Poster: Automated Vulnerability Assessment for Embedded Systems
Ulrich Lang, Holmes Chuang, Reza Fatahi, Will Swift, Jason Kramer
ObjectSecurity LLC
{ ulrich | holmes | reza | will | jason }@objectsecurity.com

Abstract - We present the results of our Navy-sponsored research effort to develop an automated vulnerability assessment tool that meets stringent requirements for already-deployed embedded systems, incl. can be portable, offline, battery-powered, and usable.

I. INTRODUCTION
Cybersecurity for IIoT and especially embedded systems has many challenges. For example:
- Outdated/vulnerable software, un-patchable
- Lack of risk assessment/management knowledge for IIoT
- Cybersecurity tools often do not directly apply (e.g., antivirus)
- Hardware physically accessible/unprotected
- Weak encryption and other self-defenses due to limited resources
- No/limited monitoring due to bandwidth/connectivity constraints

Particular challenges with embedded devices include:
- Often already deployed
- Often cannot physically be removed
- Usually no screen/keyboard
- Logins often unknown (manufacturer/servicer only)
- Device internals often unknown, legacy systems, no documentation

Embedded systems today are assessed by: hiring vulnerability assessors / pen-testers who will try to connect to interfaces, break into the device, extract the firmware, analyze it for vulns., create a report.

II. OBJECTIVES
Funded as part a Navy (ONR) SBIR Phase I/II “Red Team in a Box for Embedded and Non-IP Devices” (Navy SBIR 2018.2 - Topic N182-131 [1]), ObjectSecurity [2] was tasked to develop an approach and prototype (“RedBox”) [3] that can overcome the limitation of human red team resources for conducting vulnerability assessments on Navy systems, in particular, cyber-physical systems. In other words, how can this be done simpler/cheaper at scale?

As part of this research, we are developing an automated vulnerability assessor / pen tester:
- Portable device that non-experts can connect to IIoT devices deployed in the field
- Extracts & analyzes firmware
- Provides easy-to-understand result
- Uses AI (deep learning) to predict what works best

We previously also completed SBIR research to develop an automated red team hacker for cyber training – and an objective was to reuse some of the results from that project too.

III. MATERIALS & METHODS
We are currently ~1.5 years into a ~3.5-year period of performance. We have developed a working end-to-end prototype. The actual portable device automatically executes sequences of actions on devices to identify ports (console, JTAG, UART etc.), break into a command shell, extract binaries (firmware), and run vulnerability assessments on the extracted software.

IV. SYSTEM OVERVIEW
The system runs through the following main phases:

1) Connect to external connectors (D-Sub, USB, serial, SD card), and internal UART/JTAG (Universal Async. Receiver/Transmitter, Joint Test Action Group) on the circuit board.

2) Extract: automatically gain access to the system (using basic automated pen-testing), ideally via a command shell. It then automatically extracts the firmware from the device.
3) **Analyze**: automatically analyzes the extracted firmware for known and zero-day vulnerabilities, including binary vulnerabilities assessments, decompiling or disassembling and analyzing the decompiled source. Results are aggregated, filtered, mapped to a standard, and prioritized by potential impact.

4) **Report**: simple user output on the device for non-experts (e.g. traffic light), and details are stored for further aggregation and analysis (and uploaded to a backend when RedBox has internet connection). The left side shows a traffic-light score for non-experts, while the right side shows an ELK stack based backend with advanced visual analytics capabilities for experts:

5) **Adapt**: uses artificial intelligence (AI) to learn and adapt from every device analysis. The following figure shows different thicknesses based on how reinforced each assessment sequence step and path are:

V. RESULTS

While the project is still ongoing, there are already some preliminary results:

- First working prototype meets most of the requirements
- Requirements (portable, offline, battery-powered, usable by non-experts, for previously unknown devices) are maybe too stringent. Connect/extract requires expertise unless console port etc. externally available
- Deep reinforcement learning for sequencing not as beneficial as expected due to nature of sequencing
- Many open source and academic vulnerability assessment tools are not production-ready. Commercial tools are often very pricy (e.g. IDA Pro).
- Market research results indicate commercial interest

VI. CONCLUSIONS

While it is immature to jump to conclusions before the project is completed, there are already some preliminary conclusions:

- Interviews with potential users indicate that there are use cases for this technology that can offer fast/cheap/automated prioritization of binaries for human testers to look at in more detail.
- Automating unwieldy vulnerability assessment tools designed for experts is at times challenging and engineering-intensive
- Identifying a code weakness does not always correlate to a vulnerability

ACKNOWLEDGEMENT

Parts of this work is sponsored by the U.S. Navy under contract N6833520C0094.

REFERENCES

INTRODUCTION

Cybersecurity for IIoT and especially embedded systems has many challenges, e.g.:
- Outdated/vulnerable software, un-patchable
- Lack of risk assessment/management knowledge for IIoT
- Cybersecurity tools often do not directly apply (e.g. antivirus)
- Hardware physically accessible/unprotected
- Weak encryption and other self-defenses due to limited resources
- No limited monitoring due to bandwidth/connectivity constraints

Particular challenges with embedded devices include:
- Often already deployed and often cannot physically be removed
- Usually no screen/keyboard
- Login often unknown (manufacturer/service provider only)
- Device internals often unknown, legacy systems, no documentation

Embedded systems today are assessed by hiring vulnerability assessors/pentesters who will try to connect to interfaces, break into the device, extract the firmware, analyze it for vuls., create a report

OBJECTIVES

Funded as part of a Navy (ONR) SBIR Phase II/III Red Team in a Box for Embedded and Non-IP Devices (Navy SBIR 2018-02 - Topic N182131) we were tasked to develop an approach and prototype (“RedBox”) that can overcome the limitation of human red team resources for conducting vulnerability assessments on Navy systems, in particular, cyber-physical systems. In other words, how can this be done simpler/cheaper at scale?

As part of this research we are developing an automated vulnerability assessor / pen tester:
- Portable device that non-experts can connect to IIoT devices deployed in the field
- Extracts & analyzes firmware
- Provides easy-to-understand result
- Uses AI (deep learning) to predict what works best

We previously also completed SBIR research to develop an automated red team hacker for cyber training – and an objective was to reuse some of the results from that project too.

MATERIALS & METHODS

We are currently ~1.5 years into a 3-3.5 year period of performance. We have developed a working end-to-end prototype. The actual portable device automatically executes sequences of actions on devices to identify ports (e.g. USB, UART etc.), break into a command shell, extract binaries (firmware), and run vulnerability assessments on the extracted software.

1) Connect to external connectors (D-Sub, USB, serial, SD card), and internal UART/JTAG (Universal Async. Receiver/Transmitter, Joint Test Action Group) on the circuit board
2) Extract: automatically gains access to the system (using basic automated pen-testing), ideally via a command shell. It then automatically extracts the firmware from the device
3) Analyze: automatically analyzes the extracted firmware for known and zero-day vulnerabilities, including binary vulnerabilities assessments, decompiling or disassembling and analyzing the decompiled source. Results are aggregated, filtered, mapped to a standard, and prioritized by potential impact
4) Report: simple user output on the device for non-experts (e.g. traffic light), and details are stored for further aggregation and analysis (and uploaded to a backend when RedBox has internet connection)
5) Adapt: uses artificial intelligence (AI) to learn and adapt from every device analysis

RESULTS

- First working prototype meets most of the requirements (validated portable/offline automated firmware extraction, analysis, and scoring with a range of embedded devices is viable).
- Requirements (portable, offline, battery-powered, usable by non-experts, for previously unknown devices) are maybe too stringent. Connect/extract requires expertise unless console port etc. externally available.
- Deep reinforcement learning for sequencing not as beneficial as expected due to nature of sequencing.
- Many open source and academic vulnerability assessment tools are not production-ready. Commercial tools are often very pricey (e.g. IDA Pro).
- Market research results indicate commercial interest

CONCLUSIONS

* Interviews with potential users indicate that there are use cases for this technology that can offer fast/cheap/automated prioritization of binaries for human testers to look at in more detail.
* Automating uninteresting vulnerability assessment tools designed for experts is at times challenging and engineering-intensive.
* Identifying a code weakness does not always correlate to a vulnerability

REFERENCES

- objectsecurity.com/redbox
- objectsecurity.com/pubs

CONTACT

ObjectSecurity LLC
1855 1st Ave #103, San Diego, CA 92101
info@objectsecurity.com, 650-515-3391,
@objectsecurity

ACKNOWLEDGEMENTS

Parts of this work are sponsored by the U.S. Navy under contract N00039201700094