

DrawnApart

A Deep-Learning Enhanced GPU Fingerprinting Technique

<u>Tomer Laor</u>¹, <u>Naif Mehanna</u>², Antonin Durey², Vitaly Dyadyuk¹, Pierre Laperdrix², Clémentine Maurice², Romain Rouvoy², Walter Rudametkin², Yossi Oren¹, Yuval Yarom³

Unethical advertiser

Jack likes sports

Jack uses facebook & reddit

Let's show sport ads in there !

Jack disabled his cookies

He made sure to randomize his browser fingerprint

He did not log in sensitive website

A possible use case

How did the advertiser manage to track Jack?

A possible use case

1

What can we extract from it?

Hypothesis

Each GPU, even from the same model, shows **differences** on some scale.

Verifying the Hypothesis

We need to be able to:

- Experiment with different scripts interacting with the GPUs.
- Run the same code on multiple machines with the same software and hardware.
- Have the multiple machines in the same environment (temperature, pressure, etc...)

The Setup

Our identical PCs with our daemon

Our server

Web Environment

We need to use WebGL to run code on the GPU from a web page.

WebGL doesn't have mutexes.

Web Environment - Offscreen

```
def drawn apart offscreen():
```

```
times = []
```

```
for vertices_to_stall in power_set(vertices_num):
```

```
start_time = time.now()
```

```
apply_in_parallel(vrtx_to_render=>render_vertex(vertices_to_stall, vertex_to_render))
```

```
end_time = time.now()
```

```
times.append(end_time - start_time)
```

return times

```
def render_vertex(vertices_to_stall, vertex_to_render):
```

```
if vertex_to_render not in vertices_to_stall:
```

```
render(color='green')
```

else:

```
render(color=intensive_compute())
```


Web Environment - Offscreen

These traces were classified using Random Forest.

Web Environment - Offscreen Results

Device Type	GPU	Device Count	Base Rate (%)	Accuracy (%)	Gain
Intel i5-3470 (GEN 3 Ivy Bridge)	Intel HD Graphics 2500	10	10	36.3±1.6	3.6
Intel i5-4590 (GEN 4 Haswell)	Intel HD Graphics 4600	23	4.3	63.7±0.6	14.7
Intel i5-8500 (GEN 8 Coffee Lake)	Intel UHD Graphics 630	15	6.7	55.5±0.8	8.3
Intel i5-10500 (GEN 10 Comet Lake)	Nvidia GTX1650	10	10.0	70.0±0.5	7.0
Apple Mac mini M1	Apple M1	4	25.0	46.9±0.4	1.9

Can DrawnApart Work On Mobile Phones?

SAMSUNG Remote Test Lab

We swapped the hard drives of 2 devices in the Intel i5-3470 set.

Spoiler: We were still able to identify the correct device using DrawnApart!

What happened ?

Scan to watch the cyb3r video!

Web Environment - Hypothesis

WebGL deterministically assigns execution units to vertices.

AmlUnique Integration

AmIUnique has a Chrome extension that follows changes in your browser fingerprint over time.

We integrated the DrawnApart offscreen method with AmlUnique in order to gather data in a real world setting

AmlUnique Integration

- Make sure that users won't feel slowdowns
- Select the best stall function for the in-the-wild settings
- Ensure that it will support all the different configurations that can occur in the wild.

Large Scale Experiment - Dataset

The dataset contains ~370,000 fingerprints collected from ~2,500 unique devices through the AmIUnique platform.

Each collection includes 7 traces.

https://amiunique.org

Large Scale Experiment - ML

We first tried to use Random Forest.

But... training on ~2,500 labels required an extensive amount of RAM \rightarrow **Not ideal in a real world setting**

We tried to make clusters of devices using the canvas hash and renderer string, but the story wasn't compelling enough...

Large Scale Experiment - ML

Neural networks have the expressive power that we need, with a reasonable runtime and RAM usage.

Large Scale Experiment - ML

We trained a CNN with **semi-hard triplet loss** to **map the original feature space into a lower dimension** Euclidean space.

In The Wild Dataset Split

Large Scale Experiment - Grid5000

DATA 61 CNIS

Grid5000 is a **big cluster** that let us access machines with powerful GPUs.

Université de Lille

We trained the DrawnApart deep learning solution on Grid5000.

Tested neural network architectures

DATA 61

CNrS

Innin

Prior to picking the *Convolutional Neural Network*, we tried various methods:

Vision Transformers \rightarrow lower accuracy overall - harder to optimize

Training using a Siamese Networks setting → harder to optimize

LSTM networks → Significantly lower accuracy

 $\textbf{DeepAR} \rightarrow \text{ We considered a trace to be a time-serie - bad accuracy}$

What Would an Attacker Do?

1) Gather a lot of data from a lot of users

2) Train an embedding CNN

3) In production: transform each incoming trace using the CNN and compute the distance to the existing embeddings.

Evaluation: In-the-Wild Conditions

• We have a lot of data at hands

• Results are good thanks to the amount of data

Top-10 Accuracy	Top-5 Accuracy	Top-1 Accuracy	Rate Top-1 Base	Nu. of Traces For Memorizing
67.15%	55.09%	28.28%	1.0%	420K~

What Would an Attacker Do?

1) Same attacker - different website with different users.

2) The attacker already have a trained neural network

3) In production: **1-shot learning**

This is a harder task!

Evaluation: K-Shot Conditions

• A small amount of data

• Results are impressive even though the task is harder.

Top-10 Accuracy	Top-5 Accuracy	Top-1 Accuracy	Top-1 Base Rate	Nu. of Traces For Memorizing	Method
19.95%	14.10%	5.44%	0.00%~	14K~	Shot-1
26.75%	19.34%	7.11%	0.00%~	59K~	Shot-5
31.09%	22.77%	9.22%	0.00%~	100K~	Shot-10

Improving the State-of-the-Art

• FP-Stalker: Published at **S&P 2018**

- At the time, it was shown that browser fingerprinting was efficient for identification but not for long-term tracking
- **FP-Stalker** showed that browser fingerprinting could be used for long term tracking

Vastel, A., Laperdrix, P., Rudametkin, W., & Rouvoy, R. (2018, May). Fp-stalker: Tracking browser fingerprint evolutions. In 2018 IEEE Symposium on Security and Privacy (SP) (pp. 728-741). IEEE.

Improving the State-of-the-Art

(b) Hybrid variant of FP-STALKER. The training phase is used to learn the probability that two fingerprints belong to the same browser instance, and the testing phase uses the random forest-based algorithm to link fingerprints.

FP-Stalker has two main steps:

- Rule-based filtering
- Machine learning inference

Collection timestamp	User Agent (HTTP)	
Hashed Canvas (JS)	Do Not Track (JS)	
Language (HTTP)	Cookies (JS)	
Plugins (JS)	Local (JS)	
Renderer (JS)	Flash-based attributes	
Screen Resolution (JS)		
Timezone (JS)		

Inría

33

- Between 2017 and today, the web ecosystem **changed** !
- Flash became **unsupported** by all major browsers since 2021
- FP-Stalker **relied on flash-based attributes** for its rule-based step →it **couldn't be applied** in the current web

We adapted FP-Stalker to the current web, while ensuring that the results remained on par with the paper.

1) Understanding **the logic behind FP-Stalker** & inspecting the existing code

2) Identifying what can be optimized \rightarrow We identified several bugs that could impact the accuracy and optimized the code logic and readability

3) Comparing our adapted version of FP-Stalker to its original algorithm on the provided dataset

In order to introduce DrawnApart into FP-Stalker, we had to **identify the ideal position** in the algorithm.

We noticed that **the Machine learning step classified only a few percentage** of the traces due to the generated threshold being **too high**. Algorithm 2 Hybrid matching algorithm

```
function FINGERPRINTMATCHING(F, f_n, \lambda)
      rules = \{rule_1, rule_2, rule_3\}
      exact \leftarrow \emptyset
      F_{ksub} \leftarrow \emptyset
      for f_k \in F do
          if VERIFYRULES(f_k, f_u, rules) then
               if nbDiff = 0 then
                   exact \leftarrow exact \cup \langle f_k \rangle
               else
                    F_{ksub} \leftarrow F_{ksub} \cup \langle f_k \rangle
               end if
          end if
      end for
      if |exact| > 0 then
          if SAMEIDS(exact) then
               return exact[0].id
          else
               return GENERATENEWID()
          end if
      end if
      candidates \leftarrow \emptyset
      for f_k \in F_{ksub} do
          \langle x_1, x_2, ..., x_M \rangle = \text{FEATUREVECTOR}(f_u, f_k)
          p \leftarrow P(f_u.id = f_k.id \mid \langle x_1, x_2, ..., x_M \rangle)
          if p > \lambda then
               candidates \leftarrow candidates \cup \langle f_k, p \rangle
          end if
      end for
      if |candidates| > 0 then
          c_{h1}, p_{h1} \leftarrow \text{GETCANDIDATESRANK}(candidates, 1)
          c_{h2}, p_{h2} \leftarrow \text{GETCANDIDATESRANK}(candidates, 2)
          if SAMEIDS(c_{h1}) and p_{h1} > p_{h2} + diff then
              return candidates[0].id
          end if
          if SAMEIDS(c_{h1} \cup c_{h2}) then
               return candidates[0].id
          end if
      end if
      return GENERATENEWID()
end function
```


FP-Stalker uses the **average and maximum tracking time** to quantify the performances of its algorithm.

Average tracking time: For a given device, how long can we track it on average?

We used both metrics to quantify the improvement of DrawnApart on FP-Stalker

We integrated our deep-learning pipeline by **short-circuiting the machine learning step**.

If the Cosine distance between two traces is below the threshold, we conclude the search.

Algorithm 1: Hybrid matching algorithm with the DRAWNAPART addition highlighted in red **1** Function FingerprintMatching (F, f_u , λ , ϵ) for $f_k \in F$ do 2 **if** FingerPrintHasDifferences(f_k , f_u , rules) 3 then $F_{ksub} \leftarrow \text{exact} \cup \langle f_k \rangle$; 4 else exact \leftarrow exact \cup ; f_{ki} . 5 6 end 7 end if |exact| > 0 then 8 if SameIds(exact) then return exact[0].id ; 9 else return GenerateNewId() : 10 11 end for $f_k \in F_{ksub}$ do 12 cosine sim \leftarrow 13 GetSimilarity(f_u .avg embedding, $f_k.avg \ embedding);$ if cosine sim $> \epsilon$ then 14 return $f_k.id$ 15 end 16 $\langle x_1, x_2, ..., x_m \rangle = \text{FeatureVector}(f_u, f_k);$ 17 $p \leftarrow P(f_u.id = f_k.id \mid \langle x_1, x_2, ..., x_m \rangle)$ 18 if $p > \lambda$ then 19 candidates \leftarrow candidates $\cup \langle f_k, p \rangle$ 20 21 end 22 end 23 if |candidates| > 0 then if |GetRankAndFilter(candidates)| > 0 then 24 return candidates[0].id : 25 end return GenerateNewId() 26

Analyzing DrawnApart

DATA 61

FP-Stalker was criticized for its algorithm being **too slow**.

We noticed that our updated version with DrawnApart mitigated this limitation by **significantly reducing the execution time**.

Li, S., & Cao, Y. (2020, October). Who touched my browser fingerprint? A large-scale measurement study and classification of fingerprint dynamics. In *Proceedings of the ACM Internet Measurement Conference* (pp. 370-385).

```
Algorithm 1: Hybrid matching algorithm with the
 DRAWNAPART addition highlighted in red
1 Function FingerprintMatching (F, f_u, \lambda, \epsilon)
       for f_k \in F do
 2
           if FingerPrintHasDifferences(f_k, f_u, rules)
 3
             then F_{ksub} \leftarrow \text{exact} \cup \langle f_k \rangle;
 4
            else
                exact \leftarrow exact \cup ; f_{ki}.
 5
           end
 6
7
       end
       if |exact| > 0 then
 8
           if SameIds(exact) then return exact[0].id ;
 0
           else return GenerateNewId() :
10
11
       end
       for f_k \in F_{ksub} do
12
           cosine sim \leftarrow
13
           GetSimilarity(f_u.avg embedding,
            f_k.avg embedding);
            if cosine sim > \epsilon then
14
               return f_k.id
15
            end
16
            \langle x_1, x_2, ..., x_m \rangle = \text{FeatureVector}(f_u, f_k);
17
            p \leftarrow P(f_u.id = f_k.id \mid \langle x_1, x_2, ..., x_m \rangle)
18
           if p > \lambda then
19
                candidates \leftarrow candidates \cup \langle f_k, p \rangle
20
21
           end
22
       end
23
       if |candidates| > 0 then
           if |GetRankAndFilter(candidates)| > 0 then
24
             return candidates[0].id :
25
       end
       return GenerateNewId()
26
```


Improving FP-Stalker

Differences in Average Tracking Time between FP-Stalker (*Nude FPS*) and FP-Stalker with DrawnApart (*FPS+DA*)

Thank You Let's discuss !

Naif Mehanna naif.mehanna@univ-lille.fr

42