
1

An In-Depth Analysis on Adoption of Attack
Mitigations in Embedded Devices

LASER’ 2022

Ruotong Yu†*, Francesca Del Nin¶, Yuchen
Zhang*, Shan Huang*, Pallavi Kaliyarµ, Sarah

Zakto‡, Mauro Conti ¶£, Georgios Portokalidis
, Jun Xu†

† * ‡

¶ µ £

Embedded Systems Are
Everywhere

Background

2

Mitigations are used to Protect Desktop Systems

User-space Mitigations

Kernel-Level Mitigations

• Stack Canary
• Non-executable Stack (NX)
• Address Space Layout

Randomization (ASLR)
.........

• Stack Protector
• Kernel-level Address Space Layout Randomization (KASLR)
.........

Background

3

Mitigations Are Missing

Motivations

Brand Device Count ASLR % NX % RELRO % Canary % CPU

Ubuntu
Desktop 16.04 5379 23.12 99 100 79.43 x86

Asus rt-ac55u 334 0 0 1.8 0 MIPS

D-LINK dir-850I 118 0 0 3.39 0 MIPS

Linksys e2500 201 8.79 0 3.48 0 ARM

Table. Adoption rates of user-space mitigations from popular home routers (https://cyber-
tl.org/assets/papers/2018/build_safety_of_software_in_28_popular_home_rouers.pdf)

4

5

Research Question
Q1: With all the needed support available, do
embedded devices adopt attack mitigations?

Q2: Is the adoption of the attack mitigations improving
over time?

Q3: If the attack mitigations are missing? What are
the possible reasons?

Perform a large-scale study on
evaluating the mitigation

adoption on embedded devices

6

• Building High-quality Dataset
• Previous datasets are outdated and even invalid today

• Unpacking Firmware Images
• Firmware images are organized in diverse formats
• Raw data format kernel cannot be fully recovered

• Identifying Attack Mitigations
• Existing tools like Hardening-Check. Checksec have design

limitations
• Kernel mitigations are rarely considered by the tools

Challenges with Large Scale Analysis

7

Approach to Large-Scale Analysis

Data Collection

8

• Web Crawler
• Previous dataset are invalid or outdated today
1. “A large-scale analysis of the security of embedded

firmware” USENIX Security 2014 (Only 5% URLs are
valid)

• Previous work has designed web crawler for the
same purpose, but need to be updated

1. “Towards automated dynamic analysis for Linux-based
embedded firmware” NDSS 2016 (Only few crawler
working properly)

Update the web crawler from
FIRMADYNE

Data Collection Result

• In total, we collected over 18,000 firmware images
from 38 vendors. The firmware range from 1998 to
2021 and include most common types of devices.

9

Firmware Unpacking

10

Structure of firmware images BINWALK output for linksys-EA4500-2.1.42.183584_prod.img

Extract Filesystem
• Search for standard directories like bin, sbin, lib and etc
• The directories will then recursively traversed to identify binaries

Firmware Unpacking

11

Extract Linux Kernel
• Improve signatures inherited from Binwalk to extract kernel
• Use vmlinux-to-elf[1] tool to recover the Linux kernel into ELF format

Linux version 2.6.28 (arica@localhost.localdomain) (gcc version 4.4.0 (Faraday
C/C++ Compiler Release 20100325)) #72 PREEMPT Wed Apr 29 18:49:51 CST 2015

A. String recognized

Linux version 4.4.35_hi3796mv200 (xushaohui@raysharp-PowerEdge-R720) Linux
version 4.14.221 (builder@buildhost)

B. String not recognized

[1] marin-m. vmlinux-to-elf. https://github.com/marin-m/vmlinux-to-elf, 2021

Firmware Unpacking Result
• We unpacked 10,685 out of

18,020 firmware images with
success rate 59.3%.

• In summary, we collected 9,037
filesystems with over 3,000k ELF
binaries and 7,977 Linux kernels

12

• In among of 7,997 Linux kernel,
we found 581 of them containing
.config file and 3,287 converted to
ELF format

Stack Canary
• Search __stack_chk_fail in symbols

Relocation Read-Only (RELRO)
• Check permission flag of .got and .got.plt section

Non-executable Stack (NX Stack)
• Check presence of PT_GNU_STACK in program header

Fortify Source
• Search indicator functions (e.g strcpy_chk) in symbols

Position-Independent Code (PIC/PIE)
• Check type in program header (ET_DYN)

User-space Mitigation

13

Stack Canary
• For dynamically linked binary, search __stack_chk_fail in symbols
• For statically linked binary, search error message “stack smashing

detected”

Relocation Read-Only (RELRO)
• Check permission flag of .got and .got.plt section
• Flags (BIND_NOW, DT_BIND_NOW and etc) are used to determine

full RELRO

Fortify Source
• For dynamically linked binary, search indicator functions (e.g

strcpy_chk) in symbols
• For statically linked binary, search error message “buffer overflow

detected”

Improvement of Traditional Approach

14

Rules:
1. Active in Linux distributions
2. Released over three years
3. Applicable to deployed systems

Kernel-level Mitigation

Table. Memory Related Attack mitigations in Linux Kernel

15

Kernel-level Mitigation Identification

16

Kernel Version
• Kernel version is available in both .config file and string constant

Build Configuration
• Only when the option is present and its value is “=y”, it’s enabled

ELF Format Kernel
• Use indicator functions from recovered ELF kernel (__stack_chk_fail

for Stack Protector and etc)

User-space Evaluation Approach

17

Experiment to Answer Q1
• Measure the mitigation adoption rate for all the embedded binaries
• Breakdown the binaries by types

Experiment to Answer Q2
• Keep track of mitigation change over time
• Evolution of individual firmware

Experiment to Answer Q3
• Understand the limitation of building tool
• Evaluate reused binaries
• Measure mitigation overhead
• Case study on embedded vulnerabilities

Kernel-Level Evaluation Approach

18

Experiment to Answer Q1
• Measure the mitigation adoption rate for all the Linux

kernel
• No further analysis as kernels are barely protected

Experiment to Answer Q2
• Keep track of mitigation change over time on Stack

Protector
• Measure the gap between the release time and building

time of kernels

• The adoption rates of mitigations by
embedded binaries are surprisingly
low

• The adoption rates of mitigation
dramatically vary across vendors

Q1: Do embedded devices adopt
attack mitigations?

User-space Findings to Answer Q1

85.3% binaries protected with Stack Canary on
desktop but the number drop to 29.7% on embedded
system

Best performance vendor achieve 81.5% Stack Canary
but worst performance vendors completely ignore it

19

MIPS as the second largest group has the lowest adoption
rates in nearly every mitigation
In comparison, x86/AArch64 binaries have relatively higher
adoption of mitigations.

Fig. Adoption rates of user-space mitigations by binaries
running on different architectures.

More Findings by Breakdown Binaries

20

Kernel-level mitigations are rarely adopted
in embedded devices

Table. Adoption result of kernel-level mitigations

Kernel-level Findings to Answer Q1

21

Fig. Adoption rates of user-space mitigations across time.

Only adoption of NX Stack presents a positive trend

Q2: Is the adoption of the attack mitigations improving
over time?

User-space Findings to Answer Q2

22

Fig. Evolution score of individual firmware in the adoption
of Stack Canaries. Each point represents a firmware with multiple version.

Most of the firmware present no change

The evidence shows that the adoption of user-
space mitigations is not improving

User-space Findings to Answer Q2

23

The adoption rate of Stack Protector
consistently increase over the past decade

Kernel-level Findings to Answer Q2

Fig. Evolution of Stack Protector across time

24

Restrictions of Building Tools

Table. Availability of attack mitigations in different versions of Buildroot

Q3: What are the possible reasons of missing mitigation?
Findings to Answer Q3

25

Massive Reuse of Binaries

Findings to Answer Q3

Fig. Heatmap showing the binaries vendors borrow from
each other

26

Mitigations like Stack Canary, PIE and
RELRO have observable overhead.

Table. Cost of attack mitigations on SPEC CPU2006.

Potential Reasons for Q3

27

Potential Reasons for Q3

Question: Are the adoption rates higher on
devices containing more vulnerabilities?

• Vulnerable binaries present no broader adoption of
the attack mitigations

CVEs affected Realtek SDK. Reported on 2021

• memory corruption vulnerabilities are common on embedded
devices

28

How previous work motivated us?

29

Data Collection
• Extend web crawler based on previous research
• Reuse state-of-art firmware unpacking tools

Mitigation Identification
• Improve the user-space mitigation identification

approach
• Added kernel level mitigation approach

Any intermediate result?

30

Raw Data
• We keep all the firmware images, filesystems,

Linux Kernels

Statical Result
• We save the mitigation adoption information for each

binary as running mitigation identification for millions
of binary is time consuming

Do we share the data?

31

Yes, we share all the dataset we collected
• We share the download links for the firmware

images and the metadata

We did not report any of our findings to the vendor
• We did not directly contact the vendors or use any

private data for our evaluation

Limitations

32

• Imbalance of Dataset
• Not every vendor has the same amount of data involved
• The data samples are not evenly distributed over time

• Reliability of Mitigation Identification
• Obfuscation will affect our identification of attack
• Encoding strings or destroying symbols may influence our

result
• Static approaches itself have limitations

Thank You for Listening!

33

