. Sometimes this is due to the A~ Application programs
need for backward compatibility with older hardware. Other times it is an attempt_ .~ ~
to save money. Often, however, the hardware designers do not realize (or care) how’
much trouble they are causing for the software. One of the major tasks of.the oper-
ating system is to hide the hardware and present programs (and theic-pfogrammers)
with nice, clean, elegant, consistent, abstractions to work witkr ifistead. Operating
systems turn the awful into the beautiful, as shown in Fig.1-2.

~<— Beaultiful interface

Application programs

E’% ¢ ‘% @ ~— Beautiful interface

Operating system

@ f SERD| ~— Awtul intertace

Hardware

-— Awful interface

e Hardware

Figure 1-2. Operating systems tum awful hardware into beautiful abstracons: = — _

1t should be noted that the operating system’s real customers are the applica-
tion programs (via the application programmers, of course). They are the ones
who deal directly with the operating system and its abstractions. In contrast, end - .
users deal with the abstractions provided by the user interface, either a com- F g 1 -2 Op t g y t m t \Nf |
mand-line shell or a graphical interface. While the abstractions at the user interface I u re - e ra I n S S e S u rn a u

may be similar to the ones provided by the operating system, this is not always the

case. To make this point clearer, consider the normal Windows desktop and the hardwa re Into bea utlful abstractlons

Abstractions, layers, partitioning

Fundamental concepts

We need them to understand the world

Vulnerabilities are where abstractions break down

90

Conclusions (1)

Abstractions considered harmful and essential
To write secure code you must know everything (?!)

Memory Corruption Phase 3: The MultiVerse

“VUSec

https://vusec.net
info@vusec.net

E’@vuSec

Conclusion (2)
We have treated the non-academic security
community poorly.

We owe these people a lot.

“VUSec

https://vusec.net
info@vusec.net

. A Qvubec

Modest proposal

Academic community

Always cite any available prior art
(But do not reject papers because someone somewhere wrote a blog post)

Cite the eatrliest sources in addition to (recent) academic work

Non-academic community

Vusec Work on making it easier to find stuf

https://vusec.net
info@vusec.net

E’@vuSec

Less Modest proposal

Academic community

Be more accepting toward papers from non-academic researchers
Explain better what we expect

Recognize the achievements of hackers.Why doesn’t this conference have, say, a
Dark Spyrit Award for Embedded Systems Security? ora
Dan Kaminsky Award For Best Internet Security Achievement ?

“VUSec

https://vusec.net
info@vusec.net

E’@vuSec

