
Lesly-Ann Daniel
CEA LIST / Université Paris-Saclay

France

Sébastien Bardin
CEA LIST / Université Paris-Saclay

France

Tamara Rezk
INRIA Sophia Antipolis

France

Experimental evaluation of a binary-level symbolic
analyzer for Spectre: Binsec/Haunted

Context: Detection of Spectre attacks

2

Spectre attacks (2018)

• Exploit speculative execution in processors

• Affect almost all processors

• Mispeculations lead to incorrect or transient executions

• Transient executions are reverted at architectural level

• But not the microarchitectural state (e.g. cache)

Problem. Transient executions can leak secret data

A new verification tool for Spectre

3

Goal. We need new verification tools to detect Spectre attacks !

Challenge. Model new transient behaviors avoiding path explosion

Contributions.

• Optimization Haunted RelSE: transient and regular behaviors at the same time
• Binsec/Haunted, binary-level verification tool for Spectre-PHT & STL
• New Spectre-STL violations [paper]

In this talk.

• Methodology for evaluating Haunted RelSE against Explicit RelSE
• Binsec/Haunted experimental evaluation
• Comparison with other tools KLEESpectre and Pitchfork
• Challenges: Spectre detection, binary analysis, symbolic execution, etc.

Background Spectre-PHT & Spectre-STL

Experimental Evaluation

• Methodology & results: research questions, benchmark, results

• How did we get there? Implementation of Binsec/Haunted & Experimental setup

• Challenges: binary analysis, specifying secrets, validation, usability

Discussion

• Comparison against other tools

• Intermediate/unsuccessful results

• Failures with experimental evaluation & reproduction

• Availability of Binsec/Haunted

Wrap-up

Background Spectre-PHT & Spectre-STL

Experimental Evaluation

• Methodology & results: research questions, benchmark, results

• How did we get there? Implementation of Binsec/Haunted & Experimental setup

• Challenges: binary analysis, specifying secrets, validation, usability

Discussion

• Comparison against other tools

• Intermediate/unsuccessful results

• Failures with experimental evaluation & reproduction

• Availability of Binsec/Haunted

Wrap-up

Spectre-PHT & Spectre-STL

1: if idx < size {

2: v = tab[idx]

3: leak(v)}

Spectre-PHT. Exploits conditional branch predictor

1. Conditional is misspeculated (idx > size)
2. Out-of-bound array access

→ load secret data in v
3. v is leaked to the attacker

Spectre-PHT & Spectre-STL

1: if idx < size {

2: v = tab[idx]

3: leak(v)}

Spectre-PHT. Exploits conditional branch predictor

1. Conditional is misspeculated (idx > size)
2. Out-of-bound array access

→ load secret data in v
3. v is leaked to the attacker

Spectre-STL: Loads can speculatively bypass prior stores

leak(public)

store a secret

store a public

v = load a

leak(v)

Spectre-PHT & Spectre-STL

1: if idx < size {

2: v = tab[idx]

3: leak(v)}

Spectre-PHT. Exploits conditional branch predictor

1. Conditional is misspeculated (idx > size)
2. Out-of-bound array access

→ load secret data in v
3. v is leaked to the attacker

Spectre-STL: Loads can speculatively bypass prior stores

leak(public)

store a secret

store a public

v = load a

leak(v)

store a secret

v = load a

store a public

leak(v)

+

leak(secret)

Spectre-PHT & Spectre-STL

1: if idx < size {

2: v = tab[idx]

3: leak(v)}

Spectre-PHT. Exploits conditional branch predictor

1. Conditional is misspeculated (idx > size)
2. Out-of-bound array access

→ load secret data in v
3. v is leaked to the attacker

Spectre-STL: Loads can speculatively bypass prior stores

leak(public)

store a secret

store a public

v = load a

leak(v)

store a secret

v = load a

store a public

leak(v)

v = load a

store a secret

store a public

leak(v)

+ +

leak(secret) leak(init_mem[a])

Definitions

• Transient executions: incorrect execution (mispeculated)

• RelSE: Relational Symbolic Execution (SE for information-flow)

• Expicit RelSE: baseline technique to model speculative execution

• Haunted RelSE: our optimization, models transient and regular
behaviors at the same time

• Binsec/Haunted: binary-analysis tool that implements Haunted RelSE

10

Background Spectre-PHT & Spectre-STL

Experimental Evaluation

• Methodology & results: research questions, benchmark, results

• How did we get there? Implementation of Binsec/Haunted & Experimental setup

• Challenges: binary analysis, specifying secrets, validation, usability

Discussion

• Comparison against other tools

• Intermediate/unsuccessful results

• Failures with experimental evaluation & reproduction

• Availability of Binsec/Haunted

Wrap-up

Experimental methodology & results

12

Clear Research Questions

RQ1. Effectiveness
Is Binsec/Haunted able to scale on real-world
cryptographic code?
Perfs on donna, OpenSSL, Libsodium

13

RQ2. Haunted vs. Explicit
How does Haunted RelSE compare vs. Explicit RelSE?
Implemented baseline Explicit in Binsec/Haunted

RQ3. Binsec/Haunted vs. SoA tools
Comparison against Pitchfork and KLEESpectre
(Details in Discussion) https://github.com/binsec/haunted

• #X86 instructions
• #Paths
• Time
• Bug
• Timeout
• Secure/Insecure

Metrics

https://github.com/binsec/haunted

Benchmark

14

• Small test cases.

• Paul Kocher’s litmus tests for Spectre-PHT*

• + a version that we patched with index-masking

• A set of litmus tests for Spectre-STL (that we designed)

• Cryptographic primitives, compiled with -O0, -O1, -O2, -O3, -Ofast.

• Tea & donna *

• More complex cryptographic primitives with stack protectors.

• Libsodium secretbox *

• OpenSSL ssl3-digest-record *

• OpenSSL mee-cbc-decrypt * * From Pitchfork

https://github.com/binsec/haunted_bench

https://github.com/binsec/haunted_bench

Haunted vs. Explicit for Spectre-PHT (RQ1-RQ2)

Tea and donna (10 programs). No difference between Explicit and Haunted ≈

15

Paths Time Timeout Bugs

Explicit 1546 ≈3h 2 21

Haunted 370 15s 0 22

Libsodium & OpenSSL (3 programs)

X86 Instr. Time Timeout Bugs

Explicit 2273 18h 3 43

Haunted 8634 ≈8h 1 47

Take away, Haunted RelSE vs Explicit RelSE.

• At worse: no overhead compared to Explicit ≈
• At best: faster, more coverage, less timeouts ↗

Litmus tests (32 programs) ↗ ↗

Take away from methodology: sometimes difficult (not desirable) to aggregate results

Haunted vs. Explicit for Spectre-STL (RQ1-RQ2)

16

Paths X86 Ins. Time Timeouts Bugs Secure Insecure

Explicit 93M 2k 30h 15 22 3/4 13/23

Haunted 42 17k 24h 8 148 4/4 23/23

• Avoids paths explosion
• More unique instruction explored
• Faster

• Less timeouts
• More bugs found
• More programs proven secure / insecure

Take away, Haunted RelSE vs Explicit RelSE.
Always wins ! ↗

Comparison Binsec/Haunted against
Pitchfork & KLEESpectre (RQ3)

17

Target Programs PHT STL

KLEESpectre LLVM Litmus tests
Tea & donna

Explicit
 (≈240× slower)
 (≈equivalent)

NA

Pitchfork Binary Litmus tests
Tea & donna

Optims
 (≈equivalent)
 (50× slower & TO)

Explicit
 6/10 TO
 TO

Binsec/Haunted Binary Litmus tests
Tea & donna

Haunted

Haunted

Challenges in discussion

How did we get there?

18

Implementation of Binsec/Haunted

19

• Built on top of (RelSE for constant-time)

• Written in Ocaml (5+2 kLoCs)

x86

Microarchitectural state
• max spec. depth (200)
• store buffer (20)

Specification
• secret input

Info on binary
• entrypoint
• initial memory

https://github.com/binsec/haunted

+ Explicit RelSE
+ Haunted RelSE

https://github.com/binsec/haunted

Experimental Setup

20
https://github.com/binsec/haunted_bench

x86

Params

Stats
.csv

Python script
• NoSpec
• Explicit-PHT
• Haunted-PHT
• Explicit-STL
• Haunted-STL

Run expes with python script
For prog ∈ { tea, donna, litmus-pht, … }
Just run cd prog; pyton3 expe.py

Params set according to file
timeout, location of secrets,
entrypoint, memory

Often changing !
Laptop Intel(R) Xeon(R) CPU E3-1505M v6 @ 3.00GHz and 32GB of RAM

https://github.com/binsec/haunted_bench

Experimental Setup

21

https://github.com/binsec/haunted_bench

Python script
• pandas

Interpret results with python script
Just run pyton3 stats.py to get
tables from paper

Stats
.csv

csv with 84 columns
• Value of parameters
• Number of paths
• Size of formulas
• Status, …

Latex table
• X86 instructions
• Paths
• Time
• Bug
• Timeout
• Secure
• Insecure

(Previously R)

Often changing !

https://github.com/binsec/haunted_bench

Take away on methodology

• Clear research questions
• Clear objectives

• Associated metrics & protocol

• Clear conclusions

• We compare with other tools + in a controlled setup
(re-implementing the baseline for Explicit RelSE)

• Better too much stats than not enough!
• Rerun all expes to get static instructions count for coverage

22

Challenges

23

Standard challenges of binary analysis

• Entrypoint: start from main or other function symbol
• stripped binaries are more challenging

• Only for statically compiled binaries (or you have to provide stubs)

• Configuration of initial memory
• Sections to load from file: .data, .rodata, .got, .got.plt

• .bss for both unititialized variables (symbolic) & variables set to 0 (concrete)

• Choose an implementation for memset_ifunc (indirect functions)
• __memset_ia32, __memset_sse2 ?

24

All these steps might require reverse engineering

Specifying secrets: a challenge at binary-level

25

• Open IDA & find offset of
secrets from initial esp

• Manual

• Close to reality

Reverse Engineering Use C stubs
• Use stubs to specify secrets

• Automatic

• Not so much realistic

• Adds stores: Spectre-STL

Use global variables

• Put secret in global variables

• Automatic

• Not so much realistic

Global variables have symbols:

Just give high symbols to binsec

Validation of Binsec/Haunted

26

Problem.
• Spectre attacks are difficult to find manually
• No ground truth (esp. for Spectre-STL)

Paul Kocher’s Litmus tests for Spectre-PHT [1]
• Set of 16 insecure simple test cases
• Still not easy to precisely identify vulnerabilities

• Number of vulnerabilities, locations, etc.
• We added patched versions with index-masking

[1] https://github.com/cdisselkoen/pitchfork/blob/master/new-testcases/spectrev1.c
[2] https://github.com/IAIK/transientfail/tree/master/pocs/spectre/STL
[3] https://github.com/binsec/haunted_bench/blob/master/src/litmus-stl/programs/spectrev4.c

No ground truth except for Spectre-STL PoC [2]
• Even more difficult to identify vulnerabilities
• We crafted 14 STL-litmus tests [3]

• Still needs more doc (coming soon!) to be
usable

+ validation against Pitchfork and KLEESpectre on these litmus test (when possible)
& manually check in case of deviation

+ used for regression testing

Spectre-PHT Spectre-STL

https://github.com/cdisselkoen/pitchfork/blob/master/new-testcases/spectrev1.c
https://github.com/IAIK/transientfail/tree/master/pocs/spectre/STL
https://github.com/binsec/haunted_bench/blob/master/src/litmus-stl/programs/spectrev4.c

Interpreting results: case Spectre-PHT

27

• Insecure memory access 0x000011d3

• Counterexample:
0xffffcc1d: 0x00020024
secretarray[4] = is_secret
[…]

Interpreting results: case Spectre-PHT

28

• Insecure memory access 0x000011d3

• Counterexample:
0xffffcc1d: 0x00020024
secretarray[4] = is_secret
[…]

initial esp + RE → idx = 0x20024

load publicarray[idx]

With a bit of reverse

publicarray[0x20024] = secretarray[4]

Interpreting results: case Spectre-PHT

29

• Insecure memory access 0x000011d3

• Counterexample:
0xffffcc1d: 0x00020024
secretarray[4] = is_secret
[…]

initial esp + RE → idx = 0x20024

load publicarray[idx]

With a bit of reverse

publicarray[0x20024] = secretarray[4]

Interpreting results requires manual effort

Interpreting results: case Spectre-STL

30

• Location of violation
• Initial memory configuration
• List of loads that bypass a store

Encode in smt-formula.
• Address of out-of-order loads
• Address of forwarding store

Solver will return its choice in counterexample.
load_08049d27_from_main-mem: True
load_08049d1c_from_08049cf5: True

Summary of challenges

• Standard to binary analysis
̶ Difficult to use, might require reverse engineering

 We can automate many things if we have symbols

• Specifying secrets
• Tradeoff between realism & usability

• Spectre attacks
̶ Validation is not easy, still a manual process

 Existing litmus tests for Spectre-PHT + new litmus for Spectre-STL

 Cross-validated against Pitchfork and KLEESpectre

̶ Difficult to understand vulnerabilities
 Encoding in smt-formula for Spectre-STL

31

Usability crucial for running more experiments & validation & sharing

Background Spectre-PHT & Spectre-STL

Experimental Evaluation

• Methodology & results: research questions, benchmark, results

• How did we get there? Implementation of Binsec/Haunted & Experimental setup

• Challenges: binary analysis, specifying secrets, validation, usability

Discussion

• Comparison against other tools

• Intermediate/unsuccessful results

• Failures with experimental evaluation & reproduction

• Availability of Binsec/Haunted

Wrap-up

Comparison against other tools: not so easy

33

• LLVM tool
• Spectre-PHT only
• Not exactly the same property (loads only)
• False positive (one nested spec. cond?)

• Adapted to match Binsec/Haunted:
Pitchfork-cont

• Have to deal with TO & OOM
• Spurious vulnerabilities (in .data section)?

Results to take with pinch of salt, not always related to what we want to measure
→ Need to compare Explicit vs Haunted in Binsec/Haunted

Tools easy adapt & run on my test cases !

Recompiled for 32-bit architecture
No execution time reported in paper

Use cases from Pitchfork Rerun Pitchfork for comparison

KLEESpectre (KLEE, SE) Pitchfork (Angr, SE + tainting secrets)

• Could not compare programs with syscalls (restrict to litmus, tea & donna)
• Outputs only vulnerabilities found & exec time

Intermediate results

• Which solver to use: boolector, z3, yices, cvc4?
boolector is better but sometime it is stuck while z3 solves the query (overflow
on memory indexes)

• Path constraint as a big conjunction at the end of the formula or just
assert constraints when they come ?

→ Does not matter

• Simpler is not always better !

34

𝑝𝑐 ∧ 𝑐𝑙 = 𝑇 ∧ 𝑐𝑟 = 𝑇 when 𝑐𝑙 = 𝑐𝑟 𝑝𝑐 ∧ 𝑐𝑙 = 𝑇

Simpler but slower to solve

Intermediate results

• Which solver to use: boolector, z3, yices, cvc4?
boolector is better but sometime it is stuck while z3 solves the query (overflow
on memory indexes)

• Path constraint as a big conjunction at the end of the formula or just
assert constraints when they come ?

→ Does not matter

• Simpler is not always better !

35

𝑝𝑐 ∧ 𝑐𝑙 = 𝑇 ∧ 𝑐𝑟 = 𝑇 when 𝑐𝑙 = 𝑐𝑟 𝑝𝑐 ∧ 𝑐𝑙 = 𝑇

Simpler but slower to solve

Things I tested quickly, results not really recorded
Lesson learned: It is a good practice to document the intermediate results

Things I tried that did not succeed

Trying to help the solver.
• Reduce size of query by removing redundant insecurity formulas

→ up to 50% size reduction, usually around 30% but no impact on time

36

v ↦ 𝑎, 𝑏, 𝑐, 𝑑

SolverFormula:

Symbolic store:

𝜑

Things I tested quickly, results not really recorded

Retire value a (v1)

v ↦ 𝑎, 𝑏, 𝑐, 𝑑v ↦ 𝑎, 𝑏, 𝑐, 𝑑

Propagate info in symbolic store to simplify expressions.

v ≠ 𝑎 ∧ 𝜑

Retire value a (v2)

v ≠ 𝑎 ∧ 𝜑

Lesson learned: { SMT-Solver can be hard to satisfy
Investigate bottlenecks & focus on them

Other things I tried but couldn’t put in the paper

• Explore different strategies for computing speculation depth [‘1]
• Static: Speculate for 200 instructions

• Hybrid: Speculate only when conditional depends on memory

• Dynamic: Retire conditional instructions when older memory access is retired

• Linux kernel (inspired from [2])
• Get compare & execute gadgets

• Had to search & identify myself

• Not easy (macros + inl. asm)

→ Analysis of syscall handler

37

[1] Wu, Meng, and Chao Wang. "Abstract interpretation under speculative execution." PLDI '19.
[2] Canella, Claudio, et al. "A systematic evaluation of transient execution attacks and defenses." USENIX Security '19

Fails with experiments

When trying to run my expes.

• oomkiller stories (50% swap is too late)

• Beware other programs running

• Don't forget caffeine (disables auto-suspend)

• Don't forget to plug your laptop (-50% perfs on battery)

When trying to reproduce.
• Why are my experimental results 4× slower than usual ?

→ Because CPU freq is blocked at 800MHz instead of 4GHz

• Why can’t I reproduce last month results ?
→ Because new boolector version 3.2.0 → 3.2.1 = ↗ memory consumption + oom

37

Lots of possible causes, often time-consuming to debug
Record commit hash can help

Availability of Binsec/Haunted

https://github.com/binsec/haunted

https://github.com/binsec/haunted_bench
Sources & Bench on Github:

Docker image on zenodo:

• Binsec/Haunted
• Expes: csv results + binaries + scripts
• Ocaml 4.05
• Boolector 3.2.0

̶ Compiler I used for expes
̶ Exact version of python packages
̶ Exact version of all opam dependencies
̶ KLEESpectre & Pitchfork setup

https://github.com/binsec/haunted
https://github.com/binsec/haunted_bench

Takeaways

• Difficult to compare to other tools
 Implementing our own baseline gives control on what is measured

• Solvers are sometimes difficult to satisfy

• Document unsuccessful/intermediate experimental results

Otherwise they are forgotten

• Sometime it is difficult to reproduce old results
Log commit hash during expes & beware changing versions of dependencies!

• Community is great
Nice use cases + easy to use tools

40

Background Spectre-PHT & Spectre-STL

Experimental Evaluation

• Methodology & results: research questions, benchmark, results

• How did we get there? Implementation of Binsec/Haunted & Experimental setup

• Challenges: binary analysis, specifying secrets, validation, usability

Discussion

• Comparison against other tools

• Intermediate/unsuccessful results

• Failures with experimental evaluation & reproduction

• Availability of Binsec/Haunted

Wrap-up

Next steps

• Improving usability is still work in progress

• Better documentation for Spectre-STL litmus tests

• Try to build a more reproducible setup

• Pinning versions of dependencies

• …?

• Thinking of systematic ways to avoid failed experiments?

42

43

44

45

46

