Screen Gleaning Receiving and Interpreting Pixels by Eavesdropping on Video Signals without a Line of Sight

Imagine...

Imagine...

Imagine...

Radboud University

Radboud University

Radboud University

Video Transmission Analogue video signals Pixel-Value 0 L 0 50 100 150

Electromagnetic Emanations

Digital or analogue transmission

Digital or analogue transmission

Radboud University

CONTENTS

1. Antenna Design

- 1. Antenna Design
- 2. TempestSDR

- 1. Antenna Design
- 2. TempestSDR
- 3. Machine Learning

- 1. Antenna Design
- 2. TempestSDR
- 3. Machine Learning
- 4. Outlook

- 1. Antenna Design
- 2. TempestSDR
- 3. Machine Learning
- 4. Outlook
- 5. Discussion

Antenna Design

Antenna Design

Langer RF-R 400

Langer RF-R 400

Radboud University

Radboud University

Radboud University

Radboud University

[1] Nathan Ida. Engineering electromagnetics. Springer, 2000.

• Near-Field probes

[1] Nathan Ida. Engineering electromagnetics. Springer, 2000.

- Near-Field probes
 - Only for showing proof of concept

- Near-Field probes
 - Only for showing proof of concept
 - Inefficient for distances > 2 cm

- Near-Field probes
 - Only for showing proof of concept
 - Inefficient for distances > 2 cm

[1] Nathan Ida. Engineering electromagnetics. Springer, 2000.

- Near-Field probes
 - Only for showing proof of concept
 - Inefficient for distances > 2 cm

[1] Nathan Ida. Engineering electromagnetics. Springer, 2000.

 $\mathscr{P}_{av} = \overrightarrow{e_r} \frac{j\omega\mu m^2}{16\pi r^5} \sin^2\theta - \overrightarrow{e_\theta} \frac{j\omega\mu m^2}{8\pi r^5} \sin\theta\cos\theta$

- Near-Field probes
 - Only for showing proof of concept
 - Inefficient for distances > 2 cm

[1] Nathan Ida. Engineering electromagnetics. Springer, 2000.

$$e^2 \theta - \overrightarrow{e_{\theta}} \frac{j\omega\mu m^2}{8\pi r^5} \sin\theta\cos\theta$$

Radboud University

iPhone 6(s)

iPhone 6(s)

iPhone 6(s)

Radboud University

iPhone 6(s)

iPhone 6(s)

Honor 6X

Signal Stren_§

iPhone 6(s)

Honor 6X

iPhone 6(s)

Honor 6X

iPhone 8 Plus

0.0

- ----

Better shielding (More power to X-ray)

iPhone 6(s)

.....

0.0

iPhone 6(s)

Honor 6X

Amplification

Amplification

Frequency Spectrum of an iPhone 6 Display Cable

0 -10 -20 Signal Strength [dB] -50 -60 -70 10 5 0 Frequency [Hz]

Without Amplification

Amplification

Frequency Spectrum of an iPhone 6 Display Cable

With Amplification 0 -10 Signal Strength [dB] -50 man and any monoral provident -60 -70 10 5 0 Frequency [Hz]

TempestSDR

TempestSDR

Input Signal

Pixel Component (Bits or Steps)

Pixel Component (Bits or Steps)

Pixel Component (Bits or Steps)

Input Signal

Pixel Component (Bits or Steps)

Pixel Component (Bits or Steps)

Pixel Component (Bits or Steps)

Distinguishing Pixels

Input Signal

Pixel Component (Bits or Steps)

Radboud University

Distinguishing Pixels

Pixel Component (Bits or Steps)

Radboud University

Alignment

Alignment

-	_	 		_				
					 <u> </u>	 -	_	_

Alignment

Machine Learning

Machine Learning

Sliding Window

Sliding Window

Sliding Window

Obtaining Training Data

Obtaining Training Data

Apple Your Apple ID Verification Code is: 129891

Obtaining Training Data

Obtaining Training Data

"This is a digit O"

"This is a digit O"

Machine Learning

Machine Learning

"This is a digit O"

Machine Learning

A O looks like

Machine Learning

A 6 An 8 A 3 A 4 A 0 looks likeoks likes like: looks like: looks like:

A 6 An 8 A 3 A 4 A 0 looks likeoks likes like:looks like: looks like:

This is a 3 with 85% certainty

OUTLOOK

• Non-ideal antenna

- Non-ideal antenna
 - Want to measure greater distances

- Non-ideal antenna
 - Want to measure greater distances
 - Want to measure every phone

- Non-ideal antenna
 - Want to measure greater distances
 - Want to measure every phone
- SDR setup requires optimizations

- Non-ideal antenna
 - Want to measure greater distances
 - Want to measure every phone
- SDR setup requires optimizations
 - Higher sample rates

Outlook

- Non-ideal antenna
 - Want to measure greater distances
 - Want to measure every phone
- SDR setup requires optimizations
 - Higher sample rates
 - Other measurement methods

Outlook

- Non-ideal antenna
 - Want to measure greater distances
 - Want to measure every phone
- SDR setup requires optimizations
 - Higher sample rates
 - Other measurement methods
- New testbed for machine learning

Take Home Message...

Take Home Message...

Screen Gleaning works!

Take Home Message...

Screen Gleaning works! Be careful with what you read on your phone...

DISCUSSION

Digit											
	0	1	2	3	4	5	6	7	8	9	
0	73.6	2.0	2.3	3.3	2.0	1.6	2.0	6.5	3.0	3.7	
1	0.2	96.9	0.6	0.8	0.0	0.1	0.2	0.8	0.2	0.3	
2	0.4	0.1	93.7	0.2	0.2	0.2	0.2	2.6	0.8	1.7	
3	1.0	0.1	0.1	95.3	0.4	1.1	0.1	1.1	0.2	0.5	
<u>부</u> 4	0.2	0.0	0.2	0.0	95.7	2.5	0.5	0.3	0.6	0.0	
<u>0</u> 5	0.5	0.0	0.5	0.1	1.3	91.0	0.2	4.9	0.6	0.9	
6	0.5	0.7	0.4	4.5	0.2	0.5	90.6	1.4	0.3	0.9	
7	0.4	0.2	2.3	0.6	0.5	3.7	0.3	88.9	1.9	1.1	
8	0.8	0.2	0.3	0.4	0.2	0.1	0.5	1.1	95.2	1.3	
9	0.8	0.4	2.0	0.2	0.1	1.7	0.7	3.5	2.1	88.4	

Letter													
	C	D	E	F	L	N	0	P	Т	Z			
С	60.0	13.9	1.8	12.7	0.6	0.0	0.0	0.0	0.0	10.9			
D	1.2	55.2	16.4	0.0	2.4	0.6	18.2	6.1	0.0	0.0		_	8
Е	0.0	0.6	75.2	22.4	1.8	0.0	0.0	0.0	0.0	0.0			
F	0.0	0.6	17.0	72.1	0.0	0.0	0.0	9.7	0.0	0.6			F
гeг	0.0	0.0	0.0	15.2	84.8	0.0	0.0	0.0	0.0	0.0			
N Let	0.0	1.2	0.6	0.0	0.0	84.8	6.7	6.7	0.0	0.0			
0	0.0	2.4	0.0	0.0	0.0	0.0	97.6	0.0	0.0	0.0			
Р	0.0	0.0	2.4	23.6	0.0	0.6	0.0	73.3	0.0	0.0			
Т	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	97.0	3.0			2
Ζ	0.0	0.0	0.0	1.2	0.0	0.0	0.6	4.2	0.0	93.9			(

Radboud University