
On Building the Data-Oblivious Virtual Environment
Tushar M. Jois, Hyun Bin Lee, Christopher W. Fletcher, Carl A. Gunter

Learning from Authoritative Security Experiment Results (LASER Workshop
February 25, 2021

 Function f

Cloud SGX Enclave

Prevents the OS
from introspection
on or tampering
with the
computation

Input i1 01000101
01000101

Input i2 10111010
10111010

UIUC Johns Hopkins

Result r
1101

Outsourcing
scientific
computation

Usually written in a
high-level language,
like R

Infer secrets of
computation by reading

states of the
microarchitecture

microarchitectural

side-channel attack

da·ta-o·bliv·i·ous com·pu·ta·tion (n.)
a program execution with the same observable
characteristics regardless of the inputs provided
see also constant-time programming

data-oblivious →
data-unnecessary

Key insight:

 Function f

Input i? ????????
????????

Execution
Trace

Replay
Execution Trace
on a Dataset

Input i1 01000101
01000101

Result r1
000110100100

Separate the
execution of a
script from the
operations on
sensitive data

Result r1

000110100100

Function f

Input i1 01000101
01000101

Data
Oblivious
Transcript

 Local Machine

Data-Oblivious Virtual
Environment

Load DOT and
Datasets

Cloud SGX Enclave

R Script f

Input i? ????????
????????

Input i1 01000101
01000101

Input i2 10111010
10111010

Run DOT on
Datasets

Result r
1101

DOT

Datasets

DOVE A Data-Oblivious Virtual Environment
Hyun Bin Lee, Tushar M. Jois, Christopher W. Fletcher, Carl A. Gunter
NDSS 2021

Design the first
data-oblivious R
stack.

Our goal:

A soft selective sweep during rapid evolution of
gentle behaviour in an Africanized honeybee
Arian Avalos, Hailin Pan, Cai Li, et al.
Nature Communications 2017 81 1550

● A real, publicly-available dataset (1.3 GB

● Similar to human genomics workloads

● Cross-university collaboration

● R code from a repository of genomics scripts

Why use the bee study?

A case study for evaluating the data-obliviousness of R

calc_snp_stats ?- function(geno)

Experimentally evaluating
data-obliviousness

Instructions in
compiled binary

Instruction count

Intel PCM
static dynamic

Instructions in compiled binary
Two types of problematic instructions:

● Variable-time instructions
● Conditional jumps on sensitive data

Instructions from
libfixedtimefixedpoint

add mov pop setg
and movabs push setl
call movsd rep setle
cdqe movsx ret setne
cmp movsxd sar shli
mul movzx sbb shr
je mul seta sub
jmp neg setae test
jne not setbe xor
lea or sete

On Subnormal Floating Point and
Abnormal Timing
Marc Andrysco, David Kohlbrenner, Keaton Mowery, et al.
IEEE S&P Oakland) 2015

Conditional jumps
must NOT touch
sensitive data

Instruction count

(gdb) break Enclave/runtime.cpp:327
(gdb) commands 1
Type commands for breakpoint(s) 1, one per line.
End with a line saying just "end".
> set record btrace bts buffer-size unlimited
> record btrace
> continue
> end
(gdb) run

Recorded 1278564 instructions in 84466 functions (0 gaps)

Hardware feature

Intel Performance Counter Monitor (PCM

bytes to/from
memory controller

getBytesReadFromMC
getBytesWrittenToMC
getIORequestBytesFromMC

cycle counts

getCycles
getCyclesLostDueL3CacheMisses
getCyclesLostDueL2CacheMisses

cache hits & misses

getL2CacheHitRatio
getL3CacheHitRatio
getL3CacheMisses
getL2CacheMisses
getL2CacheHits
getL3CacheHitsNoSnoop
getL3CacheHitsSnoop
getL3CacheHits

calc_snp_stats ?- function(geno)
{
 ?# Eva KF Chan
 ?# http:?/evachan.org

 m ?- nrow(geno) ?# number of snps
 n ?- ncol(geno) ?# number of individuals

 geno[(geno?=0) & (geno?=1) & (geno?=2)] ?- NA
 geno ?- as.matrix(geno)

 n0 ?- apply(geno?=0,1,sum,na.rm=T)
 n1 ?- apply(geno?=1,1,sum,na.rm=T)
 n2 ?- apply(geno?=2,1,sum,na.rm=T)
 n ?- n0 + n1 + n2

 ?# (snip) ?#
}

Input sanitation
side-channel

NA
Similar to null in
other languages

Instructions in compiled binary Instruction count
Si

de
-c

ha
nn

el
s

in
 & Expression Value Instr. Count

0 & 0 0 45

0 & 1 0 45

0 & NA 0 45

1 & 0 0 47

NA & 0 0 47

NA & 1 NA 53

NA & NA NA 53

1 & 1 1 54

1 & NA NA 57

Intel PCM

❌

❌ ❌

Conditional branches
on data

R interpreter implementation of &
if (x1 ?= 0 ?| x2 ?= 0) {
 pa[i] = 0;
} else if (x1 ?= NA ?| x2 ?= NA) {
 pa[i] = NA;
} else {
 pa[i] = 1;
}

geno[(geno?=0) & (geno?=1) & (geno?=2)] ?- NA

R interpreter

Fortran
258,876 SLOC 26.1%

R
345,547 SLOC 34.8%

C
388,141 SLOC 39.1%

Solution design

Correctness

Build a data-oblivious virtual environment

Data-obliviousness
Instructions in compiled binary
Instruction count
Intel PCM

Expressiveness
Efficiency

Solution design
Build a data-oblivious virtual environment

Data-obliviousness
Instructions in compiled binary
Instruction count
Intel PCM

Expressiveness
Efficiency

Correctness

 Local Machine

Data-Oblivious Virtual
Environment

Load DOT and
Datasets

Cloud SGX Enclave

R Script f

Input i? ????????
????????

Input i1 01000101
01000101

Input i2 10111010
10111010

Run DOT on
Datasets

Result r
1101

DOT

Datasets

TCB

Instruction
fetch

ecall_dispatch();

instr* t = parser.get_next();
p_block* result = alloc_result_matrix(t);
line_dispatch(t,result);

line_dispatch(instr* t, p_block* result);

vector<p_block?> args = t?-args();
Op* operation = op_factory(t?-name);
operation?>call(args[0], args[1], result);

Argument
loading

Iteration
over data
pointers in
matrix

AddOp?:call(p_block* A, B, C);

for (i, j in 0:C?>nrow, 1:C?>ncol)

call(A[i,j], B[i,j], C[i,j]);

Operation
on scalars

AddOp?:call(fixed* A_ij, B_ij, C_ij);

*C_ij = fix_add(*A_ij, *B_ij);

Operation
on scalars

Iteration
over data
pointers in
matrix

Instruction
fetch

ecall_dispatch();

instr* t = parser.get_next();
p_block* result = alloc_result_matrix(t);
line_dispatch(t,result);

line_dispatch(instr* t, p_block* result);

vector<p_block?> args = t?-args();
Op* operation = op_factory(t?-name);
operation?>call(args[0], args[1], result);

Argument
loading

AddOp::call(fixed* A_ij, B_ij, C_ij);

*C_ij = fix_add(*A_ij, *B_ij);

AddOp?:call(p_block* A, B, C);

for (i, j in 0:C?>nrow, 1:C?>ncol)

call(A[i,j], B[i,j], C[i,j]);

Leaf
Function

Data-
obliviousness
should be
tested here

Side-channels in leaf functions
Intel PCMInstructions in compiled binary

cmovne

Instruction count
TESTS

Testing Abs (1/45)??.
Testing Abs, ratio 0.1??.
Testing Abs, ratio 0.2?..

Passed

✔

✔

Intel PCM DOVEIntel PCM Base R

geno[(geno?=0) & (geno?=1) & (geno?=2)] ?- NA

✔

Solution design

Correctness

Build a data-oblivious virtual environment

Data-obliviousness
Instructions in compiled binary
Instruction count
Intel PCM

Expressiveness
Efficiency

abs sqrt floor ceiling exp log cos sin tan
sign + - * / ˆ ?% %/% >
< ?= ?= ?= ?= | & ! all
any sum prod min max range is.na is.nan
is.infinite if %*% cbind rbind for matrix dim

R base functions

Solution design

Correctness

Build a data-oblivious virtual environment

Data-obliviousness
Instructions in compiled binary
Instruction count
Intel PCM

Expressiveness
Efficiency

O(m ∗ n) space
2,808,57060

dataset

(*)
O(m2) space

10,00060
dataset

Solution design

Correctness

Build a data-oblivious virtual environment

Data-obliviousness
Instructions in compiled binary
Instruction count
Intel PCM

Expressiveness
Efficiency

https:?/github.com/dove-project/benchmarks

Discussion
● Did you use experimentation artifacts borrowed from the community?
● Did you attempt to replicate or reproduce results of earlier research as

part of your work?
● What can be learned from your methodology and your experience using

your methodology?
● What did you try that did not succeed before getting to the results you
● Did you produce any intermediate results including possible

unsuccessful tests or experiments?
● Did you share experimentation artifacts with the community?

Discussion
● Did you use experimentation artifacts borrowed from the community?
● Did you attempt to replicate or reproduce results of earlier research as

part of your work?
● What can be learned from your methodology and your experience using

your methodology?
● What did you try that did not succeed before getting to the results you
● Did you produce any intermediate results including possible

unsuccessful tests or experiments?
● Did you share experimentation artifacts with the community?

Discussion
● Did you use experimentation artifacts borrowed from the community?
● Did you attempt to replicate or reproduce results of earlier research as

part of your work?
● What can be learned from your methodology and your experience using

your methodology?
● What did you try that did not succeed before getting to the results you
● Did you produce any intermediate results including possible

unsuccessful tests or experiments?
● Did you share experimentation artifacts with the community?

Intermediate results: data-obliviousness
● Fisher test is used in script to measure

deviation from Hardy-Weinberg
Equilibrium

● Originally a part of external library,
didn’t test it, but clearly wrong
assumption
○ When we started to look at it, saw it

failed our instruction tests -- factorials
○ Rewrote it to use front-end primitives --

worse performance, but security
guaranteed (and smaller TCB

● Insecure (4.9x overhead) to secure
315x overhead)

Intermediate results: expressiveness
● Original DOVE design required

end-users to modify their R code
before a DOT was generated

● Not a good design
○ restricts expressiveness to what the

user knows how to write using DOVE
○ Might as well learn a new language

● Created an automator that instruments
R base functions & structures to use
DOVE counterparts
○ No need to manually write DOVE

Original version (works in current DOVE)
geno[(geno?=0) & (geno?=1) & (geno?=2)] ?- NA
geno ?- as.matrix(geno)
n0 ?- apply(geno?=0,1,sum,na.rm=T)
n1 ?- apply(geno?=1,1,sum,na.rm=T)
n2 ?- apply(geno?=2,1,sum,na.rm=T)

Pre-automation version
geno ?- +geno
geno[(geno?=C_0) & (geno?=C_1) & (geno?=C_2)] ?- NA
n0 ?- rowSums(geno?=C_0,na.rm=T)
n1 ?- rowSums(geno?=C_1,na.rm=T)
n2 ?- rowSums(geno?=C_2,na.rm=T)

Intermediate results: efficiency
● Originally didn’t have for loops

○ Applications used apply, rowSums, and
similar

● Applications that used loops had awful
performance
○ Loops would just get unrolled
○ DOT became size O(n)

● Performance made us realize that loops
were important enough
○ apply wasn’t enough
○ So, we implemented it

Script
Overhead
before for

Overhead
after for

allele_sharing 295x 105x

EHHS* 1246x 189x

iES* 1204x 154x

LD* 220x 18x

Discussion
● Did you use experimentation artifacts borrowed from the community?
● Did you attempt to replicate or reproduce results of earlier research as

part of your work?
● What can be learned from your methodology and your experience using

your methodology?
● What did you try that did not succeed before getting to the results you
● Did you produce any intermediate results including possible

unsuccessful tests or experiments?
● Did you share experimentation artifacts with the community?

https:?/github.com/dove-project/benchmarks

Future work
Future plans

● Extend DOVE to more languages and
frameworks

● Implement data-oblivious performance
enhancement

● Understand what data-oblivious
hardware instructions can support a
system like DOVE

Post-workshop paper

● Review systematically the R side
channels we discovered

● Re-run all benchmarks using most
modern versions of the stack
○ New versions of libraries, R interpreter

● Several runs of the same benchmarks
○ Variance between benchmarks

● Look into performance on other
enclaves, if possible

DOVE
https:?/github.com/dove-project/benchmarks

Y

Y
N

N

μArch Vulnerable
Assume x1, x2 are private

if (x1 ?& x2) {
 y = 1;
} else {
 y = 0;
}

x1 ?= 1

x2 ?= 1

y = 1y = 0

Execution Trace

x1 & x2

y = x1 & x2

Fixed (under assumptions)

y = x1 & x2;

