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Embedded Systems Are 
Everywhere

Background
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Mitigations are used to Protect Desktop Systems

User-space Mitigations

Kernel-Level Mitigations

• Stack Canary 
• Non-executable Stack (NX)
• Address Space Layout 

Randomization (ASLR)
.........

• Stack Protector
• Kernel-level Address Space Layout Randomization (KASLR)
.........

Background
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Mitigations Are Missing

Motivations

Brand Device Count ASLR % NX % RELRO % Canary % CPU

Ubuntu 
Desktop 16.04 5379 23.12 99 100 79.43 x86

Asus rt-ac55u 334 0 0 1.8 0 MIPS

D-LINK dir-850I 118 0 0 3.39 0 MIPS

Linksys e2500 201 8.79 0 3.48 0 ARM

Table. Adoption rates of user-space mitigations from popular home routers (https://cyber-
tl.org/assets/papers/2018/build_safety_of_software_in_28_popular_home_rouers.pdf)
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Research Question
Q1: With all the needed support available, do 
embedded devices adopt attack mitigations?

Q2: Is the adoption of the attack mitigations improving 
over time?

Q3: If the attack mitigations are missing? What are 
the possible reasons? 

Perform a large-scale study on 
evaluating the mitigation 

adoption on embedded devices



6

• Building High-quality Dataset
• Previous datasets are outdated and even invalid today

• Unpacking Firmware Images
• Firmware images are organized in diverse formats
• Raw data format kernel cannot be fully recovered

• Identifying Attack Mitigations
• Existing tools like Hardening-Check. Checksec have design 

limitations
• Kernel mitigations are rarely considered by the tools

Challenges with Large Scale Analysis
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Approach to Large-Scale Analysis



Data Collection
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• Web Crawler
• Previous dataset are invalid or outdated today
1. “A large-scale analysis of the security of embedded 

firmware” USENIX Security 2014 (Only 5% URLs are 
valid)

• Previous work has designed web crawler for the 
same purpose, but need to be updated

1. “Towards automated dynamic analysis for Linux-based 
embedded firmware” NDSS 2016 (Only few crawler 
working properly)

Update the web crawler from 
FIRMADYNE



Data Collection Result

• In total, we collected over 18,000 firmware images 
from 38 vendors. The firmware range from 1998 to 
2021 and include most common types of devices. 
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Firmware Unpacking
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Structure of firmware images BINWALK output for linksys-EA4500-2.1.42.183584_prod.img

Extract Filesystem
• Search for standard directories like bin, sbin, lib and etc
• The directories will then recursively traversed to identify binaries



Firmware Unpacking
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Extract Linux Kernel
• Improve signatures inherited from Binwalk to extract kernel
• Use vmlinux-to-elf[1] tool to recover the Linux kernel into ELF format

Linux version 2.6.28 (arica@localhost.localdomain) (gcc version 4.4.0 (Faraday 
C/C++ Compiler Release 20100325) ) #72 PREEMPT Wed Apr 29 18:49:51 CST 2015

A. String recognized 

Linux version 4.4.35_hi3796mv200 (xushaohui@raysharp-PowerEdge-R720) Linux 
version 4.14.221 (builder@buildhost)

B. String not recognized 

[1] marin-m. vmlinux-to-elf. https://github.com/marin-m/vmlinux-to-elf, 2021



Firmware Unpacking Result
• We unpacked 10,685 out of 

18,020 firmware images with 
success rate 59.3%. 

• In summary, we collected 9,037
filesystems with over 3,000k ELF 
binaries and 7,977 Linux kernels
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• In among of 7,997 Linux kernel,
we found 581 of them containing 
.config file and 3,287 converted to 
ELF format



Stack Canary
• Search __stack_chk_fail in symbols

Relocation Read-Only (RELRO)
• Check permission flag of .got and .got.plt section

Non-executable Stack (NX Stack)
• Check presence of PT_GNU_STACK in program header

Fortify Source
• Search indicator functions (e.g strcpy_chk) in symbols

Position-Independent Code (PIC/PIE)
• Check type in program header (ET_DYN)

User-space Mitigation
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Stack Canary
• For dynamically linked binary, search __stack_chk_fail in symbols
• For statically linked binary, search error message “stack smashing 

detected”

Relocation Read-Only (RELRO)
• Check permission flag of .got and .got.plt section
• Flags (BIND_NOW, DT_BIND_NOW and etc) are used to determine 

full RELRO

Fortify Source
• For dynamically linked binary, search indicator functions (e.g

strcpy_chk) in symbols
• For statically linked binary, search error message “buffer overflow 

detected”

Improvement of Traditional Approach
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Rules:
1. Active in Linux distributions 
2. Released over three years 
3. Applicable to deployed systems

Kernel-level Mitigation

Table. Memory Related Attack mitigations in Linux Kernel
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Kernel-level Mitigation Identification

16

Kernel Version
• Kernel version is available in both .config file and string constant

Build Configuration
• Only when the option is present and its value is “=y”, it’s enabled

ELF Format Kernel
• Use indicator functions from recovered ELF kernel (__stack_chk_fail

for Stack Protector and etc)



User-space Evaluation Approach

17

Experiment to Answer Q1
• Measure the mitigation adoption rate for all the embedded binaries
• Breakdown the binaries by types

Experiment to Answer Q2
• Keep track of mitigation change over time
• Evolution of individual firmware

Experiment to Answer Q3
• Understand the limitation of building tool
• Evaluate reused binaries
• Measure mitigation overhead
• Case study on embedded vulnerabilities 



Kernel-Level Evaluation Approach

18

Experiment to Answer Q1
• Measure the mitigation adoption rate for all the Linux 

kernel
• No further analysis as kernels are barely protected

Experiment to Answer Q2
• Keep track of mitigation change over time on Stack 

Protector
• Measure the gap between the release time and building 

time of kernels



• The adoption rates of mitigations by 
embedded binaries are surprisingly
low

• The adoption rates of mitigation 
dramatically vary across vendors

Q1: Do embedded devices adopt 
attack mitigations?

User-space Findings to Answer Q1

85.3% binaries protected with Stack Canary on 
desktop but the number drop to 29.7% on embedded 
system

Best performance vendor achieve 81.5% Stack Canary 
but worst performance vendors completely ignore it
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MIPS as the second largest group has the lowest adoption 
rates in nearly every mitigation 
In comparison, x86/AArch64 binaries have relatively higher 
adoption of mitigations.

Fig. Adoption rates of user-space mitigations by binaries
running on different architectures.

More Findings by Breakdown Binaries
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Kernel-level  mitigations are rarely adopted 
in embedded devices

Table. Adoption result of kernel-level mitigations

Kernel-level Findings to Answer Q1
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Fig. Adoption rates of user-space mitigations across time.

Only adoption of NX Stack presents a positive trend

Q2: Is the adoption of the attack mitigations improving 
over time?

User-space Findings to Answer Q2
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Fig. Evolution score of individual firmware in the adoption
of Stack Canaries. Each point represents a firmware with multiple version.

Most of the firmware present no change

The evidence shows that the adoption of user-
space mitigations is not improving

User-space Findings to Answer Q2
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The adoption rate of Stack Protector 
consistently increase over the past decade

Kernel-level Findings to Answer Q2

Fig. Evolution of Stack Protector across time
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Restrictions of Building Tools

Table. Availability of attack mitigations in different versions of Buildroot

Q3: What are the possible reasons of missing mitigation? 
Findings to Answer Q3
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Massive Reuse of Binaries

Findings to Answer Q3

Fig. Heatmap showing the binaries vendors borrow from 
each other
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Mitigations like Stack Canary, PIE and 
RELRO have observable overhead. 

Table. Cost of attack mitigations on SPEC CPU2006.

Potential Reasons for Q3
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Potential Reasons for Q3

Question: Are the adoption rates higher on 
devices containing more vulnerabilities?

• Vulnerable binaries present no broader adoption of 
the attack mitigations

CVEs affected Realtek SDK. Reported on 2021

• memory corruption vulnerabilities are common on embedded 
devices
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How previous work motivated us?
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Data Collection
• Extend web crawler based on previous research
• Reuse state-of-art firmware unpacking tools

Mitigation Identification
• Improve the user-space mitigation identification 

approach 
• Added kernel level mitigation approach



Any intermediate result?
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Raw Data
• We keep all the firmware images, filesystems, 

Linux Kernels

Statical Result
• We save the mitigation adoption information for each 

binary as running mitigation identification for millions 
of binary is time consuming



Do we share the data?
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Yes, we share all the dataset we collected
• We share the download links for the firmware 

images and the metadata 

We did not report any of our findings to the vendor
• We did not directly contact the vendors or use any 

private data for our evaluation



Limitations
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• Imbalance of Dataset
• Not every vendor has the same amount of data involved
• The data samples are not evenly distributed over time

• Reliability of Mitigation Identification
• Obfuscation will affect our identification of attack
• Encoding strings or destroying symbols may influence our 

result
• Static approaches itself have limitations



Thank You for Listening!
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