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Abstract—In this paper, we augment our previous NDSS
publication and discuss our experience evaluating FlowLens [7], a
system that leverages programmable switches to support machine
learning-based network security applications. Specifically, we
discuss our experience when seeking to understand whether
FlowLens was compatible with applications that classify network
flows using frequency distributions of packet lengths and timing.
To perform this assessment, we started by determining the
eligibility of multiple ML-based network flow analyzers using
five criteria and selected three analyzers. We then adapted each
analyzer’s classifier to FlowLens and evaluated the accuracy of
flow markers (compressed representations of raw packet length
and timing distributions) in comparison with the use of the
raw distributions used to evaluate each selected analyzer in
their original papers. To this end, we compared the use of
FlowLens-produced flow markers with the use of raw packet
distributions in the profiling process used to train and test
the analyzer’s model. Our evaluation revealed that FlowLens
achieves a comparable accuracy with the flow analyzers that
use raw packet distributions. Its core benefit is that its use
of flow markers allows for the monitoring of up to 150x
simultaneous flows crossing a switch when compared to the use
of raw packet distributions. Our exposition provides a number
of observations, lessons learned, and recommendations based on
our experience evaluating FlowLens. These focus on challenges
considering mismatches between the programming model of
software and hardware P4 targets, the harmonization efforts to
ensure the compatibility of heterogeneous traffic analysis tasks
with FlowLens, and the difficulty in reproducing networking-
based experiments. The lack of open experimental artifacts of
competing solutions also limited our comparative analysis.

I. INTRODUCTION

Many security-driven network monitoring scenarios require
the ability to identify specific flows in real-time. For this
purpose, traditional deep-packet inspection has become in-
creasingly ineffective as a result of a global trend towards
encrypting all Internet traffic [13], being complemented by
sophisticated flow identification techniques based on machine
learning (ML) [30]. ML-based techniques can be employed
in the analysis of encrypted traffic based on various packet
features [2] and classify flows with high accuracy for a range
of application scenarios, such as covert channel detection [8],
website fingerprinting [19], botnet traffic identification [27],
malware tracking [2], IoT device behavioral analysis [31], or
detection of DRM-protected streaming [35].
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The recent adoption of programmable switching devices has
enabled the deployment of efficient packet processing primitives
in large-scale, high-speed networks. These capabilities have
sparked a consistent effort from the research community to
perform network security tasks in such switches with the goal
of decreasing reaction times to threats and reducing costs asso-
ciated with equivalent centralized server-based infrastructures.
Unfortunately, existing solutions [20, 23, 41] target specific
security-driven tasks and cannot accommodate ML tasks that
perform targeted flow classification based on packet size or
inter-packet frequency distributions.

To tackle these limitations, we introduced FlowLens [7],
a system that leverages programmable switches to efficiently
support multi-purpose security network applications based on
machine learning algorithms. Our system enables network
operators to program their switches in order to automatically
scan and classify flows with high accuracy for a wide range
of scenarios, such as multimedia covert channel detection,
website fingerprinting, or botnet traffic identification. To this
end, FlowLens introduces a new system design (detailed in
Section II) that solves a fundamental tension between the need
for meaningful flow information required by machine learning
algorithms and the scarcity of hardware resources available in
modern programmable switches. Briefly, FlowLens computes a
memory-efficient representation of each flow’s relevant features,
named flow marker. Flow markers are specifically tailored for a
given ML task, ensuring a reasonable balance between the size
of the flow marker and the accuracy of the flow classification
task. FlowLens also implements a data structure, named flow
marker accumulator, which is responsible for collecting flow
markers as packets cross a programmable switch. Periodically,
flow markers are used to classify flows locally on the switching
device without requiring any additional infrastructure.

In this paper, we discuss how we have addressed three major
challenges faced during the implementation and evaluation
phases of FlowLens. These challenges have raised the bar in
proving the feasibility and effectiveness of our design. First,
we identified a substantial gap between the initial programming
environment (based on the P4 programming language) targeting
a software-emulated switch, and a production-level hardware
switch (i.e., the Barefoot Tofino). This gap forced us to deeply
refactor our code and revisit the assumptions underpinning
our original flow compression technique (Section III). Second,
we realized that different machine learning security tasks
proposed in the literature had been fine-tuned for their specific
application domains. This means that not only do they employ
different classification algorithms but even the datasets used
and the training processes are different from one another. As
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Figure 1. Protocol Independent Switch Architecture (PISA).

such, we had to repurpose the classification machinery of
previously existing applications to ensure their compatibility
with FlowLens (Section IV). Lastly, the comparison between
our compression technique and other related techniques was
hampered by the lack of access to the implementations of the
latter’s. This forced us to re-implement several such approaches
and in some cases to resort to analytical evaluations of their
compute, storage, and communication costs (Section V).

During our exposition, we seek to provide the reader with
a summary of the lessons we have learned when overcoming
the above challenges. We expect that other researchers and
practitioners may take heed on such lessons to learn from
our own experimental methodologies, execution, and results.
Likewise, we make available a set of recommendations aimed at
fostering the reporting of know-how, in the form of experimental
artifacts, towards reproducible security research (Section VI).
We conclude our paper by presenting directions for future work
(Section VII) and our conclusions (Section VIII).

Availability: Our experimentation artifacts include a P4 proto-
type of FlowLens, and the necessary code for adapting three
ML-based security applications’ workflow to FlowLens. We
made these artifacts publicly available [9] and encourage the
community to build on and extend our results.

II. BACKGROUND
A. Programmable Switches

Software-defined networking aims to improve the scalability
and control of computer networks by simplifying the opera-
tion of network switches through the disaggregation of the
forwarding process of network packets (data plane) from the
routing process (control plane). Existing programmable switches
implement this concept, featuring two different processing
units that act on each of the different planes of the network,
respectively. On the data plane, programmable switches feature
specialized forwarding ASICs to perform simple computations
on and/or forward packets at line-rate. On the control plane,
programmable switches feature a general-purpose CPU that
is responsible for performing routing decisions, handling
traffic policies, and performing other general-computing tasks.
Examples of such switches include the Barefoot Tofino [6] and
Broadcom Tomahawk [11].

P4-programmable switches: Programmable switches allow
users to define, by means of a program, the exact way packets
should be processed in a switch data plane. The programs can
be written in a hardware-independent programming language,
such as P4 [10], which allows for expressing the packet parsing
and packet processing operations. Figure 1 depicts the internals
of a modern programmable switch, the Protocol Independent
Switch Architecture (PISA)[12]. When a packet arrives at
the switch’s ingress interface, it is processed by a pipeline
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Figure 2. FlowLens architecture (adapted from our original paper [7]).

of match+action units (MAUSs) organized into stages. Packet
headers along with packet metadata may then match (M) a
given table in a stage, triggering further processing by an action
(A) associated with the matching table’s entry. These actions
may modify packet header fields, packet header metadata, or
some persistent state in the switch (e.g. writing to a register in
stateful memory). The tables are initialized by the P4 program
and are later populated by the control plane.

Constraints: To achieve line-rate at Tbps, PISA-like switches
impose important constraints on the operations that MAU ac-
tions can do, requiring careful engineering when programming
such devices effectively [16]. First, switching ASICs feature a
small amount of stateful memory (=100MB SRAM [24]), and
only a fraction of the available SRAM can be used to allocate
register arrays. Second, the registers in one stage cannot be
accessed by different stages since the SRAM is uniformly
distributed amongst the different stages of the pipeline (see
Figure 1). Third, packets must spend a fixed amount of time
in each pipeline stage (a few ns[37]) to guarantee line-rate
processing. This restricts the number and type of operations
allowed within each stage. Multiplications, divisions or floating-
point operations, and variable-length loops, are not supported.
Moreover, each table’s action can only perform a restricted set
of simpler operations, like additions, bit shifts, and memory
accesses so as not to stall the whole pipeline.

B. FlowLens

We proposed FlowLens [7], a system that leverages pro-
grammable switches to collect packet distributions at line speed
to support the efficient multi-purpose classification of flows on
the switches, e.g., for botnet detection. Figure 2 depicts the
architecture and the different modules of FlowLens.

Components: FlowLens’ architecture is composed of five main
components. First, FlowLens features a profiler server which
generates application-specific profiles that identify compression
parameters and the best available ML model to use in the
classification task. Second, FlowLens features a P4 program
running on the switch data plane that implements a custom
data structure named Flow Marker Accumulator (FMA). The
FMA is responsible for collecting a compressed representation
of the packet length or inter-packet timing distributions of
flows, named flow markers, during a given sampling period.
Third, FlowLens features a collector on the switch control plane



that loads the P4 program in the forwarding pipeline, initiates
the flow collection process, and collects the resulting flow
markers. Fourth, also in the control plane, a classifier executes
the supervised ML algorithms that classify flows based on the
collected markers. Lastly, FlowLens includes a software client
interface that allows system operators to use FlowLens.

Operation workflow: Suppose that a network operator is
interested in using FlowLens to perform the task of botnet
traffic detection. In such a case, the operation of FlowLens
proceeds with the following seven steps, as labeled in Figure 2:

(D FlowLens’ operator uploads a classifier and a training dataset
composed of legitimate and botnet packet traces to the profiler.

(@) The profiler processes the traces in the dataset and generates
flow markers according to different compression parameters.
The profiler will automatically select a parameterization (which
we call profile) that achieves a reasonable trade-off between the
memory occupied by flow markers and the accuracy achieved
when carrying out the detection of botnet traffic.

(3 The selected profile and classifier are loaded into the P4
program that will run in the data plane of the switch.

(@) The collector instructs the P4 program to begin the flow
collection process. As flows cross the switch, their respective
flow markers will be computed and stored inside the FMA.

(5) After a sampling period defined by the operator, the collector
retrieves flow markers from the FMA data structure.

(6) The collected flow markers are fed to the classifier co-
located in the control plane, which classifies individual flows
as legitimate or botnet-generated traffic.

(7) The results of the classification are finally propagated back to
the operator, who can then issue targeted actions like dropping
or trigger further logging operations over flagged flows.

Flow marker generation: To generate flow markers, e.g. based
on flows’ packet length distributions, the FMA features the
efficient implementation of two operators: (i) quantization,
which consists in counting packet lengths in coarse bins that
represent ranges of contiguous packet lengths, and (ii) frunca-
tion, which further trims the number of bins that need to be
reserved for a given application. The rationale for the use of
such operators is twofold. First, the use of quantization allows
us to obtain a coarser (yet smaller) representation of the overall
shape of a flow’s packet distribution, yielding important space
savings on the size of a flow marker. Further, quantization
may also allow for decreasing nefarious effects caused by the
“curse of dimensionality” when training ML models, which may
actually improve the accuracy of classification tasks to some
extent. Second, the literature shows that, for obtaining accurate
predictions on many traffic analysis tasks, it is only necessary
to collect a limited number of bin values that correspond to
the most relevant features employed by the ML model [8, 42].
In the next sections, we discuss the three main challenges we
faced when implementing and evaluating FlowLens.

III. MISMATCHES BETWEEN IMPLEMENTATION TARGETS

Due to the scarce memory and intrinsic programming
restrictions of current programmable switches, our FMA im-
plementation is driven by the goal of achieving high efficiency.
In other words, we aim at utilizing the memory available in

each stage of the switch’s pipeline to its fullest to store flow
markers, and to implement the quantization and truncation
operators resorting to simple sets of instructions.

During the development of FlowLens, we adopted the
common practice of implementing a prototype in the reference
P4 software switch before porting it to a hardware target. Yet,
the process of porting our initial implementation to hardware has
raised significant challenges in the implementation of FlowLens’
quantization and truncation operators. After delivering a brief
overview of our implementation targets, we will detail these
challenges and lessons learned.

A. P4 targets used in FlowLens development

The newest version of the P4 language (P414) supports
architectures to enable P4 on a multitude of hardware devices,
such as switches, routers, or NICs, but also on software
devices like Open vSwitch. Architectures provide a logical
view of the packet parsing and processing pipeline, allowing
programmers to abstract away from gritty hardware details that
can slowdown prototyping. Despite being an important step
towards the portability of P4 code, the intrinsic characteristics
of different targets may force programmers to adapt their
P4 implementations to adhere to target-specific constraints.
Specifically, we dealt with two different programmable switch
targets that implement the PISA architecture:

Reference P4 software switch: In 2016, the P4 language
consortium has released bmv2 [32], the second version of the
reference P4 software switch. bmv2 is a tool intended for
the development, testing, and debugging of P4 data/control
plane software, and is not affected by the constraints listed in
Section II-A. However, due to its development-oriented design
and to the fact that it processes packets in software, bmv2’s
performance is orders of magnitude slower when compared to
production-grade software switches. On the other hand, bmv2 is
open-source and provides a flexible target architecture, making
it ideal for prototyping. In addition, the P4 language consortium
also makes available to practitioners a VirtualBox image [3]
that includes all the switch software and P4 code examples.

Barefoot Tofino ASIC: Barefoot Tofino [6] is the first
programmable Tbps Ethernet switching ASIC designed for
production environments. To assess whether a P4 program can
run at line rate without stalling the switch’s pipeline, Tofino
ships with a dedicated P4 compiler as part of the Intel P4
Studio SDE. The program is ensured to run at line rate as
long as it compiles successfully. As noted in Section II-A, in
contrast to bmv2, the Tofino enforces several constraints that
must be taken into account to program the device effectively.

Since the initial implementation of FlowLens was developed
for the reference P4 software switch, it did not fully consider
the intrinsic restrictions of the Tofino ASIC. While this first
prototype was seemingly effective, its adaptation to the Tofino
required a significant redesign in order to implement FlowLens’
quantization and truncation operators. Next, we detail the design
process leading to the implementation of these operators and
highlight the major obstacles overcome during this process.

B. Target mismatches when implementing quantization

In this section, we start by describing our initial implemen-
tation of the quantization operator in the P4-reference switch.
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Figure 3. Implementation of FMA’s quantization operator on the reference

P4 software switch. A quantization level (QL) equal to 8 will discretize packet
lengths in 28 bytes-sized bins up to a total of 6 bins, assuming the maximum
packet size to be equal to an Ethernet’s MTU (1500 bytes). The numbers in
the register grids (RGx) represent counters of packets pertaining to each bin.

Then, we detail a number of changes and optimizations required
to make our implementation compatible with the Tofino ASIC.

Initial FMA implementation for bmv2: Figure 3 depicts a
schematic of our initial working implementation of FMA’s
quantization operator on the P4-reference switch. Each pipeline
stage n is composed of three major units: i) a flow table (FT},)
that indexes new flows arriving at the switch, ii) an action
(track flow n) that is triggered when a packet is matched
against one of the flow table rules, and iii) a register grid, held
in stateful memory, where each row stores the flow marker for
a given flow indexed in the flow table.

The example shown in Figure 3 works as follows. First,
the FMA’s flow table matches the incoming packet with
the corresponding flow ID, which is a 5-tuple of header
fields (IPy., Portg., P4y, Portyg, Proto) that is used as lookup
key to return its associated flow index. For instance, in the
running example, the input packet is matched against the
rule (162.2.13.42,6901, 147.6.54.129,3478,17) — 2. Upon
matching this rule, the corresponding action track flow 1
is invoked. The P4 implementation of this action (reported
in Figure 4) features three main sections responsible for a)
quantizing the packet size by applying a pre-determined amount
of bit-shifts over the packet size, b) computing the register
grid index where the packet should be accounted for, and c)
incrementing the register cell at the computed index. Put simply,
the action works as follows in this particular example. First,
we apply a quantization level QL=8 to an incoming packet size
of 364B. This means that we perform the integer division of
364 by 28, which yields a bin index value of 1. Second, we
compute which row of the register grid corresponds to the flow
marker of the current flow by multiplying its flow index by
the size of a register grid row. Finally, we find and increment
the position of the bin index that was previously computed
resorting to quantization, within the flow marker (bin index 1,
highlighted in white).

Already aware of some of the major hardware switches’ pro-
gramming constraints, our implementation of the track flow 1
action for bmv2 already included a number of optimizations.
First, quantization generates bins in ranges aggregated as
powers of two (29F), allowing for an efficient implementation

action track_flow_1(bit<32> action_index, bit<32> flow_index) { .
bit<32> value; } a) Quantize

bit<32> binIndex = standard_metadata.packet_length >> 8; packet size
bit<32> reg_grid_pos = flow_index << 2;
reg_grid_pos = reg_grid_pos + (flow_index << 1); b) QomPUte
reg_grid_pos = reg_grid_pos + binIndex; register index
reg_gridl.read(value, reg_grid_pos); C) Increment
value = (act%on_index f= 1) ? value + 1 : value; register cell
reg_gridl.write(reg_grid_pos, value);
}

Figure 4. P4 code of the track flow 1 action for bmv2.

7= packet size = 364

1 FlowID =<162.2.13.42, 6901, 147.6.54.129, 3478, 17>

'

‘ Match Count

E Stage 1 Stage 2 Stage 3 Stage 4

' [ | ]

i M {

' |

i FT1 FT3

' Quantization

oy al=3 s[nl1]a]ly, ...

-) 154 |13/ 5
RG1 RG2

T T

1 1

flow_offset
=12

md.rg_cell _offset
=13

Implementation of FMA’s quantization operator on hardware.

md.binIndex_quant =
1

Figure 5.

that resorts to bit-shifts in order to avoid divisions. Second,
we leverage bit-shift and addition operations to express the
necessary multiplication for computing the register grid index.
Lastly, we make a single read-modify-update sequence to take
into account the occurrence of a new packet in the flow marker.

Porting the bmv2 code to hardware: Despite the optimizations
introduced in our initial implementation for the reference P4
software switch, we were unable to successfully compile this
code on the Tofino ASIC. In fact, the operations specified in
the track _flow n action cannot all be executed within a single
stage of the switch pipeline.

To get around this constraint, we implemented an alternative
FMA design that splits the quantization operator across multiple
stages of the pipeline, as shown in Figure 5. In this updated
design, the quantization operator is now split into three different
stages, where each stage is responsible for a single section of
the old track flow n action (see the corresponding P4 snippet
in Figure 6). In Figure 5’s running example, the first stage
quantizes the packet size through the quantization act action
(Figure 6 a)). For this particular example, where the incoming
packet is matched in stage 2, the second stage computes the
register index (Figure 6 b)). Correspondingly, the third stage
increments the matching cell of the flow marker. Note however
that, as it can also be observed in Figure 5, reworking our FMA
implementation is made at the expense of SRAM memory. Due
to the feed-forward nature of the switch pipeline, the SRAM
memory clusters in stage 1 and stage 2 cannot be used to store
flow markers with this FMA design.

Observation 1: Per-stage computation must be kept simple
in current programmable switches. The logic for multi-step
operations may need to be divided across different stages,
possibly leading to an additional waste of resources, e.g.,
SRAM local to a certain stage.




action quantization_act(){
meta.binIndex = (bit<32>) Stage 1
(standard_metadata.packet_length >> 8); a) Quantize packet size

}

action set_flow_data(bit<32> flow_offset) { Stage n
meta.rg_cell_offset = flow_offset + meta.binIndex; g . .

} b) Compute register index

action reg_gridi_action() {
bit<16> value;
reg_gridl.read(value, meta.rg_cell_offset);
value = valuetl;
reg_gridl.write(meta.rg_cell_offset, value);

Stage n+1
c) Increment register cell

}

Figure 6. P4 code of the quantization operator for Tofino.
C. Target mismatches when implementing truncation

As previously described in Section II-B, FlowLens’ trunca-
tion operator aims at filtering out quantized bins that bring no
significant advantage for a given network traffic classification
task. In practice, this means that only a pre-selected subset of
bins is actually accounted for in the flow marker, allowing us
to reduce the overall flow marker memory footprint. A naive
approach to implement this behavior would be to build an if
chain to test whether the bin outputted by the quantization
stage should be accounted for in the flow marker. However,
for small values of the quantization level (e.g., QL=[0,1,2,3]),
the number of such comparisons would be in the order of
hundred operations, requiring multiple stages of the pipeline
to be dedicated to this computation alone.

A key observation, however, is that the choice of bins to
truncate can be computed offline during FlowLens’ profiling
stage. This makes it possible for the control plane to initialize
a match table that triggers a specific action when a given
quantized bin matches some table rule. Ultimately, this allows
us to avoid the waste of computation and memory resources
in the switch pipeline. Figure 7 depicts the implementation
of this truncation design. As in the previous example, stage 1
is responsible for quantizing the incoming packet length. In
this setting, stage 2 is used for implementing the truncation
operator. It works by matching the quantized bin index (qt _idx)
computed in stage 1 against a match+action table. As there is
a rule for gt _idx = 1 in the table, the action triggered in stage
2 sets the truncated bin_offset to 1 and sets the truncation
flag trunc_flag to signal further stages that this particular
packet should be accounted in the flow marker. The remaining
pipeline is similar to our initial implementation. In stage 3,
upon matching the packet in the flow table and checking that
the truncation flag is set, the register cell offset is computed,
and further incremented on stage 4.

Observation 2: Complex computations should be offloaded
to the control plane whenever possible in order to save the
limited resources on the switch data plane.

IV. HARMONIZATION OF ML-BASED SECURITY TASKS

FlowLens was conceived as a traffic analysis system able to
support any generic ML-based network security application that
focuses on the analysis of packet lengths and inter-arrival timing
distributions. To show that FlowLens can provide support to
multiple heterogeneous applications, we were required to find
a set of representative network security applications whose
classification workflow can be adapted to use flow markers
instead of raw packet distributions. However, the selected third-

- packet size = 364
FlowID =<162.2.13.42, 6901, 147.6.54.129, 3478, 17>

E Match Count
' Stage 1 Stage 2 Stage 3 Stage 4
, I ]
! 5 !
: ot - i ofse prm—
! L 0-0 FT1
' Quantization 1-1
--> QL=8 B> 3.2 >
4-3
5-4

md.qt_idx = 1 = = 10

md. trunc_flag | | md.rg_cell_offset
=1 =1

1 1
md.bin_offset ’ flow_offset
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party applications had to adhere to a number of non-trivial
requirements so as to be compatible with our testbed.

In the next sections, we aim to answer what are the necessary
conditions for an application to be compatible with FlowLens, to
detail the process we have followed to select potential candidate
applications, and to describe how we adapted the classification
workflows of the selected applications to use flow markers.

A. Eligibility criteria for experimentation with FlowLens

In our earlier experiments with FlowLens, we were in-
terested in adapting ML-based network security applications
whose methodology was sound, whose code and datasets were
available for experimentation, and whose results we would be
able to validate prior to adaptation. In essence, to be eligible
for experimentation in the context of FlowLens, candidate
third-party applications had to adhere to the below criteria.

Peer-reviewed publications: The first criterion demands that
a candidate application is supported by a peer-reviewed
publication. This requirement ensures that the application’s
methodology is sound, and that its integration with FlowLens
may raise the interest of the research community.

Datasets of packet traces: The second criterion for the selec-
tion of candidate applications is that these should perform some
network traffic classification task resorting to features extracted
from flows’ packet length or inter-arrival time distributions. In
the particular context of our system, we require the access to
a raw representation of such distributions so as to be able to
apply FlowLens’ quantization and truncation operators.

Compatible classifiers: The third criterion demands that
the selected applications perform flow classification tasks
through the use of supervised classification techniques. This
is imperative due to FlowLens’ profiling step described in
Section II-B. Moreover, such classifiers are required to be
executed efficiently resorting to the resources available in the
control plane of existing programmable switches, which include
a general-purpose CPU and several tens of GB RAM.

Experimental artifacts: The fourth criterion for the eligibility
of an application is concerned with the availability of experi-
mental artifacts that could speed up our development efforts.
Ideally, the necessary code for pre-processing and classifying
network flows should be publicly available.



Application category Publication Dataset of packet traces = Compatible classifier =~ Experimental artifacts = Reproducible
Botnet Traffic Detection Narang et al. [27] v v v v
Meidan et al. [22] - v v v
Covert Channel Detection Barradas et al. [8] v v v v
Geddes et al. [17] - v - -
Website Fingerprinting Herrmann et al. [19] v v v 4
Nasr et al. [28] - v - -
Application Fingerprinting Taylor et al. [40] - v v v
Aceto et al. [1] - v - -

Schuster et al. [36] -
Li et al. [21] -

Video Fingerprinting

Table 1.

Reproducible results: The last eligibility criterion dictates that
an application’s methodology and experimental artifacts must
suffice to enable the faithful reproduction of the results reported
in the supporting peer-reviewed publication. This would enable
us to understand to what extent an application’s accuracy would
be impacted by the adaptations performed by FlowLens.

Next, we detail our reviewing process over multiple network
security applications in light of the aforementioned criteria
towards the selection of our candidate applications.

B. Selection of ML-based network security applications

To evaluate FlowLens, we assessed the eligibility of multiple
ML-based applications, in the realm of network security, that
rely on the analysis of the distributions of packet lengths
and inter-arrival timing for performing the classification of
network flows. Specifically, we sought to understand whether
such applications were compatible with FlowLens and if their
repurposing was practical. Table I illustrates a summary of the
eligibility assessment we conducted over these applications,
regarding the five criteria considered in Section IV-A. Below,
we describe each of the considered applications and present
the results of our assessment with respect to each criterion.

Pool of ML-based network security applications: We as-
sessed the eligibility of ten emerging ML-based network
security applications scattered over five different categories.
Each application is supported by a peer-reviewed publication.
Below, we describe each category:

e Botnet traffic detection: The applications in this category
propose detection frameworks for identifying the presence
of botnet communication flows amongst legitimate P2P
traffic [27] and IoT device traffic [22].

e Detection of covert channels: These applications envision
the deployment of traffic analysis frameworks aimed at the
detection of covert channels established over multimedia
streams such as Skype [8, 17].

o Website fingerprinting: These applications leverage sta-
tistical traffic analysis techniques to identify webpages
browsed over encrypted tunnels such as OpenSSH [19] or
over anonymity networks like Tor [28].

e Application fingerprinting: The applications in this cate-
gory [40, 1] aim to recognize mobile apps through the
traffic patterns that these generate.

e Video fingerprinting: These applications resort to traffic
analysis to identify encrypted video streams [21, 36].

ELIGIBILITY ASSESSMENT OVER TEN DIFFERENT ML-BASED NETWORK SECURITY APPLICATIONS.

Datasets of packet traces: FlowLens demands the use of
raw packet traces for applying the quantization and truncation
operators during the generation of flow markers. As it can be
observed in Table I, the availability of data comes across as the
most effective elimination criterion to single-out the eligibility
of applications, since only three out of the ten applications we
considered make raw packet traces available.

While Meidan et al. [22] and Taylor et al. [40] have publicly
released their datasets, these only expose pre-processed features
such as statistical indicators derived from raw packet traces.
This prevents us from re-generating feature sets through the
application of FlowLens quantization and truncation operators,
so making us unable to test such applications due to the lack of
access to raw packet traces. Unfortunately, Geddes et al [17],
Nasr et al. [28], Aceto et al. [1], Schuster et al. [36], and Li
et al. [21] do not make their datasets available.

Compatible classifiers: To generate and classify flow mark-
ers, FlowLens requires the use of efficient supervised ML
algorithms. From our analysis, all the classifiers used in the
considered applications work in a supervised fashion. Further,
the results in Table I show that, with exception to the work of
Schuster et al. [36], and Li et al. [21], the classifiers for all
the remaining applications can be run efficiently in the control
plane of the programmable switch.

Classifiers that we deem compatible with FlowLens include,
for instance, the tree-based classifiers like random forests and
XGBoost, used by Narang et al. [27] and Barradas et al. [8],
respectively. Such classifiers can be efficiently parallelized on
the commodity CPU that is typically available in programmable
switches. Instead, the classifiers incompatible with FlowLens
include those that resort to deep learning approaches and that
typically require the use of GPUs to accelerate model inference
for near real-time traffic inspection. Since programmable
switches are not typically equipped with GPUs, we did not
consider the corresponding deep learning applications.

Experimental artifacts: In Table I, we can see that experi-
mental artifacts are only available for half of the considered
applications. For such applications, the authors provide pointers
to code hosted on GitHub, alongside proper documentation, on
the peer-reviewed publications that introduce their own traffic
analysis frameworks. While some experimental artifacts were
less comprehensive than others, this was often not a huge barrier
when adapting such applications to our experimental testbed.
For instance, in the case of Herrmann et al. [19], the authors
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Figure 8. The three phases of the FlowLens profiling procedure.

omitted the code for partitioning their dataset but provided a
detailed description of their methodology and released a plugin
for the Weka ML library which contained the implementation
of their classifier.

Reproducible results: Given the availability of data and the
correctness of available experimental artifacts, the last column
of Table I depicts the results of our efforts with reproducing
the original flow classification results reported for each of the
considered applications. Briefly, the table shows that we were
able to reproduce the experimental results for all the applications
for which experimental artifacts were made available. For
all such applications, the reproduction of the original results
required only the installation of the sklearn Python package,
along with other classifier-specific packages such as xgboost
and the Weka library for machine learning.

Selected applications: Despite the fact that we were able to
correctly reproduce the results for five of the ten applications
considered in Table I, only three of the applications fulfilled
the five criteria outlined in Section IV-A. Thus, for evaluating
FlowLens, we focused our attention on three different applica-
tions: botnet traffic detection (Narang et al. [27]), covert channel
detection (Barradas et al. [8]), and website fingerprinting
(Herrmann et al. [19]).

Observation 3: Sharing datasets that feature complete
traffic traces can foster experimentation with frameworks
that analyze raw flow characteristics.

C. Adaptation of the classification workflow

As mentioned in Section II-B, FlowLens requires a profiling
procedure for picking a flow marker configuration that achieves
a reasonable balance between classification accuracy and
memory footprint. In short, this profiling procedure demands
for the generation of flow markers and the subsequent training
and testing of supervised ML models using said flow markers.
For enabling this procedure, FlowLens requires important adap-
tations of the classification workflow of the heterogeneous ML-
based network security applications considered in the context
of our work. Next, we outline such necessary adaptations, detail

the profiling procedure used in FlowLens, and explain how we
evaluate the accuracy of the produced flow markers.

Adaptation of the classification workflow: FlowLens’ pro-
filing procedure requires the partitioning of the original ap-
plication dataset in two balanced halves, where the first half
is used for training models based on different flow marker
configurations, and the second half is used for testing said
models. In essence, this corresponds to the notion of holdout
evaluation [34]. However, this exercise is different for most
ML-based network security applications found in the literature.
In fact, a similarity between all the classifiers used in the
applications we have selected is that these were evaluated
following a 10-fold cross-validation [33] process. Briefly, cross-
validation is a resampling procedure used to evaluate machine
learning models on a limited data sample that enables the
assessment of how the classifier results’ will generalize to
an independent data set. As detailed next, FlowLens replaces
cross-validation with holdout evaluation during profiling.

FlowLens profiling procedure: Figure 8 depicts the three
phases involved in FlowLens’ profiling procedure. In Phase
I, we quantize the samples in the first dataset partition using
different quantization levels and build several classification
models accordingly. After validating these models through
the use of a holdout set, we compute feature importance for
each model. In Phase 2, we generate multiple models trained
with different flow marker configurations. Flow markers are
generated by selecting a quantization level and by selecting the
top-N most important features obtained from the feature ranking
performed over the model created with the corresponding
quantization level. Lastly, Phase 3 is responsible for evaluating
the models trained with the use of flow markers. To this end, we
generate flow markers for the samples in the second partition of
the dataset, and use these to test the different models obtained in
Phase 2. Upon obtaining the classification results, the FlowLens
operator can select the model that achieves a pre-defined trade-
off between classification accuracy and flow marker size.

Evaluating the accuracy of flow markers: Since FlowLens
modifies the classification workflow of existing applications,
this causes the obtained results not to be directly comparable



in an apples-to-apples fashion with the original application’s
classification accuracy. As described above, adapting an ap-
plication to FlowLens involves a) the slicing of the original
dataset, and b) exchanging the application’s model evaluation
process from cross-validation to holdout validation. However,
we note that the ultimate goal of FlowLens is that of generating
a flow marker that can achieve an accuracy akin to the use of
raw packet traces while occupying a much smaller memory
footprint. Thus, to evaluate the quality of flow markers, it is
enough to follow the same profiling process tied to model
training and testing. In this case, however, we conduct the
profiling process using different flow marker configurations
instead of the original raw packet data, and assess the achieved
classification accuracy. Nevertheless, for all the applications
we adapted in our work (WF, BTD, CCD), the accuracy obtained
when following FlowLens profiling process while using raw
packet data is comparable to the results obtained in the original
papers (e.g., WF achieves 97% accuracy both in the original
classification setting and in the modified FlowLens classification
workflow when using raw packet length distributions).

Observation 4: It is possible to adapt heterogeneous ML
scenarios into a uniform classification framework like
FlowLens, despite the fact that such applications rely on
different classification processes.

V. HARD-TO-REPRODUCE NETWORKING EXPERIMENTS

The main goal of FlowLens is that of scaling the amount of
flows that can be inspected simultaneously in a single switch,
while enabling ML-based network security applications to retain
their accuracy. Needless to say, however, is that FlowLens is
not the only system that attempts to scale traffic inspection
capabilities while reducing the costs of network telemetry
infrastructure. In particular, we were interested in comparing
the scalability gains of FlowLens with two different classes
of approaches proposed in the literature based on i) disparate
flow compression techniques like online sketching [14] and
compressive traffic analysis [28], and ii) packet aggregation
solutions such as like *Flow [39]. Next, we describe the two
major deterrents we faced when accomplishing this task.

A. Unavailability of experimental artifacts

An important step in our evaluation comprised the com-
parison of FlowLens against online sketching and compressive
traffic analysis, two techniques that rely on linear transforma-
tions to generate compressed representations of packet length
and inter-arrival timing distributions. Alas, upon a thorough
search, we were unable to find a public release of the code of
neither technique. This may suggest that prototypes for these
techniques were not ready for being released and that such
preparation could impose additional hours of work that authors
would be unwilling to spend.

In light of these difficulties, we decided to re-implement
these flow compression schemes using the definitions and
methodologies expressed in the papers. Oftentimes, however,
and due to space limitations, the authors omit implementation
details and overlook the description of slight coding nuances,
providing only a simplified implementation description. As a

result, other researchers and practitioners who are forced to re-
implement such methodologies may inadvertently fail to respect
original implementation decisions. As a result, it is possible
for the results emerging from an aposteriori comparison to be
skewed due to implementation discrepancies.

Nevertheless, in our paper [7], we attempted to follow
the steps described in the original manuscripts and produce
faithful re-implementations of the online sketching and com-
pressive traffic analysis solutions. We are confident of our re-
implementation since these techniques were well documented
and relied on rather straightforward mathematical concepts like
matrix multiplication. Ultimately, the results of our experiments
revealed that FlowLens was able to outperform both techniques
and we have publicly released our re-implementations [9].

Observation 5: The reproducibility of experiments with
traffic analysis frameworks may be hampered by code un-
availability. This means that re-implementation is required
and that practitioners may run the risk of failing to respect
original implementation decisions.

B. Cumbersome deployment of existing testbeds

The second major step of our comparative evaluation encom-
passed the juxtaposition of FlowLens against *Flow, a network
monitoring solution that takes advantage of programmable
switches to export telemetry data. In a nutshell, *Flow relies
on the data plane-level ASIC to extract and group multiple per-
packet features in grouped packet vectors, ensuing their periodic
offloading to a monitoring server. To compare the computation,
storage, and bandwidth costs of both approaches, we intended
to run the available *Flow code hosted on GitHub [38].

However, upon analysing the *Flow code repository, it be-
came apparent that the available implementation corresponded
to a redacted version of Tofino-specific code. In particular, the
code for a number of target-specific functions was replaced by
pseudocode and placeholders, since the original code cannot be
disclosed due to NDAs. Despite this fact, however, the authors
did not produce a bmv2-compliant version. Unfortunately, this
meant that *Flow experimental setup could not be reproduced
without further implementation efforts. Ultimately, we resorted
to an analytical estimation of the resource expenditure of *Flow,
showing that it incurs in a significant bandwidth overhead when
compared to FlowLens.

Observation 6: At the time of writing FlowLens, it was
difficult to experiment with existing traffic analysis tooling
for programmable switching hardware due to the fact that
target-specific P4 implementations were redacted prior to
release to adhere to NDAs. As of today, this difficulty has
been partially addressed by Barefoot and Intel through the
Open Tofino [29] project.

VI. RECOMMENDATIONS

The lessons learned when tackling the several challenges
tied to the implementation and evaluation of FlowLens allow
us to draft three recommendations, below, related to experiment
design and the sharing of experimental data and artifacts.



A. Target-aware system design

bl

Our endeavors on adapting the implementation of FlowLens
FMA between P4-capable targets with different characteristics
(Section III) put in evidence an important trade-off between fast
prototyping and efficiency in real hardware. On the one hand,
writing P4 programs is simpler if the target allows for greater
levels of abstraction and flexibility, as is the case of software
targets. On the other hand, developing P4 code while failing to
adhere to existing hardware restrictions means that the program
may require deep restructuring to be run successfully.

s "
Recommendation 1: If you intend to deploy your system
onto a specific target platform, design it in such a way you
can respect the intrinsic target-specific restrictions. You
should however try to abstract your design beyond these
restrictions since the system may be adaptable to multiple
target platforms.

B. Quality and availability of experimental data

Our quest towards finding network security applications
that depended on the analysis of packet distributions, and
whose classification workflow could be adapted to FlowLens
(Section IV), revealed that several authors only make available
datasets with post-processed traffic features. This is a stumbling
block to the experimentation with traffic analysis frameworks
that perform (and potentially improve) flow classification tasks
based on raw packet characteristics, like FlowLens.

N

Recommendation 2: When releasing a dataset for ML-
based network security research, consider to make available
packet traces comprised of a timeseries of packet lengths
and a timeseries of packet inter-arrival times. This may be
helpful for practitioners interested in manipulating your data
in unforeseen ways. Alternatives when there are business
and confidentiality impediments that preclude full sharing
of the raw packet traces exist, both in the form of privacy-
enhanced techniques [26] or by exploring other models of
collaboration with industry [25].

. 7

C. Sharing of experimental artifacts

Over the last few years, numerous researchers in computer
security have striven to include pointers to experimental
artifacts in their publications. As a whole, the dissemination
of such artifacts (comprising tools, benchmarks, and datasets)
provides evidence about the soundness of the experimental
methodologies introduced in their papers, encourages other
researchers to tinker with these artifacts, and serves as a jumping
off point for future work. Still, the hindrances encountered
during our efforts to compare FlowLens with other works in the
literature (Section V) have shown that artifacts are oftentimes
incomplete or otherwise cumbersome to experiment with.

Recommendation 3: Strive to make a working version of
your code available, alongside thorough documentation. A
prominent formal process that encourages the submission
and evaluation of artifacts, and which has been progres-
sively adopted in multiple conferences and journals, is the
ACM Artifact Review and Badging initiative [4].

VII. FUTURE WORK

In this section, we outline some avenues for future work
targeting the development of a comprehensive traffic analysis
testbed for FlowLens and the experimentation with traffic
analysis testbeds based on programmable switches.

Fully-fledged FlowLens testing suite: The experimental arti-
facts released alongside our FlowLens paper [9] include a P4
prototype of FlowLens’ flow marker collection process and the
necessary code for adapting three ML-based network security
application to FlowLens. However, for our experiments, these
software components are decoupled in such a way that the
generation of flow markers and the ensuing application-specific
classification tasks are simulated in a Python program. As
future work, we intend to build a fully fledged software testbed
that would implement the full FlowLens’ workflow described
in Section II-B. In short, this testbed would involve providing
security practitioners with the ability to replay traffic traces
(e.g., in the form of .pcap files) through the FlowLens P4 code
running in the reference P4 software switch (bmv2) and execute
the classification procedure in the switch control plane. This
testbed can be built for the official P4 Tutorial VM [3], which
already incorporates all the required simulation environment.

Distributed network testbed: The steep cost of programmable
switching hardware makes it difficult for the average practitioner
to develop and test software for such hardware. To make it
worse, these costs are further exacerbated if a central point
of the system design comprehends a distributed setting (e.g.,
requiring the cooperation of multiple switches to withstand a
range of attacks to the network infrastructure [7]). Thus, an
interesting direction for future work would be the development
of a distributed testbed, much like PlanetLab, but enabled with
programmable switches. In such a way, it would be possible
to significantly drop the barrier to entry for network security
practitioners. While a few research groups have already paved
the way towards the creation of such a testbed [18, 5], existing
proposals are still in their infancy and only recently began
paving the way to provide global-scale connectivity [15].

VIII. CONCLUSIONS

This paper shed light on the major challenges involved in
building and evaluating FlowLens, a traffic analysis system for
generic ML-based network security applications. We detailed
how we overcame the implementation hurdles caused by
mismatches between the programming model of software
and hardware P4 targets, the standardization efforts to ensure
the compatibility of heterogeneous traffic analysis tasks with
FlowLens, and the shortage of traffic analysis testbeds. We
drafted a number of lessons and recommendations to researchers
working at the intersection of the network security and machine
learning fields, and presented directions for future work which
aim at boosting the cooperation between security practitioners.
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