THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

#### Evaluating EULER: Experimental Results of Network Anomaly Detection Models Isaiah J. King & H. Howie Huang Learning from Authoritative Security Experiment Results (LASER), 2022 San Diego, CA

## **Networks as a Temporal Graphs**



- Interactions on a network are relational, and temporal
- Given a series of graphs  $G = \{G_0, ..., G_T\}$  where  $G_t = \{V_t, E_t\}$ anomalous edges correlate to lateral movement
- Can we detect anomalous edges using a temporal link predictor?



## **Temporal Link Prediction**

- In the past, TLP has been accomplished by running GNN output through a sequence encoder
- Highly engineered models prone to overfitting
- Forces process to be sequential
- Cannot scale to large graphs (i.e. network logs)
- We propose uncoupling the RNN and GNN
- GNN is most complex portion of the approach
- Amdahl's law—distribute the hard parts



Sota



Our Approach



### **The Distributed Framework**





4

### **The Encoder-Decoder**

- The EULER framework is a generic extension of the traditional GAE model
- It stacks a model-agnostic GNN upon a model-agnostic RNN
- Aims to find a low-dimensional encoding function  $f(\cdot)$  of G
- And a decoding function  $g(\cdot)$  of those encodings
- As a result of IP decoding,  $\Pr[(u, v) \in E_{t+n}] \propto \mathbf{Z}_t[u]\mathbf{Z}[v]^{\mathrm{T}}$

 $f(G) = \mathbf{Z} = \text{RNN}([\text{GNN}(\mathbf{X}_0, \mathbf{A}_0), \dots, \text{GNN}(\mathbf{X}_t, \mathbf{A}_t)])$  $g(\mathbf{Z}_t) = \Pr[\mathbf{A}_{t+n} = 1 \mid \mathbf{Z}_t] = \sigma(\mathbf{Z}_t \mathbf{Z}_t^{\mathrm{T}})$ 

WASHINGTON, DC



## Classifier

- Though most evaluation metrics used are for quality of scoring (AUC & AP) it's useful to automate finding a cutoff
- An additional 5% of snapshots are held out of training for this
- Given TPR and FPR at threshold  $\tau$ , optimal threshold is

 $\underset{\tau}{\operatorname{argmin}} \quad \left\| (1-\lambda) \operatorname{TPR}(\tau) - \lambda \operatorname{FPR}(\tau) \right\|$ 

•  $\lambda \in (0,1)$  is a user-defined hyperparameter, biasing against high FPR



# **Experiments & Challanges**

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

## **Replicating Prior Work**

- (SI-)VGRNN
  - GCN on GRNN
  - GRNN output used as GCN input next snapshot
  - Currently #1 ranked Temporal LP model on PapersWithCode.com
- EGCN
  - RNN aims to find *parameters* of GCN
  - Very unique method, excellent at low info LP (guessing 10+ snapshots in the future)
- DynGraph2Vec (DynAE, DynRNN, DynAERNN)
  - MLP on RNN (no message passing or spectral convs)
  - Uses adj matrix as input & output vectors (not scalable)



## **Data Sets**

All data sets provided by VGRNN authors

- Facebook (FB)
  - Graph of users commenting on others' walls
  - Each snapshot is 1 day
- COLAB
  - Citation network in order of publication date
  - Each snapshot is 1 year
- Enron10
  - Emails between Enron employees between 1999-2000
  - Snapshots are 1 week

#### TABLE I: Data set metadata

| Data Set | Nodes | Edges  | Avg. Density | Timestamps |
|----------|-------|--------|--------------|------------|
| FB       | 663   | 23,394 | 0.00591      | 9          |
| COLAB    | 315   | 5,104  | 0.01284      | 10         |
| Enron10  | 184   | 4,784  | 0.00514      | 11         |



## Tests

- Dynamic Link *Detection* 
  - Inductive
  - Find  $\Pr[\mathbf{A}_t = 1 | \mathbf{Z}_t]$  given  $\mathbf{Z} = f(\{\hat{G}_0, \dots, \hat{G}_t\})$
- Dynamic Link Prediction
  - Transductive
  - Find  $\Pr[\mathbf{A}_{t+1} = 1 | \mathbf{Z}_t]$  given  $\mathbf{Z} = f(\{G_0, ..., G_t\})$
- Dynamic New Link Prediction
  - Same as above, but set of positive samples is only  $\{(u,v) \mid (u,v) \in \mathcal{E}_{t+1} \land (u,v) \notin \mathcal{E}_t\}$



### Results

TABLE II: Comparison of EULER to related work on dynamic link detection

| Metrics | Methods Enron |                                    | COLAB            | Facebook                           |
|---------|---------------|------------------------------------|------------------|------------------------------------|
|         | VGAE          | $88.26 \pm 1.33$                   | $70.49 \pm 6.46$ | $80.37 \pm 0.12$                   |
|         | DynAE         | $84.06 \pm 3.30$                   | $66.83 \pm 2.62$ | $60.71 \pm 1.05$                   |
|         | DynRNN        | $77.74 \pm 5.31$                   | $68.01 \pm 5.50$ | $69.77 \pm 2.01$                   |
|         | DynAERNN      | $91.71 \pm 0.94$                   | $77.38 \pm 3.84$ | $81.71 \pm 1.51$                   |
|         | EGCN-O        | $93.07 \pm 0.77$                   | $90.77 \pm 0.39$ | $86.91 \pm 0.51$                   |
| AUC     | EGCN-H        | $92.29 \pm 0.66$                   | $87.47 \pm 0.91$ | $85.95 \pm 0.95$                   |
|         | VGRNN         | $94.41 \pm 0.73$                   | $88.67 \pm 1.57$ | $88.00 \pm 0.57$                   |
|         | SI-VGRNN      | $95.03 \pm 1.07$                   | $89.15 \pm 1.31$ | $88.12 \pm 0.83$                   |
|         | EULER         | $\textbf{97.34} \pm \textbf{0.41}$ | $91.89\pm0.76$   | $\textbf{92.20} \pm \textbf{0.56}$ |
|         | VGAE          | $89.95 \pm 1.45$                   | $73.08 \pm 5.70$ | $79.80 \pm 0.22$                   |
|         | DynAE         | $86.30 \pm 2.43$                   | $67.92 \pm 2.43$ | $60.83 \pm 0.94$                   |
|         | DynRNN        | $81.85 \pm 4.44$                   | $73.12 \pm 3.15$ | $70.63 \pm 1.75$                   |
|         | DynAERNN      | $93.16 \pm 0.88$                   | $83.02 \pm 2.59$ | $83.36 \pm 1.83$                   |
|         | EGCN-O        | $92.56 \pm 0.99$                   | $91.41 \pm 0.33$ | $84.88 \pm 0.52$                   |
| AP      | EGCN-H        | $92.56 \pm 0.72$                   | $88.00 \pm 0.85$ | $82.56 \pm 0.91$                   |
|         | VGRNN         | $95.17 \pm 0.41$                   | $89.74 \pm 1.31$ | $87.32 \pm 0.60$                   |
|         | SI-VGRNN      | $96.31 \pm 0.72$                   | $89.90 \pm 1.06$ | $87.69 \pm 0.92$                   |
|         | EULER         | $97.06 \pm 0.48$                   | $92.85\pm0.88$   | $91.74 \pm 0.71$                   |

TABLE III: Comparison of EULER to related work on dynamicTABLE IV: Comparison of EULER to related work on dynamiclink predictionnew link prediction

| Metrics | Methods  | Enron            | COLAB            | Facebook         |
|---------|----------|------------------|------------------|------------------|
|         | DynAE    | $74.22 \pm 0.74$ | $63.14 \pm 1.30$ | $56.06 \pm 0.29$ |
|         | DynRNN   | $86.41 \pm 1.36$ | $75.7 \pm 1.09$  | $73.18 \pm 0.60$ |
|         | DynAERNN | $87.43 \pm 1.19$ | $76.06 \pm 1.08$ | $76.02 \pm 0.88$ |
|         | EGCN-O   | $84.28 \pm 0.87$ | $78.63 \pm 2.14$ | $77.31 \pm 0.58$ |
| AUC     | EGCN-H   | $88.29 \pm 0.87$ | $80.80 \pm 0.95$ | $75.88\pm0.32$   |
|         | VGRNN    | $93.10 \pm 0.57$ | $85.95 \pm 0.49$ | $89.47 \pm 0.37$ |
|         | SI-VGRNN | $93.93\pm1.03$   | $85.45 \pm 0.91$ | $90.94 \pm 0.37$ |
|         | EULER    | $93.15\pm0.42$   | $86.54\pm0.20$   | $90.88\pm0.12$   |
|         | DynAE    | $76.00 \pm 0.77$ | $64.02 \pm 1.08$ | $56.04 \pm 0.37$ |
|         | DynRNN   | $85.61 \pm 1.46$ | $78.95 \pm 1.55$ | $75.88 \pm 0.42$ |
|         | DynAERNN | $89.37 \pm 1.17$ | $81.84 \pm 0.89$ | $78.55 \pm 0.73$ |
|         | EGCN-O   | $86.55 \pm 1.57$ | $81.43 \pm 1.69$ | $76.13 \pm 0.52$ |
| AP      | EGCN-H   | $89.33 \pm 1.25$ | $83.87 \pm 0.83$ | $74.34 \pm 0.53$ |
|         | VGRNN    | $93.29 \pm 0.69$ | $87.77 \pm 0.79$ | $89.04 \pm 0.33$ |
|         | SI-VGRNN | $94.44~\pm~0.85$ | $88.36\pm0.73$   | $90.19\pm0.27$   |
|         | EULER    | $94.10 \pm 0.32$ | $89.03\pm0.08$   | $89.98 \pm 0.19$ |

| Metrics | Methods  | Enron            | COLAB                              | Facebook         |
|---------|----------|------------------|------------------------------------|------------------|
|         | DynAE    | $66.10 \pm 0.71$ | $58.14 \pm 1.16$                   | $54.62 \pm 0.22$ |
|         | DynRNN   | $83.20 \pm 1.01$ | $71.71 \pm 0.73$                   | $73.32 \pm 0.60$ |
|         | DynAERNN | $83.77 \pm 1.65$ | $71.99 \pm 1.04$                   | $76.35 \pm 0.50$ |
|         | EGCN-O   | $84.42 \pm 0.82$ | $79.06 \pm 1.60$                   | $75.95 \pm 1.15$ |
| AUC     | EGCN-H   | $87.00 \pm 0.85$ | $78.47 \pm 1.27$                   | $74.85 \pm 0.98$ |
|         | VGRNN    | $88.43 \pm 0.75$ | $77.09 \pm 0.23$                   | $87.20 \pm 0.43$ |
|         | SI-VGRNN | $88.60 \pm 0.95$ | $77.95 \pm 0.41$                   | $87.74 \pm 0.53$ |
|         | EULER    | $87.92 \pm 0.64$ | $\textbf{78.39} \pm \textbf{0.68}$ | $89.02\pm0.09$   |
|         | DynAE    | $66.50 \pm 1.12$ | $58.82 \pm 1.06$                   | $54.57 \pm 0.20$ |
|         | DynRNN   | $80.96 \pm 1.37$ | $75.34 \pm 0.67$                   | $75.52 \pm 0.50$ |
|         | DynAERNN | $85.16 \pm 1.04$ | $77.68 \pm 0.66$                   | $78.70 \pm 0.44$ |
|         | EGCN-O   | $86.92 \pm 0.39$ | $81.36 \pm 0.85$                   | $73.66 \pm 1.25$ |
| AP      | EGCN-H   | $86.46 \pm 1.42$ | $79.11 \pm 2.26$                   | $73.43 \pm 1.38$ |
|         | VGRNN    | $87.57 \pm 0.57$ | $79.63 \pm 0.94$                   | $86.30 \pm 0.29$ |
|         | SI-VGRNN | $87.88\pm0.84$   | $81.26\pm0.38$                     | $86.72\pm0.54$   |
|         | EULER    | $88.49 \pm 0.55$ | $81.34\pm0.62$                     | $87.54\pm0.11$   |

- EULER out-performs prior work on all detection tests
  - Though only with statistical significance on FB and Enron AUC
- Prior works are not statistically significantly better than EULER on any prediction tests
- EULER is better with significance on new FB test, and equivalent elsewhere

## The Importance of Statistical Significance

TABLE III: Comparison of EULER to related work on dynamic link prediction

| Metrics | Methods  | Enron            | COLAB            | Facebook         |
|---------|----------|------------------|------------------|------------------|
|         | DynAE    | $74.22 \pm 0.74$ | $63.14 \pm 1.30$ | $56.06 \pm 0.29$ |
|         | DynRNN   | $86.41 \pm 1.36$ | $75.7 \pm 1.09$  | $73.18 \pm 0.60$ |
|         | DynAERNN | $87.43 \pm 1.19$ | $76.06 \pm 1.08$ | $76.02 \pm 0.88$ |
|         | EGCN-O   | $84.28 \pm 0.87$ | $78.63 \pm 2.14$ | $77.31 \pm 0.58$ |
| AUC     | EGCN-H   | $88.29 \pm 0.87$ | $80.80 \pm 0.95$ | $75.88 \pm 0.32$ |
|         | VGRNN    | $93.10 \pm 0.57$ | $85.95 \pm 0.49$ | $89.47 \pm 0.37$ |
|         | SI-VGRNN | $93.93 \pm 1.03$ | $85.45 \pm 0.91$ | $90.94 \pm 0.37$ |
|         | EULER    | $93.15\pm0.42$   | $86.54 \pm 0.20$ | $90.88\pm0.12$   |
|         | DynAE    | $76.00 \pm 0.77$ | $64.02 \pm 1.08$ | $56.04 \pm 0.37$ |
|         | DynRNN   | $85.61 \pm 1.46$ | $78.95 \pm 1.55$ | $75.88 \pm 0.42$ |
|         | DynAERNN | $89.37 \pm 1.17$ | $81.84 \pm 0.89$ | $78.55 \pm 0.73$ |
|         | EGCN-O   | $86.55 \pm 1.57$ | $81.43 \pm 1.69$ | $76.13 \pm 0.52$ |
| AP      | EGCN-H   | $89.33 \pm 1.25$ | $83.87 \pm 0.83$ | $74.34 \pm 0.53$ |
|         | VGRNN    | $93.29 \pm 0.69$ | $87.77 \pm 0.79$ | $89.04 \pm 0.33$ |
|         | SI-VGRNN | $94.44~\pm~0.85$ | $88.36\pm0.73$   | $90.19\pm0.27$   |
|         | EULER    | $94.10\pm0.32$   | $89.03\pm0.08$   | $89.98\pm0.19$   |

- When are models essentially the same?
- Similar avg. AUC/AP lower stderr
- Use hypothesis testing:

$$t = \frac{0 - (\mu(B) - \mu(A))}{\sqrt{\frac{Var(B - A)}{N}}} = \frac{\mu(A) - \mu(B)}{\sqrt{\sigma_M(A)^2 + \sigma_M(B)^2}}$$

• t < 2.228 means not significantly different (p-value > 0.05)

## **Performance Comparison**



Forward Time

**Backward Time** 

Euler uses 16 workers; prior works use 16 inter-op threads for fair comparison

- Euler is consistently faster than prior works
- Forward time is about 2x faster
- Backward time is 16x better (showing near-perfect scaling)

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

# **Real-world data sets**

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

## The LANL Dataset

- 58 Days of log files in a real-world system
- Attack campaigns sporadically
- Redlog identifies 750 authorization events "involved in compromise"
- Nodes: Users, Computers, System
- Edges: Authorizations, weighted according to frequency:

$$W((\mathfrak{u}, \mathfrak{v}) \in \mathcal{E}) = \sigma\left(\frac{C(\mathfrak{u}, \mathfrak{v}) - \mu_{\mathcal{E}}}{\Sigma_{\mathcal{E}}}\right)$$

• Features: 1-hot ID, and 1-hot vector of node's role

TABLE V: LANL Data Set Metadata

| Nodes           | 17,685     |
|-----------------|------------|
| Events          | 45,871,390 |
| Anomalous Edges | 750        |
| Duration (Days) | 58         |



## **LANL Tests**

#### Tested 3 Encoders

- GCN
- GraphSAGE (Maxpool aggr.)
- GAT (3 attn. heads)
- •Tested 3 RNNs
  - GRU
  - LSTM
  - None (ablation study)
- •Compared to 4 prior works
  - GL-LV, GL-GV are static, graph-based
  - UA is a simple rules-based method
  - VGRNN is SoTA temporal LP method

#### Tests:

- Link Detection
  - Real world use: forensic audit
- Link Prediction
  - Real world use: live detector



## Results

•Link Detection:

- Best precision was GCN-GRU
- Surprisingly, ablation study had best AUC (with GRU). RNN may not be necessary
- SAGE also performed well

#### Link Prediction

- SAGE had best precision this time
- AUC not as good as GCN

#### •Overall

- Regression metrics are better than all prior works
- Higher TPR and lower FPR on classification metrics than prior works

| Link Detection |      |         |           |       |         |  |  |
|----------------|------|---------|-----------|-------|---------|--|--|
| Encoder        | RNN  | AUC     | AP        | TPR   | FPR     |  |  |
|                | GRU  | 0.9912  | 0.05230   | 86.10 | 0.5698  |  |  |
| GCN            | LSTM | 0.9913  | 0.01692   | 89.65 | 0.5723  |  |  |
|                | None | 0.9916  | 0.01163   | 88.57 | 0.4798  |  |  |
|                | GRU  | 0.9872  | 0.03065   | 84.71 | 0.6874  |  |  |
| SAGE           | LSTM | 0.9887  | 0.03892   | 83.55 | 0.6591  |  |  |
|                | None | 0.8652  | 0.00515   | 79.58 | 24.5669 |  |  |
|                | GRU  | 0.9094  | 0.00762   | 85.21 | 21.533  |  |  |
| GAT            | LSTM | 0.8713  | 0.00219   | 96.83 | 19.873  |  |  |
|                | None | 0.9867  | 0.00787   | 99.88 | 23.174  |  |  |
| GL-LV 9        |      | _       | _         | 67.00 | 1.200   |  |  |
| GL-GV 9        | 2    | -       | _         | 85.00 | 0.900   |  |  |
| UA             |      | _       | _         | 72.00 | 4.400   |  |  |
| VGRNN          |      | 0.9315  | 0.0000    | 59.69 | 4.938   |  |  |
|                |      | Link Pr | rediction |       |         |  |  |
| Encoder        | RNN  | AUC     | AP        | TPR   | FPR     |  |  |
|                | GRU  | 0.9906  | 0.0155    | 85.49 | 0.6088  |  |  |
| GCN            | LSTM | 0.9885  | 0.0166    | 78.91 | 0.5987  |  |  |
|                | None | 0.9902  | 0.0092    | 86.42 | 0.5425  |  |  |
|                | GRU  | 0.9847  | 0.0200    | 86.30 | 1.6542  |  |  |
| SAGE           | LSTM | 0.9865  | 0.0228    | 85.29 | 0.8037  |  |  |
|                | None | 0.9284  | 0.0020    | 86.23 | 16.525  |  |  |
|                | GRU  | 0.8826  | 0.0020    | 87.82 | 21.971  |  |  |
| GAT            | LSTM | 0.8383  | 0.0002    | 83.42 | 29.297  |  |  |
|                | None | 0.9352  | 0.0079    | 88.83 | 20.093  |  |  |

0.9503

0.0004

70.00

0.280

VGRNN



17

## A More Detailed Data Set: OpTC

- With LANL it's unclear how "anomalous events" are TA defined
- OpTC has entire redlog—more informative labels
- Edges are FLOW START events
- Weighted and directed the same way as LANL
- No node features, just 1-Hot IDs
- Edges Anomalous if
  - SRC or DST IP in redteam event
  - PID in redteam and time >= ts
  - Edges to/from compromised IPs remain anomalous until the end of the day

TABLE VIII: OpTC Data Set Metadata

| Nodes           | 1,114     |
|-----------------|-----------|
| Events          | 7,773,514 |
| Anomalous Edges | 21,872    |
| Duration (Days) | 7         |



## Results

- Fewer hosts allows us to use softmax anomaly detector
- Boosts scores significantly
- With easier to interpret results, Euler has low enough FPR for IDS

TABLE VI: Effectiveness of link prediction models on the OpTC Data Set

| Detection     |                |       |       |       |         |         |  |
|---------------|----------------|-------|-------|-------|---------|---------|--|
| Model         | $\delta \ (h)$ | F1    | AUC   | AP    | TPR (%) | FPR (%) |  |
| EGCN-O        | 5              | 0.005 | 0.554 | 0.003 | 67.5    | 58.7    |  |
| EGCN-H        | 3.5            | 0.004 | 0.484 | 0.002 | 83.9    | 85.4    |  |
| VGRNN         | 5              | 0.048 | 0.988 | 0.367 | 99.3    | 15.0    |  |
| EULER GRU     | 2.5            | 0.140 | 0.888 | 0.088 | 17.8    | 0.473   |  |
| Euler LSTM    | 2.5            | 0.189 | 0.882 | 0.118 | 17.8    | 0.168   |  |
| EULER-SM GRU  | 0.125          | 0.937 | 0.995 | 0.973 | 97.0    | 0.021   |  |
| EULER-SM LSTM | 0.125          | 0.955 | 0.995 | 0.984 | 96.7    | 0.012   |  |

| Prediction    |                |              |              |              |             |              |  |
|---------------|----------------|--------------|--------------|--------------|-------------|--------------|--|
| Model         | $\delta \ (h)$ | F1           | AUC          | AP           | TPR (%)     | FPR (%)      |  |
| EGCN-O        | 5              | 0.005        | 0.563        | 0.003        | 72.7        | 63.2         |  |
| EGCN-H        | 3.5            | 0.004        | 0.507        | 0.003        | 80.0        | 80.2         |  |
| VGRNN         | 0.125          | 0.014        | 0.692        | 0.008        | 73.1        | 42.1         |  |
| Euler GRU     | 3              | 0.167        | 0.785        | 0.180        | 37.6        | 10.4         |  |
| Euler LSTM    | 3              | 0.207        | 0.779        | 0.243        | 42.7        | 6.75         |  |
| Euler-SM GRU  | 0.125          | 0.931        | <b>0.995</b> | 0.969        | 93.8        | 0.017        |  |
| Euler-SM LSTM | 0.5            | <b>0.944</b> | 0.994        | <b>0.986</b> | <b>94.9</b> | <b>0.013</b> |  |

## Conclusion

Euler accomplished the following:

- Consistently as powerful or better than prior work
- Parallelized temporal link prediction
- First use of graph temporal link prediction for IDS
- Achieved high scores on OpTC; good scores on LANL



## Discussion

- Why do so few ML papers make use of t-tests?
- Why don't results on small data sets apply to real world ones?
- How valuable is LANL v. OpTC for evaluating IDS models?
- How to integrate speed into evaluation? What is a fair comparison?

# Thank You

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC